正数和负数典例解析
1.1正数和负数(第2课时0的意义)(教学课件)-2024-2025学年七年级数学上册课件

2.图1.1-4是地理中的等高线图,
珠穆朗玛峰 8844.43m
海平面
(1)请在示意图中标出A,B的大概位置。 (2)此时的“0”是表示“没有”吗?
吐鲁番盆地 -154.31m
3.图1.1-5是手机中的部分收支款账单,其中的正数和负数的意义分别是什 么?
归纳
“0”的意义. 1.没有; 2.温度中的0℃; 3.0是正负数的分界点; 4.海平面的高度; 5.某一个标准、基准; ……
记为“+4410米”,表示高出海平面4410米;全球最大的超深水半潜式钻井
平台“蓝鲸2Байду номын сангаас”是我国自主设计制造的,其最大钻深记为“﹣15250
米”.“﹣15250米”表示的意义为( B ) A 高于海平面15250米
B 低于海平面15250米
C 比“拉索”高15250米
D 比“拉索”低15250米
5.将下列具有相反意义的量用线连起来:
(200±20)元.
13.如图,将一串数按下列规律排列0.解决下列问题
(1)在A处的数是正数还是负数? 正
(2)负数排在A,B,C,D中的什么位置? B、D
(3)第2 022个数是正数还是负数?排在对应于A,B,C,D中的什么位 置? 2 022÷4=505(组)……2(个),故第2 022个数排在C的位置.
2.填空: (1) 如果收入15元记作+15元,那么支出20元记作 -20 元. (2)向北走-20米的意义是 向南走20米 ,支出-50元的意义是 收入50元 .
新知探究
1.下图是北京地区1月15日至23日气温变化趋势图,思考下列问题.
(1)北京16日的气温在那个范围内? (2)北京16日的气温可能为0℃吗? (3)从气温变化趋势图来看气温为0℃时,是最低气温吗?
部编数学七年级上册必刷基础练【1.11.2正数和负数及有理数】(解析版)考点必刷精编讲义含答案

2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)基础第一章《有理数》1.1-1.2 正数和负数及有理数知识点1:正数和负数【典例分析01】(2021秋•望城区期末)若盈余60万元记作+60万元,则﹣60万元表示( )A .盈余60万元B .亏损60万元C .亏损﹣60万元D .不盈余也不亏损解:若盈余60万元记作+60万元,则﹣60万元表示亏损60万元,故选:B .【变式训练1-1】(2022•青县二模)热爱运动的琪琪坚持每天晚上健步走半小时并记录步数,他每天以3000步为标准,超过的记作正数,不足的记作负数.下表是本周内琪琪健步走步数情况的记录:星期一二三四五六日步数/半小时+221+260﹣50﹣105﹣115+104(1)本周内琪琪健步走步数最多的一天比最少的一天多走了 375 步;(2)本周内琪琪平均每天健步走的速度约为 102 步/分钟(结果保留整数).解:(1)∵﹣115<﹣105<﹣50<0<104<221<260,∴260﹣(﹣115)=375(步),故答案为:375;(2)×(3000+)=×(3000+45)=×3045≈102(步/分钟),故答案为:102.【变式训练1-2】(2021秋•义乌市期末)小明原有生活费50元,现靠勤工俭学的收入支付生活费,下面是小明一周内每天生活费的增减情况表(增加为正,减少为负,单位:元):星期一二三四五六日增减+7﹣2+12﹣60﹣1+6(1)求星期二结束时,小明有生活费多少元?(2)在这一周内,小明的生活费最多的一天比最少的一天多多少元?解:(1)50+7﹣2=55(元);答:星期二结束时,小明有生活费55元;(2)∵50+7=57(元),57﹣2=55(元),55+12=67(元),67﹣6=61(元),61+0=61(元),61﹣1=60(元),60+6=66(元),且55<57<60<61<66<67,∴67﹣55=12(元),答:在这一周内,小明的生活费最多的一天比最少的一天多12元.【变式训练1-3】(2021秋•和平县期末)某出租车沿南北方向行驶,从A地出发,晚上到达B地.规定向北为正方向.行驶记录如下(单位:km):+18、﹣9、+7、﹣14、﹣6、+13、﹣6,①B地在A地的什么位置?②若出租车每行驶1km耗油1升,求该天共耗油多少升?