分数混合运算(培优)

合集下载

分数混合运算(培优)

分数混合运算(培优)

解题技巧:根据一个数比另一个数多几分之几(或少几分之几)可知:“比”字后面的量已知,即单位“1”已知,根据分数乘法的意义,这样的题计算时用乘法。

(1)先求出多的几分之几具体是多少,然后再用已知数加上多的部分。

(2)已知数是1倍,用1加上未知数比已知数多的几分之几,就可以求出未知数是已知数的几分之几。

例:一堆货物共有320吨,第一天运走它的41,第二天运走余下的31,还剩多少吨没有运走?解:方法一:320⨯(1-41)⨯(1-31)=320⨯43⨯32=160 ( 两个单位“1”:一堆货物和余下的货物) 方法二:320⨯【1-41-(1-41)⨯31】=320⨯21=160(单位“1”都是一堆货物) 练习:1、爸爸买回10块巧克力,给小红52,其余的留给小丁,留给小丁多少块?2、黄金周期间,北山公园第一天门票收入为8.4万元,第二天比第一天增加121,这两天的门票收入共多少万元?3、煤场有煤1200吨,第一天运走总数的31,第二天运走总数的41,两天一共运走多少吨?例 一根绳子80米,第一次用去全长的103,第二次用去全长一半,第二次比第一次多用了多少米?例 水果店里梨子比苹果少51,橘子比梨多61,苹果有150千克,橘子有多少千克?例 某商店有450米布,第一天卖出总数的92,第二天又卖出余下的71,这时还剩下多少米布没卖? 练习:1、一台电视机现在售价2400元,比原来降低了51,原来每台售价多少元?2、小刚现在的体重是52千克,比原来增加了261,小刚原来体重多少千克?方程解决问题:例 小强2岁时,他的父亲32岁,小强的年龄是父亲的53的那一年,问他父亲当时多大岁数?解:设小强那年x岁,那么小强的年龄为53xX-53x=32-2练习:1、光明小学六年级有学生960人,比五年级人数少71,四年级人数比五年级人数多81,四年级人数有多少人?2、粮店运来大米和面粉共280袋,其中面粉的袋数比大米少94,运来的大米和面粉各有多少袋?附加题:一项工程,甲队单独完成需40天,若乙先做10天,余下的工程由甲、乙两队合作,又需20天完成。

五年级上册数学试题-奥数培优——分数的问题(含解析) 全国通用

五年级上册数学试题-奥数培优——分数的问题(含解析) 全国通用

小学五年级奥数培优——分数的问题【知识点梳理】1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2.分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

【教学重难、点】一、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。

2、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1。

②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。

③由整数部分和分数部分组成的分数叫做带分数。

2、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。

②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。

二、分数的基本性质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

2、分数的大小比较:①同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大。

③异分母分数,先化成同分母分数(分数单位相同),再进行比较。

(依据分数的基本性质进行变化)三、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。

2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。

五、分数和小数的互化:1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几??,能约分的必须约成最简分数;2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。

(一般保留三位小数。

)3、分数和小数比较大小:一般把分数变成小数后比较更简便。

六、分数的加法和减法 1、真分数加减法(1)同分母分数加、减法(分母不变,分子相加减)(2)异分母分数加、减法(通分后再加减)(3)分数加减混合运算:同整数。

小学五六年级奥数培优——分数的问题(word解析版)

小学五六年级奥数培优——分数的问题(word解析版)

小学五六年级奥数培优——分数的问题【知识点梳理】1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2.分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

【教学重难、点】一、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。

2、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1。

②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。

③由整数部分和分数部分组成的分数叫做带分数。

2、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。

②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。

二、分数的基本性质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

2、分数的大小比较:①同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大。

③异分母分数,先化成同分母分数(分数单位相同),再进行比较。

(依据分数的基本性质进行变化)三、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。

2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。

五、分数和小数的互化:1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几??,能约分的必须约成最简分数;2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。

(一般保留三位小数。

)3、分数和小数比较大小:一般把分数变成小数后比较更简便。

六、分数的加法和减法 1、真分数加减法(1)同分母分数加、减法(分母不变,分子相加减)(2)异分母分数加、减法(通分后再加减)(3)分数加减混合运算:同整数。

第二单元《分数混合运算》2024-2025学年北师大版数学六年级上册单元培优冲关检测卷(全解全析)

第二单元《分数混合运算》2024-2025学年北师大版数学六年级上册单元培优冲关检测卷(全解全析)

2024-2025学年北师大版数学六年级上册单元培优冲关检测卷第二单元《分数混合运算》时间:90分钟满分:100分难度系数:0.37(较难)一.慎重选择(共5小题,满分10分,每小题2分)1.(2分)(2024•江宁区)已知甲、乙、丙三个桶中分别有20升、18升、14升牛奶。

现进行如下操作:先将甲桶中35的牛奶倒入丙桶,再将乙桶中的23平均分给甲桶和丙桶,最后将丙桶中的516倒给甲桶。

这时,丙桶中还有 _____升牛奶。

()A.22 B.24 C.6【思路点拨】先算甲桶倒入丙桶的升数,用乘法计算;再求乙桶倒入丙桶的升数,最后再求丙桶还有的牛奶即可。

【规范解答】解:320125×=(升)211832××1122=×6=(升)1412632++=(升)532(1)16×−113216=×22=(升)答:丙桶中还有22升牛奶。

故选:A。

【考点评析】本题考查分数四则复合应用,本题抓住丙桶中的变化,是解答本题的关键。

2.(2分)(2024•郫都区校级模拟)有两根长短粗细不同的蚊香,短的一根可燃8小时,长的一根的可燃时间是短的一根的12,同时点燃两根蚊香,经过3小时,它们的长短正好相等,未点燃之前,短蚊香比长蚊香短()A.35B.67C.25D.45【思路点拨】根据题意,长的一根的可燃时间是1842×=(小时),根据3小时后两根蚊香的长短相等,求出原来蚊香的比,即可求出未点燃之前,短蚊香比长蚊香短的几分之几。

【规范解答】解:由题意可知:长蚊香的可燃时间是1842×=(小时), 短蚊香的长度1(13)8×−×=长蚊香的长度1(13)4×−× 短蚊香的长度:长蚊香的长短11(13):(13)2:548=−×−×=所以短蚊香的长度比长蚊香短: (52)5−÷ 35=÷35= 答:未点燃之前,短蚊香比长蚊香短35。

苏科版 八年级数学下册尖子生培优必刷题 专题10.6分式的混合运算大题专练(重难点培优30题)(原卷

苏科版 八年级数学下册尖子生培优必刷题 专题10.6分式的混合运算大题专练(重难点培优30题)(原卷

【拔尖特训】2023-2024学年八年级数学下册尖子生培优必刷题【苏科版】专题10.6分式的混合运算大题专练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2023秋•苏州期末)化简:(1)a 2a−1−1a−1;(2)(m −3−7m+3)÷m 2−4m 2m+6.2.(2023•泉山区校级三模)(1)计算(π−3.14)0+(13)−2−(−2)3;(2)化简:(1a+1−1a 2−1)÷a−3a+1. 3.(2023春•六合区校级月考)计算.(1)4a 3b ⋅b 2a 3;(2)1−a−2a ÷a 2−4a 2+a. 4.(2023秋•崇川区校级月考)计算:(1)(π−3)0+(−13)−1−√(−2)2;(2)6a 6b 4÷3a 3b 4+a 2⋅(﹣5a );(3)(2y x )−2⋅xy x 2−xy 2xy 2÷2x ; (4)(a −1−2a−1a+1)÷a 2−4a+42+2a5.(2023春•宜兴市校级期中)计算(1)x 2x+2−x +2; (2)x 2−16x+4÷2x−84x .6.(2023春•梁溪区校级期中)计算:(1)6xy 2÷2y 2x ;(2)2x−1x−1−1x−1; (3)x x 2−4−12x−4; (4)x−y x ÷(x −2xy−y 2x) 7.(2023•徐州)计算:(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9; (2)(1+2x )÷x 2+4x+4x 2. 8.(2023春•溧阳市期中)计算:(1)a 2bc ⋅(−bc 2a ); (2)a−2a+3×2a+6a 2−4; (3)a 22a−4−2a−2; (4)(4x−2−x +2)÷(x−4x−2). 9.(2023•兴化市开学)(1)计算:(√3)2﹣(π−√5)0−√27−|√3−2|;(2)化简:ba 2−b 2÷(1−a a+b ). 10.(2023春•滨湖区校级期中)化简:(1)b 2−27a 3÷2b 9a ⋅3ab b 4; (2)4x 22x−3+93−2x ; (3)m 2m+2−m +2.11.(2023春•东海县期末)计算:(1)a 2bc ⋅(−bc 2a ); (2)a 22a−4−2a−2. 12.(2023春•丹阳市期末)化简:(1)2xx 2−4−1x−2;(2)(1−1a )÷a 2−2a+1a 2−1.13.(2023春•常州期末)计算:(1)8x 3÷32x 2; (2)a−c a−b −c−b b−a. 14.(2023春•溧阳市期末)化简:(1)(−m n 2)•n m; (2)a a−1÷(a 2a 2−1−a a+1).15.(2023秋•环翠区校级月考)分式计算:(1)3x 2y ⋅512ab 2÷(−5a 4b ); (2)(−a 2bc )3⋅(−c 2a 2)2÷(−bc a )4; (3)a+31−a ÷a 2+3aa 2−2a+1; (4)(ab −b 2)÷a 2−b 2a+b. 16.(2023秋•张店区校级月考)分式的计算:(1)(1x−1−1x 2−1)÷x 2−x x 2−2x+1; (2)2x−6x−2÷(5x−2−x −2).17.(2023春•南关区校级月考)计算:(1)x x 2−1⋅x+1x 2; (2)(a+b)2ab −a 2+b 2ab. 18.(2023秋•和平区校级期末)计算:(1)(−4m 3n 3t )2÷n mt(2)x 2−4x 2−4x+4÷x+2x+1−x x−219.(2023春•罗湖区校级期末)计算(1)3x (x−3)2−x 3−x (2)1x+1+1x−1−x 2+1x 2−1x −1x−120.(2023春•南阳月考)化简:(1)(a ﹣1−4a−1a+1)÷a 2−8a+16a+1; (2)(x+2x 2−2x −x−1x 2−4x+4)÷x−4x . 21.(2023秋•青龙县期中)计算:(1)a 2a−b +b 2a−b −2ab a−b ;(2)(1−1a+1)÷a a 2+2a+1. 22.(2023春•沈北新区期末)化简:(1)(x 2﹣4y 2)÷2y+x xy •1x(2y−x); (2)2x x 2−4−1x−2.23.(2023•九龙坡区校级开学)分式化简:(1)16−x 2x 2+4x+4÷x 2x+4⋅x+2x+4; (2)1a+1−3−aa 2−6a+9÷a 2+a a−3. 24.(2023秋•寻甸县期末)计算与化简(1)32m−n −2m−n(2m−n)2;(2)(a +2−5a−2)÷3−a 2a−4. 25.(2023秋•沂水县期末)化简:(1)x x−1+3x−11−x 2; (2)(2m m−1−m m+1)÷m m 2−1. 26.(2023秋•天津期末)计算:(1)(﹣3xy )÷2y 23x •(y x)2; (2)(x x+y −2y x+y )÷x−2y xy •(1x +1y ). 27.(2023春•沙坪坝区校级月考)计算:(1)2y−x x−y +y y−x +x x−y ;28.(2023秋•沙坪坝区校级期末)计算:(1)(a +b )2+a (a ﹣2b );(2)(1−x x+2)÷x 2−4x+4x 2−4. 29.(2023秋•荔湾区期末)计算:(1)a−1a−b −1+b b−a ;(2)(4−a 2a−1+a )÷a 2−16a−1. 30.(2023秋•永年区期末)上课时老师在黑板上书写了一个分式的正确化简结果,随后用手掌盖住了一部分,形式如下: •y 2x 2−xy −y 2−x 2x 2−2xy+y 2=x x−y(1)聪明的你请求出盖住部分化简后的结果;(2)当x =2时,y 等于何值时,原分式的值为5.【拔尖特训】2023-2024学年八年级数学下册尖子生培优必刷题【苏科版】专题10.6分式的混合运算大题专练(重难点培优30题) 班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2023秋•苏州期末)化简:(1)a 2a−1−1a−1;(2)(m −3−7m+3)÷m 2−4m 2m+6.【分析】(1)根据分式的减法法则进行计算,再化成最简分式即可;(2)先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,最后根据分式的乘法法则进行计算即可.【解答】解:(1)原式=a 2−1a−1=(a+1)(a−1)a−1 =a +1;(2)原式=[(m−3)(m+3)m+3−7m+3]•2(m+3)m(m−4) =m 2−9−7m+3•2(m+3)m(m−4)=(m+4)(m−4)m+3•2(m+3)m(m−4)=2(m+4)m=2m+8m . 2.(2023•泉山区校级三模)(1)计算(π−3.14)0+(13)−2−(−2)3;(2)化简:(1a+1−1a 2−1)÷a−3a+1. 【分析】(1)根据零指数幂、负整数指数幂和有理数的乘方计算即可;(2)先算括号内的式子,再计算括号外的除法即可.【解答】解:(1)(π−3.14)0+(13)−2−(−2)3=1+9﹣(﹣8)=1+9+8=18;(2)(1a+1−1a 2−1)÷a−3a+1 =a−1−1(a+1)(a−1)•a+1a−3=a−2(a−1)(a−3)=a−2a 2−4a+3. 3.(2023春•六合区校级月考)计算. (1)4a 3b ⋅b 2a 3;(2)1−a−2a ÷a 2−4a 2+a. 【分析】(1)根据分式的乘法运算即可求出答案.(2)根据分式的乘除运算以及加减运算法则即可求出答案.【解答】解:(1)原式=4ab 6a 3b =23a 2. (2)原式=1−a−2a ×a 2+a a 2−4 =1−a−2a ×a(a+1)(a+2)(a−2)=1−a+1a+2=a+2a+2−a+1a+2=1a+2. 4.(2023秋•崇川区校级月考)计算:(1)(π−3)0+(−13)−1−√(−2)2;(2)6a 6b 4÷3a 3b 4+a 2⋅(﹣5a );(3)(2y x )−2⋅xy x 2−xy 2xy 2÷2x; (4)(a −1−2a−1a+1)÷a 2−4a+42+2a 【分析】(1)利用零指数幂,负指数幂和算术平方根的性质进行计算即可;(2)先利用整式的除法法则,乘法法则进行计算,然后再进行合并即可;(3)先分别利用负指数幂,分式的乘方,分式的乘法法则,除法法则进行计算,然后再进行减法运算;(4)先算括号内的减法,然后再将括号外分式的分子分母进行因式分解,将除法化为乘法再进行约分,最后化为最简分式即可.【解答】解:(1)(π−3)0+(−13)−1−√(−2)2=1+(﹣3)﹣2=﹣4;(2)6a 6b 4÷3a 3b 4+a 2⋅(﹣5a )=2a 3﹣5a 3=﹣3a 3;(3)(2y x )−2⋅xy x 2−xy 2xy 2÷2x =x 24y 2⋅xy x 2−xy 2xy 2⋅x 2=x 4y −x 4y=0;(4)(a −1−2a−1a+1)÷a 2−4a+42+2a=(a+1)(a−1)−(2a−1)a+1÷(a−2)22(a+1) =a(a−2)a+1⋅2(a+1)(a−2)2 =2a a−2. 5.(2023春•宜兴市校级期中)计算(1)x 2x+2−x +2; (2)x 2−16x+4÷2x−84x .【分析】(1)先通分再加减即可;(2)先因式分解,再根据除法法则计算即可.【解答】解:(1)x 2x+2−x +2 =x 2x+2−x 2+2x x+2+2x+4x+2 =4x+2;(2)x 2−16x+4÷2x−84x =(x+4)(x−4)x+4•4x 2(x−4)=2x .6.(2023春•梁溪区校级期中)计算:(1)6xy 2÷2y 2x ; (2)2x−1x−1−1x−1; (3)x x 2−4−12x−4; (4)x−y x ÷(x −2xy−y 2x) 【分析】(1)把除法转为乘法,再约分即可;(2)利用分式的减法法则进行运算即可;(3)先通分,再进行运算即可;(4)先通分,把能分解的进行分解,除法转为乘法,再约分即可.【解答】解:(1)6xy 2÷2y 2x=6xy 2⋅x 2y 2 =3x 2;(2)2x−1x−1−1x−1 =2x−1−1x−1=2(x−1)x−1=2;(3)x x 2−4−12x−4 =2x 2(x−2)(x+2)−x+22(x−2)(x+2) =x−22(x−2)(x+2)=12(x+2)=12x+4;(4)x−y x ÷(x −2xy−y 2x ) =x−y x ÷x 2−2xy+y 2x =x−y x ⋅x(x−y)2 =1x−y .7.(2023•徐州)计算:(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9; (2)(1+2x )÷x 2+4x+4x 2. 【分析】(1)根据有理数的乘方、绝对值和负整数指数幂可以解答本题;(2)先算括号内的式子,然后计算括号外的除法即可.【解答】解:(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9 =1+3−√3−3+3=4−√3;(2)(1+2x )÷x 2+4x+4x 2=x+2x •x 2(x+2)2=x x+2.8.(2023春•溧阳市期中)计算:(1)a 2bc ⋅(−bc 2a ); (2)a−2a+3×2a+6a 2−4; (3)a 22a−4−2a−2;(4)(4x−2−x +2)÷(x−4x−2).【分析】(1)根据分式的约分可以解答本题;(2)先对分式的分子分母分解因式,再约分即可;(3)先通分,然后再分解因式,最后约分即可;(4)先对括号内的式子通分,然后计算括号外的除法即可.【解答】解:(1)a 2bc ⋅(−bc 2a )=−a 2; (2)a−2a+3×2a+6a 2−4=a−2a+3•2(a+3)(a+2)(a−2) =2a+2;(3)a 22a−4−2a−2=a 2−42(a−2)=(a+2)(a−2)2(a−2)=a+22;(4)(4x−2−x +2)÷(x−4x−2) =4−(x−2)(x−2)x−2•x−2x−4=4−x 2+4x−4x−4=−x(x−4)x−4 =﹣x .9.(2023•兴化市开学)(1)计算:(√3)2﹣(π−√5)0−√27−|√3−2|;(2)化简:ba 2−b 2÷(1−a a+b). 【分析】(1)先化简各式,然后再进行计算即可解答;(2)先利用异分母分式加减法计算括号里,再算括号外,即可解答.【解答】解:(1)原式=3﹣1﹣3√3−2+√3=﹣2√3;(2)原式=b (a+b)(a−b)÷(a+b−a a+b ) =b (a+b)(a−b)⋅a+b b=1a−b. 10.(2023春•滨湖区校级期中)化简: (1)b 2−27a 3÷2b 9a ⋅3ab b 4; (2)4x 22x−3+93−2x ; (3)m 2m+2−m +2.【分析】(1)先把除法转化为乘法,然后约分化简即可;(2)把第二个分母变形后根据同分母分式的加减法法则计算;(3)先通分,然后根据同分母分式的加减法法则计算.【解答】解:(1)原式=b 2−27a 3⋅9a 2b ⋅3ab b 4 =−12ab 2;(2)原式=4x 22x−3−92x−3=4x 2−92x−3=(2x−3)(2x+3)2x−3=2x +3; (3)原式=m 2m+2−(m −2)=m 2m+2−m 2−4m+2=m 2−m 2+4m+2=4m+2. 11.(2023春•东海县期末)计算:(1)a 2bc ⋅(−bc 2a ); (2)a 22a−4−2a−2. 【分析】(1)根据分式的乘法运算即可求出答案.(2)根据分式的加减运算即可求出答案.【解答】解:(1)原式=−a 2.(2)原式=a 22(a−2)−42(a−2)=a 2−42(a−2) =(a−2)(a+2)2(a−2)=a+22.12.(2023春•丹阳市期末)化简:(1)2xx 2−4−1x−2;(2)(1−1a )÷a 2−2a+1a 2−1. 【分析】(1)原式通分并利用同分母分式的减法法则计算,约分即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=2x (x+2)(x−2)−x+2(x+2)(x−2)=2x−(x+2)(x+2)(x−2)=2x−x−2(x+2)(x−2)=x−2(x+2)(x−2)=1x+2;(2)原式=a−1a ÷(a−1)2(a+1)(a−1) =a−1a •(a+1)(a−1)(a−1)2=a+1a .13.(2023春•常州期末)计算:(1)8x 3÷32x 2; (2)a−c a−b −c−b b−a. 【分析】(1)根据分式的除法运算进行化简即可求出答案.(2)根据分式的加减运算进行化简即可求出答案.【解答】解:(1)原式=8x 3⋅x 232 =14x. (2)原式=a−c+b−c a−b =a+b a−b . 14.(2023春•溧阳市期末)化简:(1)(−m n 2)•n m; (2)a a−1÷(a 2a 2−1−a a+1).【分析】(1)根据分式的乘法计算即可;(2)先算括号内的式子,然后计算括号外的除法即可.【解答】解:(1)(−m n 2)•n m =﹣(m n 2•n m ) =−1n ;(2)a a−1÷(a 2a 2−1−a a+1) =a a−1÷a 2−a(a−1)(a+1)(a−1)=a a−1⋅(a+1)(a−1)a 2−a 2+a=a a−1⋅(a+1)(a−1)a =a +1.15.(2023秋•环翠区校级月考)分式计算:(1)3x 2y ⋅512ab 2÷(−5a 4b ); (2)(−a 2b c )3⋅(−c 2a 2)2÷(−bc a )4; (3)a+31−a ÷a 2+3aa 2−2a+1; (4)(ab −b 2)÷a 2−b 2a+b .【分析】(1)按照从左到右的顺序,进行计算即可解答;(2)先算乘方,再算乘除,即可解答;(3)先把除法转化为乘法,进行计算即可解答;(4)先把除法转化为乘法,进行计算即可解答.【解答】解:(1)3x 2y ⋅512ab 2÷(−5a 4b ) =15x 2y12ab 2•(−4b 5a ) =−x 2y a 2b; (2)(−a 2b c )3⋅(−c 2a 2)2÷(−bc a )4; =−a 6b 3c 3•c 4a 4÷b 4c 4a 4 =−a 6b 3c 3•c 4a 4•a 4b 4c 4 =−a 6c 3b; (3)a+31−a ÷a 2+3aa 2−2a+1=a+31−a •(a−1)2a(a+3)=1−a a ;(4)(ab −b 2)÷a 2−b 2a+b =b (a ﹣b )•a+b (a+b)(a−b)=b .16.(2023秋•张店区校级月考)分式的计算:(1)(1x−1−1x 2−1)÷x 2−x x 2−2x+1; (2)2x−6x−2÷(5x−2−x −2).【分析】(1)分式的加减运算以及乘除运算法则即可求出答案.(2)分式的加减运算以及乘除运算法则即可求出答案.【解答】解:(1)原式=x+1−1(x−1)(x+1)•(x−1)2x(x−1)=x (x−1)(x+1)•x−1x=1x+1.(2)原式=2(x−3)x−2÷5−(x+2)(x−2)(x−2) =2(x−3)x−2•x−29−x 2=−2(x−3)(x+3)(x−3) =−2x+3. 17.(2023春•南关区校级月考)计算: (1)x x 2−1⋅x+1x 2; (2)(a+b)2ab −a 2+b 2ab. 【分析】(1)先分解因式,然后再约分.(2)同分母相减,分母不变,分子相减即可求出答案.【解答】解:(1)原式=x (x+1)(x−1)•x+1x 2=1x(x−1). (2)原式=a 2+2ab+b 2−a 2−b 2ab =2ab ab=2. 18.(2023秋•和平区校级期末)计算:(1)(−4m 3n 3t )2÷n mt(2)x 2−4x 2−4x+4÷x+2x+1−x x−2【分析】(1)先计算乘方,再计算除法即可;(2)先按分式除法法则计算,再按分式减法法则计算即可.【解答】解:(1)原式=16m 6n 29t 2÷n mt=16m 6n 29t 2×mt n =16m 7n 9t; (2)原式=(x+2)(x−2)(x−2)2−x+1x+2−x x−2 =x+1x−2−x x−2=1x−2. 19.(2023春•罗湖区校级期末)计算(1)3x (x−3)2−x 3−x (2)1x+1+1x−1−x 2+1x 2−1(3)(x+1x 2−1+x x−1)÷x+1x 2−2x+1【分析】(1)直接进行通分运算进而得出答案;(2)直接进行通分运算进而得出答案;(3)直接利用分式的性质化简,再利用分式的混合运算法则计算得出答案.【解答】解:(1)3x (x−3)2−x 3−x =3x (x−3)2+x(x−3)(x−3)2 =x 2(x−3)2;(2)1x+1+1x−1−x 2+1x 2−1=x−1x 2−1+x+1x 2−1−x 2+1x 2−1=−x 2+2x−1(x+1)(x−1)=−(x−1)2(x+1)(x−1)=−x−1x+1;(3)(x+1x 2−1+x x−1)÷x+1x 2−2x+1 =1+x x−1•(x−1)2x+1=x ﹣1.20.(2023春•南阳月考)化简:(1)(a ﹣1−4a−1a+1)÷a 2−8a+16a+1; (2)(x+2x 2−2x −x−1x 2−4x+4)÷x−4x . 【分析】(1)先算括号内的减法,把除法变成乘法,再算乘法即可;(2)先算括号内的减法,把除法变成乘法,再算乘法即可.【解答】解:(1)原式=(a−1)(a+1)−(4a−1)a+1•a+1(a−4)2=a 2−1−4a+1a+1=a 2−4a a+1•a+1(a−4)2 =a(a−4)a+1•a+1(a−4)2=a a−4;(2)原式=[x+2x(x−2)−x−1(x−2)2]•x x−4 =(x+2)(x−2)−x(x−1)x(x−2)2•x x−4 =x 2−4−x 2+x x(x−2)2 =x−4x(x−2)2⋅x x−4 =1(x−2)2 =1x 2−4x+4. 21.(2023秋•青龙县期中)计算: (1)a 2a−b +b 2a−b −2ab a−b; (2)(1−1a+1)÷a a 2+2a+1. 【分析】(1)根据同分母分式加减法则进行计算;(2)先通分计算括号内的减法,再把除法转化为乘法,约分计算便可.【解答】解:(1)a 2a−b +b 2a−b −2ab a−b=a 2+b 2−2ab a−b=(a−b)2a−b =a ﹣b ;(2)(1−1a+1)÷aa 2+2a+1 =a a+1×(a+1)2a =a +1.22.(2023春•沈北新区期末)化简:(1)(x 2﹣4y 2)÷2y+x xy •1x(2y−x); (2)2xx 2−4−1x−2.【分析】(1)先算小括号里面的,然后再算括号外面的;(2)先通分,然后按同分母分式加减法法则进行计算求解.【解答】解:(1)原式=(x +2y )(x ﹣2y )•xy 2y+x ⋅1x(2y−x) =﹣y ;(2)原式=2x (x+2)(x−2)−x+2(x+2)(x−2)=2x−x−2(x+2)(x−2) =1x+2. 23.(2023•九龙坡区校级开学)分式化简: (1)16−x 2x 2+4x+4÷x 2x+4⋅x+2x+4; (2)1a+1−3−aa 2−6a+9÷a 2+a a−3. 【分析】(1)根据分式的乘除法可以解答本题;(2)根据分式的除法和减法可以解答本题.【解答】解:(1)16−x 2x 2+4x+4÷x 2x+4⋅x+2x+4 =(4+x)(4−x)(x+2)2⋅2(x+2)x ⋅x+2x+4 =2(4−x)x=8−2x x ;(2)1a+1−3−aa 2−6a+9÷a 2+a a−3=1a+1−3−a (a−3)2⋅a−3a(a+1) =1a+1+1a(a+1) =a+1a(a+1)=1a .24.(2023秋•寻甸县期末)计算与化简(1)32m−n −2m−n (2m−n)2; (2)(a +2−5a−2)÷3−a 2a−4.【分析】(1)先约分,再根据分式的减法法则进行计算即可;(2)先算括号内的加减,把除法变成乘法,再根据分式的乘法法则求出答案即可.【解答】解:(1)原式=32m−n −12m−n=3−12m−n=22m−n ;(2)原式=(a+2)(a−2)−5a−2÷−(a−3)2(a−2) =a 2−9a−2•2(a−2)−(a−3) =(a+3)(a−3)a−2•2(a−2)−(a−3)=﹣2(a +3)=﹣2a ﹣6.25.(2023秋•沂水县期末)化简:(1)x x−1+3x−11−x 2; (2)(2m m−1−m m+1)÷m m 2−1. 【分析】(1)先通分,再根据同分母分式相加法则求出答案即可;(2)先算括号内的减法,把除法变成乘法,再算乘法即可.【解答】解:(1)x x−1+3x−11−x 2 =x(x+1)(x+1)(x−1)−3x−1(x+1)(x−1)=x 2+x−3x+1(x+1)(x−1)=x 2−2x+1(x+1)(x−1)=(x−1)2(x+1)(x−1) =x−1x+1; (2)(2m m−1−m m+1)÷m m 2−1 =2m(m+1)−m(m−1)(m+1)(m−1)•(m+1)(m−1)m =m 2+3m (m+1)(m−1)•(m+1)(m−1)m =m(m+3)(m+1)(m−1)•(m+1)(m−1)m=m +3.26.(2023秋•天津期末)计算:(1)(﹣3xy )÷2y 23x •(y x)2; (2)(x x+y −2y x+y )÷x−2y xy •(1x +1y ). 【分析】(1)先算乘方,把除法变成乘法,最后根据分式的乘法法则求出答案即可;(2)先算括号内的加减,再把除法变成乘法,最后根据分式的乘法法则求出答案即可.【解答】解:(1)原式=(﹣3xy )÷2y 23x •y 2x 2 =(﹣3xy )•3x 2y 2•y 2x 2=−9y 2;(2)原式=x−2y x+y ÷x−2y xy •x+y xy=x−2y x+y •xy x−2y •x+y xy =1.27.(2023春•沙坪坝区校级月考)计算:(1)2y−x x−y +y y−x +x x−y ;(2)(x +1−8x−1)÷x 3−9x x 2−2x+1. 【分析】(1)先变形为同分母分式的加减运算,再根据法则计算即可;(2)先计算括号内分式的减法、将除式的分子、分母因式分解,继而将除法转化为乘法,然后约分即可.【解答】解:(1)原式=2y−x x−y −y x−y +x x−y =2y−x−y+x x−y=y x−y ;(2)原式=(x 2−1x−1−8x−1)÷x(x+3)(x−3)(x−1)2=(x+3)(x−3)x−1•(x−1)2x(x+3)(x−3)=x−1x .28.(2023秋•沙坪坝区校级期末)计算:(1)(a +b )2+a (a ﹣2b );(2)(1−x x+2)÷x 2−4x+4x 2−4. 【分析】(1)根据完全平方公式.单项式乘多项式可以解答本题;(2)先算括号内的减法,然后计算括号外的除法即可.【解答】解:(1)(a +b )2+a (a ﹣2b );=a 2+2ab +b 2+a 2﹣2ab=2a 2+b 2;(2)(1−x x+2)÷x 2−4x+4x 2−4=x+2−x x+2×(x+2)(x−2)(x−2)2 =2x−2. 29.(2023秋•荔湾区期末)计算: (1)a−1a−b −1+b b−a ;(2)(4−a 2a−1+a )÷a 2−16a−1. 【分析】(1)原式变形后,利用同分母分式的加法法则计算即可求出值;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=a−1a−b +1+b a−b=a+b a−b;(2)原式=4−a2+a2−aa−1•a−1(a+4)(a−4)=−a−4a−1•a−1 (a+4)(a−4)=−1a+4.30.(2023秋•永年区期末)上课时老师在黑板上书写了一个分式的正确化简结果,随后用手掌盖住了一部分,形式如下:•y2x2−xy−y2−x2x2−2xy+y2=xx−y(1)聪明的你请求出盖住部分化简后的结果;(2)当x=2时,y等于何值时,原分式的值为5.【分析】(1)根据被减数、减数、差及因数与积的关系,化简分式求出盖住的部分即可;(2)根据x=2时分式的值是5,得关于y的方程,求解即可.【解答】解:(1)∵(xx−y +y2−x2x2−2xy+y2)÷y2x2−xy=[xx−y +(y+x)(y−x)(x−y)2]×x(x−y)y2=−y x−y ×x(x−y)y2=−x y∴盖住部分化简后的结果为−x y;(2)∵x=2时,原分式的值为5,即22−y=5,∴10﹣5y=2解得y=8 5经检验,y=85是原方程的解.所以当x=2,y=85时,原分式的值为5.。

六年级下册数学培优分数、小数和繁分数的混合运算

六年级下册数学培优分数、小数和繁分数的混合运算

3
原式 2.4 2 6 5 8 5 4
2
=2.4×(2-1.5)×8
=2.4×0.5×8
=9.6
例4:计算。
7.2 0.85 4.2 10000 0.84 3.4 5.4 10000
先将分子部分、分母部 分中的所有因数变成整 数,再约分计算。
分子分母要同时乘多少呢?
45
原式=7285 42 = 5
4
3
可以把小数化成分数,也可以把分数 化成小数,怎样计算更简便?
例1:计算。
5
3 4
4.5 (20%
1) 3
原式=5 3-4 1 (1+1) 4 2 53
3
=5 3- 9
84
4 2 15 5
=5 3-2 2 45
=3 7 20
原式=5 3-4.5(1+1)
4
53
=5
3
0.3
-4.5
8
Hale Waihona Puke 415=5 3-2.4 4
84 34 54 3
2
23
例5:计算。 (0.6 5 2 0.5 1.2) 10
21 7
7
原式
0.2
0.6
5
2.51.2
7
21 7 10
7
1 3 7 7 7 10
2
4 7 7 10
5
2 5
在有分数和小数的混合运算里,可 以把分数化成小数,也可以把小数 化成分数,怎么简便就怎么转化。 要注意的是小数也可以和分数直接 约分,就是别忘了约分的结果是个 小数。
=5.75-2.4
=3.35
运算技巧:
在有分数和小数的混合运算里,可以把分 数化成小数,也可以把小数化成分数,怎么简 便就怎么转化。要注意的是小数也可以和分数 直接约分,就是别忘了约分的结果是个小数。

北师大版数学六年级上册第二单元《分数混合运算》单元测试卷(培优卷)(1)

六年级上册数学单元测试-第二单元分数混合运算(培优卷)一、选择题(满分16分)1. 修路队修一条300m长的公路,第一天修了全长的14,第二天修了余下的13()。

A. 第一天修得多B. 第二天修得多C. 两天修得同样多【答案】C【解析】【分析】第一天修了全长的14,则修了300×14=75(米),余下300-75=225(米)。

第二天修了余下的13,则第二天修了225×13=75(米)。

两天修得同样多。

【详解】第一天:300×14=75(米)第二天:300-75=225(米)225×13=75(米)两天都修了75米,两天修得同样多。

故答案为:C【点睛】求一个数的几分之几是多少,用乘法计算。

要注意题目中两个分数的单位“1”不同。

2. 某学校男生人数比女生人数多14,那么男生人数是全校人数的()。

A. 54B.49C.59【答案】C 【解析】【分析】把女生人数看作单位“1”,则男生人数是(1+14),用男生人数÷全校人数即可。

【详解】(1+14)÷(1+14+1)=54÷94=5 9故选择:C【点睛】此题考查了求一个数是另一个数的几分之几,找准单位“1”,把男生、女生人数都表示出来是解题关键。

3. 一件衣服先提价13,再降价13,现价与原价相比()。

A. 现价低B. 原价低C. 一样D. 无法确定【答案】A【解析】【分析】先把衣服的原价看作单位“1”,提价后是(1+13),再把提价后看作单位“1”降价后是(1+13)×(1-13),与原价比较即可。

【详解】由分析可知:(1+13)×(1-13)=43×23=8 989<1,现价比原价低,也就是现价低。

故选择:A。

【点睛】此题主要考查分数四则混合运算,注意单位“1”的变化。

4. 根据算式10×(1-45)-45编题,下面正确的是()。

A. 仓库有10t粮食,第一次运走45t,第二次运走45t,求还剩多少吨B. 仓库有10t粮食,第一次运走45,第二次运走45t,求还剩多少吨C. 仓库有10t粮食,第一次运走45t,第二次运走剩下的45,求还剩多少吨D. 仓库有10t粮食,第一次运走45,第二次运走剩下的45,求还剩多少吨【答案】B 【解析】【分析】仓库有10吨粮食,第一次运走45,列式应该是10×(1-45),得到第一次运走后剩下的吨数,所以这里就剩下两个正确选项,分别是B和D,算式中直接减4 5,那说明45是个具体的数量,也就是45吨,所以只能选B。

《分数混合运算》应用题培优专题

分数混合运算(应用题专题)一、分数应用题主要讨论的是以下三者之间的关系:分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。

标准量:解答分数应用题时,通常把题目中作为单位“ 1”的那个数,称为标准量。

比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。

二、题型分类1、求一个数的几分之几是多少。

这类问题特点是已知一个看作单位“ 1”的数,求它的几分之几是多少,解这类应用题用乘 法。

即反映的是整体与部分之间关系的应用题,基本的数量关系是:标准量×分率=分率的对应的比较量。

(1)求一个数的几分之几是多少: 标准量×(分率) =是多少 几几(3)求比一个数多几分之几是多少: 标准量×( 1 +几几)(分率) =是多少几 几(5)求比一个数少几分之几是多少: 标准量×( 1 - 几几)(分率) =是多少 2、求一个数是另一个数的几分之几。

这类问题特点是已知两个数量, 比较它们之间的倍数关系, 解这类应用题用除法。

基本的数 量关系是:比较量÷标准量=分率。

(1)求一个数是另一个数的几分之几 : 比较量÷标准量=分率(几分之几) 。

(2)求一个数比另一个数多几分之几: 相差量÷标准量=分率(多几分之几)。

(3)求一个数比另一个数少几分之几: 相差量÷标准量=分率(少几分之几)。

3、已知一个数的几分之几是多少,求这个数。

(4)求比一个数少几分之几少多少: 标准量× (分率) =少多少(2)求比一个数多几分之几多多少: 标准量× (分率) =多多少几 几这类问题特点是已知一个数的几分之几是多少的数量,求单位“1”的量,解这类应用题用除法。

基本的数量关系是:分率对应的比较量÷分率=标准量。

(1)已知一个数的几分之几是多少,求这个数 : 是多少(分率对应的比较量)÷几几(分率)=标准量。

上海市六年级(上)数学同步讲义 第10讲(培优)分数与小数的思则混合运算(解析版)

分数、小数的四则混合运算内容分析分数、小数的四则混合运算是六年级数学上学期第二章第2节中的内容.分数、小数的四则运算对于培养同学们的计算能力起着十分重要的作用,要想掌握好分数、小数的四则混合运算:一要牢记分数、小数的基本运算法则:基本运算法则是运算的基础;二要掌握分数与小数的互化:分数与小数的互化在它们的四则运算中是十分重要的一环,我们需要根据题目的需要将分数化成小数或将小数化成分数;三要有意识地观查并灵活地分析题目的特征,充分利用乘法分配律等技巧进行速算和巧算.知识结构模块一:分数、小数的混合运算知识精讲1、混合运算的一般原则(1)加减混合运算时,只需将题目中的数同时化成小数或分数后再运算;但当分数不能化成有限小数时,则应同时化成分数后再运算.(2)乘除运算中,一般将除法先转化为乘法,小数转化为分数,然后遵循先约分再运算的原则进行计算.(3)一般的运算顺序:先乘除,后加减;若有括号,则先算括号内.【例1】计算:(1)3160.7421⨯⨯;(2)820.8253÷÷;(3)30.37534÷⨯;(4)790.81910⨯÷.【难度】★【答案】(1)25;(2)35;(3)332;(4)710.【解析】分数与小数乘除法混合运算,一般要求学生将小数化为分数进行运算.【总结】考查分数与小数乘除混合运算.计算:(1)12150.35234⨯-÷;(2)315.2 4.625585⨯+⨯.【答案】(1)8942;(2)26.【解析】值得一提的是第(2)小题可以巧算:31355.2+4.6255 5.2(4) 5.25268588⨯⨯=⨯+=⨯=.【总结】考查分数与小数的四则混合运算,注意可以简便运算的时候要简便运算.【例2】计算:(1)51.20.712⎛⎫-+⎪⎝⎭;(2)120.7523⎛⎫--⎪⎝⎭;(3)2120.153⎛⎫⨯+⎪⎝⎭;(4)510.7534⎛⎫÷-⎪⎝⎭.【答案】(1)112;(2)512;(3)495;(4)103.【解析】需要学生熟练掌握小数化分数的方法,并且注意结果的最简性,运算结果是假分数的可以化为带分数,也可保留假分数.例题解析【总结】考查分数与小数四则混合运算.【例3】下列运算过程中,正确的是()A.22121133232⎛⎫÷+=+÷⎪⎝⎭B.732237÷⨯=C.33633751375136⎛⎫÷÷=⨯⨯⎪⎝⎭D.33213153157515721521⎛⎫+÷=⨯+⨯⎪⎝⎭【答案】D【解析】A选项,错误原因在于除法没有分配律,而D选项将2115÷化为1521⨯就可以利用乘法分配律,所以计算正确,B选项因为运算顺序出错,C选项的错因是去括号法则不清楚正确的解法是336336 ()51375137÷÷=÷⨯.【总结】考查学生对运算顺序及去括号法则的掌握.【例4】甲数是1403,乙数比甲数多它的211,乙数是________.【答案】乙数是14324733或.【解析】列式:1121212113143 404040133113113113+⨯=⨯=⨯=.【总结】考查学生对“比一个数多几分之几”的理解运用.【例5】比215米多2.5分米是______米.【答案】1.65米.【解析】首先,注意统一题目中的单位为米,列式:210.25 1.40.25 1.655+=+=米.【总结】考查“比一个数多几分之几(带单位)”的理解运用.【例6】某数的2倍与153的差是4.25,求这个数.【答案】115 24.【解析】设这个数为x,125 4.253x-=,解得11524x=.【总结】考查列方程解文字题及分数小数混合运算.【例7】六(2)班组织去苏州春游,上午7:30从学校坐大巴出发,用了56个小时到达目的地,中午利用了0.5个小时吃了午饭,下午回上海时用了45分钟,在17:15回到学校,则他们实际游玩的时间是多少小时?【答案】实际游玩时间273小时.【解析】上午7:30到下午17:15历时9小时45分即394小时,减去来回的乘车时间和午餐时间,列式:351329746243---=小时.【总结】考查分数与小数混合运算的应用.【例8】计算:(1)2344 1.42523⎛⎫÷-⨯-⎪⎝⎭;(2)116418.430.9425153⨯-÷+⨯.【答案】(1)2;(2)27 10.【解析】(1)原式22272=5353⨯-⨯2227()355=⨯-233=⨯2=;(2)原式8411615109104254310=⨯-⨯+⨯21123105=-+212430101010=-+2710=【总结】考查分数与小数的四则混合运算,以及对运算定律的运用. 【例9】计算:(1)7133.25 1.280.2512516⎛⎫⨯⨯÷⨯⎪⎝⎭;(2)3242.49.66 1.5435÷-⨯+⨯.【答案】(1)1;(2)7.【解析】需要学生熟练掌握分数与小数互化,以及分数与小数四则混合运算法则. 【总结】考查分数与小数混合运算法则.【例10】 计算:35221311111573918⎛⎫⎛⎫+⨯÷- ⎪ ⎪⎝⎭⎝⎭.【答案】372.【解析】解:原式1812351119573918⎛⎫⎛⎫=+⨯÷- ⎪ ⎪⎝⎭⎝⎭18635335318=⨯÷18623=⨯372=. 【总结】本题主要考查分数的四则运算.【例11】 计算:()1911.560.70.66 4.9213⎡⎤⨯÷⨯-⨯⎢⎥⎣⎦.【难度】★★★ 【答案】21500. 【解析】原式3193149221192510=⨯⨯⨯⨯21.500= 【小结】本题主要考查分数与小数的混合运算.【例12】 计算:3116.521 2.750.751843⎛⎫⎛⎫-÷-÷-⨯ ⎪ ⎪⎝⎭⎝⎭.【难度】★★★ 【答案】1.【解析】原式131933342284443⎛⎫=-÷÷-⨯ ⎪⎝⎭334418311=⨯⨯-1=.【小结】本题主要考查分数与小数的混合运算.【例13】 规定:()12.518a b a b ⎛⎫*=--- ⎪⎝⎭,试计算:135 3.5416⎛⎫** ⎪⎝⎭.【难度】★★★ 【答案】2716. 【解析】由题意,先计算3131513.5(3.5 2.5)(1)1168161616*=---=-=,再计算11111317275(5 2.5)(1)2416481641616*=---=-=.【总结】本题主要考查学生对新运算公式的理解及运用.1、常见的分数与小数的互化在分数与小数的混合运算中,要非常熟练的掌握一些简单的分数和小数之间的互化,做到一看便知,从而有效地提高运算的简便性和正确性.如:10.52=,10.25=,10.110=,10.0520=,10.0425=,10.0250=, 10.254=,30.754=,10.1258=,30.3758=,50.6258=,70.8758=. 2、凑整的思想(1)加法凑整:若几个数相加的和是一个整数,那么可将这几个数作为一组进行计算,如:30.2514+=;减法亦然. (2)乘法凑整:若几个数相乘的积是一个整数,那么可将这几个数作为一组进行计算,如:0.2541⨯=;除法亦然. 3、乘法分配律的逆运用乘法分配律:()a b c a c b c +⨯=⨯+⨯,将等号的左边和右边调换位置后得到: ()a c b c a b c ⨯+⨯=+⨯.模块二:分数、小数的速算与巧算知识精讲这一运用,在速算和巧算中是很常用也很重要的方法,例如:29290.90.90.90.911111111⎛⎫⨯+⨯=+⨯= ⎪⎝⎭.【例14】 2514.926 2.08420.1251778⎛⎫⎛⎫+++⨯-+ ⎪ ⎪⎝⎭⎝⎭.【答案】54.【解析】原式=2511(4.92 2.0864)(21)183547788+++⨯-+=⨯=.【总结】考查分数与小数的混合运算的巧算.【例15】 计算:34123.913 6.0962 1.125+1 1.5 6.047783⎛⎫⎛⎫⎛⎫+++⨯-÷-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】20.【解析】原式=341133(3.91 6.0936)(21)() 6.04201020778822+++⨯-+-⨯=⨯+=.【总结】考查分数与小数混合运算的巧算. 【例16】 计算:49105050⨯. 【答案】549.【解析】法一:原式=4949(10)501050505495050+⨯=⨯+⨯=;法二:原式=11(11)5011505055015495050-⨯=⨯-⨯=-=. 【总结】本题主要考查分拆技巧在分数运算中的巧妙运用.例题解析【例17】 计算:33111.78.41110102⎛⎫-⨯÷- ⎪⎝⎭.【答案】0.1.【解析】原式=(11.78.4 1.3) 1.30.511.7 1.38.40.598.90.1-⨯÷-=÷--=-=. 【总结】本题主要考查分数与小数的四则混合运算.【例18】 计算:31710000.675+22 6.25849⎡⎤⎛⎫⨯-⨯÷ ⎪⎢⎥⎝⎭⎣⎦.【答案】49.【解析】原式=9251254(10000.3)6(300)48149494425⨯+⨯÷=+⨯=+=. 【总结】本题主要考查分母是8和分母是4的分数与小数的互化.【例19】 ()1123.320.75561128.744⎛⎫⨯-+⨯++⨯ ⎪⎝⎭.【答案】135. 【解析】原式=23.3 1.2556 1.25 1.2528.7 1.25(23.35628.7) 1.25108135⨯+⨯+⨯=⨯++=⨯=. 【总结】本题主要考查“提取公因式”的运用.【例20】 31931310.728713115⎛⎫⨯-⨯⨯ ⎪⎝⎭.【答案】36. 【解析】原式=10402071434020143()()8852367131110513115⨯-⨯⨯=-⨯=-=. 【小结】本题主要考查分数与小数混合运算的巧算.【例21】 计算:223.63143.9655⨯+⨯.【难度】★★★ 【答案】394. 【解析】原式3.631.4(31.412.5) 6.4 3.631.431.4 6.412.5 6.431.4(3.6 6.4)12.5 6.431480394=⨯++⨯=⨯+⨯+⨯=⨯++⨯=+= 这题巧算方法比较独特,需要自己去构造公因数,当然,学生也可以直接运算,计算量也不算大,可以拓展下这种巧算方法.【总结】本题主要考查分数与小数混合运算的巧算.【例22】 1111111111111111112468103579⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯+⨯+⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.【难度】★★★ 【答案】1110. 【解析】原式3579112468=2468103579⨯⨯⨯⨯⨯⨯⨯⨯3254769811=()()2345678910⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭1110=. 【总结】考查分数运算中的巧算,互为倒数的两数乘积为1.【习题1】 13与15的差乘以285,再除以4.2,商是______. 【答案】415. 【解析】列式112242104()8 4.23551554215-⨯÷=⨯⨯=. 【总结】本题主要考查对文字题的理解,准确列式计算.随堂检测【习题2】计算:312.1517.85 204+-+.【答案】19.9.【解析】原式=0.15 2.150.2517.8519.9+-+=. 【总结】本题主要考查分数与小数混合运算.【习题3】下列算式中正确的是()A.1111 1111111 3232⨯÷⨯=B.2112111 364364⎛⎫÷⨯=÷⨯=⎪⎝⎭C.99 139491 1616÷-÷=D.32322 7.75237.7523841741717⎛⎫-+=-+=⎪⎝⎭【答案】C【解析】A选项应该等于11911224⨯=,B选项去括号没变号,D选项也是去括号没变号.【总结】本题主要考查学生对混合运算的顺序及添括号去括号的理解应用.【习题4】221 161210.2352 -⨯+÷.【答案】32.4.【解析】原式=5121610.20.516420.432.4 35-⨯+÷=-+=.【总结】本题主要考查分数与小数混合基础运算.【习题5】解方程:53 12.81164x-=.【答案】 1.26x=.【解析】5512.811.75 1.05 1.2666x x x =-==,,.【总结】结合方程考查分数和小数的混合运算.【习题6】 计算:1115160.0125387.51466571615⨯+⨯÷⨯-÷⨯. 【难度】★★★ 【答案】59225. 【解析】原式=1175161622590.0125 3.2+140.0414140.0472151599225⨯⨯⨯⨯-=+-=+=. 【总结】本题运算量比较大,需要学生分数和小数互化熟练,沉着冷静,运算细心.【习题7】 一个饲养小组养了一些白兔和灰兔,其中灰兔有120只,白兔比灰兔的56少10只.这个小组一共养了多少只兔子?如果灰兔比白兔的56少10只,结果又如何?【难度】★★★【答案】(1)210只;(2)276只. 【解析】(1)列式:5120120102106+⨯-=只;(2)列式:5(12010)1202766+÷+=只;其中第(2)小问用方程解学生会更好理解,设白兔为x 只,5101206x -=,解得156x =,156120276+=只.【总结】本题主要考查分数运算的应用,需要学生区分“已知量的几分之几和未知量的几分之几”.【作业1】 已知154的17是a ,172减去7.25的差是b ,则a 与b 的关系是( ) A .a b >B .a b =C .a b <D .a b ≠【答案】A 【解析】113111577474244a b =⨯==-=;,所以a b >. 【总结】本题主要考查分数与小数的混合运算.【作业2】计算:1140.5104125⎛⎫⨯+-⨯⨯ ⎪⎝⎭. 【答案】12. 【解析】原式=6(2102)=125+-⨯. 【总结】本题主要考查分数与小数基础混合运算.【作业3】计算:242212922 6.2 5.82295995920⎛⎫⨯+⨯-⨯-⨯⨯ ⎪⎝⎭. 【答案】1. 【解析】原式=292092(0.8 6.2 5.80.2)11920920⨯+--⨯=⨯⨯=. 【总结】本题主要考查分数与小数混合运算的巧算.【作业4】 把一根长79米的绳子分成三段,要求第二段长是第一段长的2.5倍,第三段长是第一段长的3.5倍,那么第一段长______米.【答案】19米. 课后作业【解析】设第一段长x 米,列方程7712.5 3.57999x x x x x ++===;;. 【总结】本题主要考查利用分数与小数的混合运算解决实际问题.【作业5】 计算:320150.3751949 3.75148⨯-⨯+⨯. 【答案】309144或77. 【解析】原式=3333330920151949140(20151949140)206888884⨯-⨯+⨯=⨯-+=⨯=. 【总结】本题主要考查分数与小数混合运算,在计算过程中,逆用了乘法分配律使复杂计算变得简单.【作业6】 香菇生产专业户老王用3184千克的新鲜香菇可烘制成干香菇558千克,那么1.6吨新鲜香菇可烘制成干香菇多少千克?【难度】★★★【答案】480千克. 【解析】先求每千克鲜菇可以制多少千克干菇:5345435188487510÷=⨯=千克; 再计算1.6吨鲜菇可以制多少千克干菇:3160048010⨯=千克. 【总结】本题主要考查分数的乘除运算,计算时注意单位的统一.【作业7】 计算:141.28.111953.7 1.94⨯+⨯+⨯. 【难度】★★★【答案】537.5.【解析】原式=41.28.1119.25(41.212.5) 1.9⨯+⨯++⨯(8.1 1.9)41.2119.2512.5 1.9=+⨯+⨯+⨯119.25 1.25(118)412+⨯+⨯+=412(9.25 1.25)11 1.258=++⨯+⨯1010.511412++⨯= 1.225415=+537.5=.【总结】本题主要考查分数与小数混合运算,需要对某一项进行拆分,从而达到简便运算的目的,切忌对本题进行死算.。

分式混合运算培优学案,附练习题含参考答案

分式混合运算学案知识梳理1.在进行分式的运算前,要先把分式的分子和分母因式分解.分式的乘除要约分,加减要通分,最后的结果要化成最简分式或整式.2.运算顺序:先乘除、后加减,有括号先算括号.例1:混合运算:412222x x x x -⎛⎫÷+- ⎪--⎝⎭. 【过程书写】2244122241622422(4)(4)14x x x x x x x x x x x x x x ---=-÷----=-÷----=-⋅-+-=-+解:原式例2:先化简(1)211x x x x x x+⎡⎤+÷⎢⎥--⎣⎦,然后在22x -≤≤的范围内选取一个你认为合适的整数x 代入求值.【过程书写】2221122112x x x x x x xx x x x x++--=⋅--=⋅-=-解:原式 ∵22x -≤≤,且x 为整数∴使原式有意义的x 的值为-2,-1或2当x =2时,原式=-2练习题1. 分式的混合运算:(1)242222x x x x x⎛⎫++÷ ⎪--⎝⎭; (2)2111122x x x x ⎛⎫-÷ ⎪-+-⎝⎭;(3)24142a a a ⎛⎫+÷ ⎪--⎝⎭; (4)2344111x x x x x -+⎛⎫+-÷ ⎪--⎝⎭;(5)222112x x x x x ⎛⎫-+÷+ ⎪-⎝⎭; (6)11-+a a 221a a a -÷-+a 1.2. 化简求值:(1)先化简,再求值:22112111x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其中4x =.(2)先化简,再求值:2222211b a ab b a a ab a a b ⎛⎫-+⎛⎫÷++ ⎪ ⎪-⎝⎭⎝⎭,其中11a b ==,.(3)先化简分式221221x x x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,然后从13x -≤≤中选取一个你认为合适的整数x 代入求值.(4)先化简分式3423332a a a a a a a +-+⎛⎫-÷⋅ ⎪+++⎝⎭,然后从不等式组 25<324a a --⎧⎨⎩≤的解集中选取一个你认为符合题意的a 代入求值.3. 化简:22111a a ab a ab--÷⋅+,并选取一组你喜欢的整数a ,b 代入求值.小刚计算这一题的过程如下:22(1)(1)1111(1)(1)1a a a ab a aba a ab a a ab ab+--=÷⋅++-=⨯⋅+-=解:原式①②③当a =1,b =1时,原式=1. ④ 以上过程有两处错误,第一次出错在第______步(填写序号),原因:_____________________________________________;还有第_______步出错(填写序号),原因:___________________________________________________.请你写出此题的正确解答过程.4. 课堂上,王老师出了这样一道题:已知2015x =-,求代数式22213111x x x x x -+-⎛⎫÷+ ⎪-+⎝⎭的值. 小明觉得直接代入计算太复杂了,同学小刚帮他解决了问题,并解释说:“结果与x 无关”.解答过程如下:2(1)13(1)(1)1111112(1)12_________x x x x x x x x x x x x -++-=÷+-+-=÷+-+=⋅+-=原式①②③④当2015x =-时,12=原式. (1)从原式到步骤①,用到的数学知识有_______________;(2)步骤②中空白处的代数式应为_____________________;(3)从步骤③到步骤④,用到的数学知识有_____________.5. 有两个熟练工人甲和乙,已知甲每小时能制作a 个零件,乙每小时能制作b个零件.现要赶制一批零件,如果甲单独完成需要m 小时,那么甲、乙两人同时工作,可比甲单独完成提前_______________小时.6. 若把分式x y x y+-中的x 和y 都扩大为原来的m 倍,则分式的值( ) A .扩大为原来的m 倍 B .不变C .缩小为原来的1mD .不能确定7. 若把分式2x y xy+中的x 和y 都扩大为原来的3倍,则分式的值( ) A .扩大为原来的3倍 B .不变C .缩小为原来的13D .缩小为原来的168. 已知53m n =,则222m m n m n m n m n +-=+--__________.9. 已知34(1)(2)12x A B x x x x -=+----,则A =______,B =______. 10. 计算:(1)22221244x y x y x y x xy y ---÷+++; (2)211121a a a a ⎛⎫-÷ ⎪--+⎝⎭;(3)22221a a b a ab a b ⎛⎫-÷ ⎪--+⎝⎭; (4)2286911y y y y y y ⎛⎫-+--÷ ⎪-+⎝⎭;(5)2221122a ab b a b b a -+⎛⎫÷- ⎪-⎝⎭; (6)24421x x x x -+⎛⎫÷- ⎪⎝⎭;(7)2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭;(8)352242x x x x -⎛⎫÷+- ⎪--⎝⎭;(9)253263x x x x --⎛⎫÷-- ⎪--⎝⎭; (10)211(1)111x x x ⎛⎫--- ⎪-+⎝⎭;(11)22221113x y x y x y x xy x y ⎛⎫⎛⎫--⋅÷-- ⎪ ⎪+--⎝⎭⎝⎭.11.化简求值:(1)先化简,再求值:2121122x x x x ++⎛⎫-÷ ⎪++⎝⎭,其中1x =.(2)先化简,再求值:2222225321x y x x y y x x y xy ⎛⎫++÷ ⎪---⎝⎭,其中x =y =(3)先化简22212211211x x x xx x x x ++-⎛⎫+÷+ ⎪--+-⎝⎭,然后在22x -≤≤的范围内选取一个合适的整数x 代入求值.(4)已知222111x x xA x x ++=---.①化简A ;②当x 满足不等式组1030x x -⎧⎨-<⎩≥,且x 为整数时,求A 的值.12.不改变分式2132113x yx -+的值,把分子、分母中各项系数化为整数,结果是() A .263x y x -+ B .218326x yx -+C .2331x y x -+D .218323x yx -+13.把分式32a bab -中的分子、分母的值同时扩大为原来的2倍,则分式的值()A .不变B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的1214.把分式34a b ab-中a ,b 的值都扩大为原来的2倍,则分式的值( ) A .不变 B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的1215.把分式222xy x y +中x ,y 的值都扩大为原来的2倍,则分式的值( ) A .不变B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的1216.已知47(2)(3)23x A B x x x x +=+-+-+,则A =_______,B =_______. 【参考答案】1. (1)2x (2)4x (3)2a a +(4)22x x +-(5)11x +(6)21(1)a -- 2. (1)原式,当4x =时,原式(2)原式1ab=-,当11a b ==,时,原式1=- (3)原式12x =--,当x =3时,原式1=- (4)原式=a +3,当0a =时,原式3=3. ③,约分出错④,a 的取值不能为1,当a =1时,原分式无意义正确的解答过程略 4. (1)分解因式,通分,分式的基本性质(2)221x x -+ (3)约分,分式的基本性质5. bm a b+ 6. B41x =+=7. C8. 41169. 1,210. (1)(2)(3)21a(4)(5)(6) (7)(8)(9)(10)(11) 11. (1)原式11x =+,当1x =时,原式=(2)原式=3xy,当x =y =-时,原式=3(3)原式241x x -=+,当x =2时,原式=0 (4)①11x -;②1 12. B13. A14. D15. A16. 3,1 y x y -+1a -22(1)(27)(1)(3)y y y y y y +----2ab 2x -+11x x -+126x -+124x -+23x -+y x y -+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解题技巧:
根据一个数比另一个数多几分之几(或少几分之几)可知:“比”字后面的量已知,即单位“1”已知,根据分数乘法的意义,这样的题计算时用乘法。

(1)先求出多的几分之几具体是多少,然后再用已知数加上多的部分。

(2)已知数是1倍,用1加上未知数比已知数多的几分之几,就可以求出未知数是已知数的几分之几。

例:一堆货物共有320吨,第一天运走它的4
1,第二天运走余下的3
1,还剩多少吨没有运走?
解:方法一:320⨯(1-4
1
)⨯(1-3
1)=320⨯
43⨯32
=160 ( 两个单位“1”:一堆货物和余下的货物) 方法二:320⨯【1-41
-(1-41)⨯31】=320⨯2
1=160 (单位“1”都是一堆货物) 练习:
1、爸爸买回10块巧克力,给小红5
2,其余的留给小丁,留给小丁多少块?
2、黄金周期间,北山公园第一天门票收入为8.4万元,第二天比第一天增加12
1,这两天的门票收入共多少万元?
3、煤场有煤1200吨,第一天运走总数的31,第二天运走总数的4
1,两天一共运走多少吨?
例 一根绳子80米,第一次用去全长的10
3
,第二次用去全长一半,第二次比第一次多用了多少米?
例 水果店里梨子比苹果少51,橘子比梨多6
1,苹果有150千克,橘子有多少千克?
例 某商店有450米布,第一天卖出总数的92,第二天又卖出余下的7
1,这时还剩下多少米布没卖? 练习:
1、一台电视机现在售价2400元,比原来降低了5
1,原来每台售价多少元?
2、小刚现在的体重是52千克,比原来增加了
26
1
,小刚原来体重多少千克?
方程解决问题:
例 小强2岁时,他的父亲32岁,小强的年龄是父亲的5
3的那一年,问他父亲当时多大岁数?
解:设小强那年x 岁,那么小强的年龄为5
3x X-5
3x=32-2
练习:
1、光明小学六年级有学生960人,比五年级人数少
7
1,四年级人数比五年级人
数多
8
1,四年级人数有多少人?
2、粮店运来大米和面粉共280袋,其中面粉的袋数比大米少
9
4,运来的大米和面粉各有多少袋?
附加题:
一项工程,甲队单独完成需40天,若乙先做10天,余下的工程由甲、乙两队合作,又需20天完成。

如果乙队单独完成此项工程,则需要多少天?
例题:
列式计算
(1) 占全部的
4
5?千米
40千米
八月
比八月份多
1
4
60吨
九月份:
(2)
?吨
练习:看图列式计算
1、 桃树 360棵 比桃树少4
1
梨树 ?棵 120幅
2、人物画: 比人物画多5
2 风景画: ?幅 X 只 3、鸡:
比鸡少4
1 鸭:
450只 4、 第一次用去52 第二次用去8
3
还剩180千克 一堆煤x 千克
课后练习:
1、学校开展植树活动,六年级植树45棵,五年级植树棵树比六年级少3
1
,五年级植树多少棵?
2、某玩具厂生产玩具1800件,超过计划的81
,超额生产多少件?
3、一辆汽车从甲地驶往乙地,第一天行了全程的4
1,第二天行了全程的3
1,这时离乙地还有140千米,甲乙两地相距多少千米?
4、丰泽小学六年级有女生84人,男生比女生多41,六年级人数占全校总人数的5
1。

全校有多少人?
5、修一条公路,甲单独修要15天完成,乙单独修要10天完成。

现有甲乙两人合修3天后,余下的有乙单独完成还需要多少天?。

相关文档
最新文档