③若出租车起步价为7元,起步里程为3千米(包括3千米),超过部分每千米1.2元,则该天车费多少元?解:(1)(+18)+(﹣9)+(+7)+(﹣14)+(﹣6)+(+13)+(﹣6)=18﹣9+7﹣14﹣6+13﹣6=3(千米),∵规定向北为正方向,∴B地在A地的北边3km处,答:B地在A地的北边3km处;(2)|+18|+|﹣9|+|+7|+|﹣14|+|+6|+|+13|+|﹣6|=18+9+7+14+6+13+6=73(千米),∵出租车每行驶1km耗油1升,∴该天共耗油73×1=73(升),答:该天共耗油73升;(3)∵这七次每次的行驶路程都大于3km,∴每次的计费方式都是起步价+超过3km的费用,∴则该天车费=7×7+(73﹣3×7)×1.2=111.4(元),答:该天车费为111.4元.知识点2:有理数【典型分析02】(2021秋•新田县期末)下列各数中属于负整数的是( )A.0B.3C.﹣5D.﹣1.2解:A、0为整数,故选项不符合题意;B、3为负正整数,故选项不符合题意;C、﹣5为负整数,故选项符合题意;D、﹣1.2为负分数,故选项不符合题意.故选:C.【变式训练2-1】(2021秋•鼓楼区校级月考)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤﹣不仅是有理数,而且是分数;⑥是无限不循环小数,所以不是有理数.其中错误的说法的个数为( )A.6个B.5个C.4个D.3个解:①根据有理数的大小关系,﹣1<0,故0不是最小的整数,那么①错误.②0是有理数,但0既不是正数,也不是负数,那么②错误.③正整数、负整数、正分数、负分数、0统称为有理数,那么③错误.④非负数包括0和正数,那么④错误.⑤根据无理数的定义,是无理数,那么⑤错误.⑥根据有理数的定义,是有理数,那么⑥错误.综上:错误的有①②③④⑤⑥,共6个.故选:A.【变式训练2-2】(2021秋•怀宁县期中)三个互不相等的有理数,既可以表示为1,a+b,a,也可以表示为0,,b,则b= 1 .解:(1)∵三个互不相等的有理数,既表示为1,a+b,a的形式,又可以表示为0,,b的形式,∴这两个数组的数分别对应相等.∴a+b与a中有一个是0,与b中有一个是1,但若a=0,会使无意义,∴a≠0,只能a+b=0,即a=﹣b,于是=﹣1.只能是b=1,于是a=﹣1,故答案为:1.【变式训练2-3】(2021秋•洛江区期中)把下列各数填在相应的大括号内:﹣5,﹣,﹣12,0,0.3,﹣3.14,+1.99,+6,.(1)正数集合:{ 0.3,+1.99,+6, …};(2)分数集合:{ ﹣,0.3,﹣3.14,+1.99, …}.解(1)正数集合:{ 0.3,+1.99,+6,…};(2)分数集合:{﹣,0.3,﹣3.14,+1.99,…}.故答案为:0.3,+1.99,+6,;﹣,﹣3.14,+1.99,.【变式训练2-4】(2020秋•宁波期末)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式,由于0.=0.7777…,设x=0.7777…①则10x=7.777…②②﹣①得9x=7,解得x=,于是得0.=.同理可得0.==,7.=7+0.=7+=.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)基础训练(1)0.= ,8.= ;(2)将0.化为分数形式,写出推导过程.迁移应用(3)0.5= ;(注:0.5=0.153153…)探索发现(4)若已知0.1428=,则2.8571= .解:(1)0.==,8.=8+0.=8+=,故答案为:,;(2)将0.化为分数形式,由于0.=0.646464…,设x=0.646464…①,则100x=64.6464…②,②﹣①得99x=64,解得x=,于是得0.=;(3)类比(1)(2)的方法可得,0.==,故答案为:;(4)∵0.1428=,∴714.8571=×1000,∴0.8571=×1000﹣714=,∴2.8571=+2=,故答案为:.知识点3:数轴【典型分析03】(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点 A 离原点的距离较近(填“A”或“B”).解:∵|﹣2|=2,|3|=3,∴点A离原点的距离较近,故答案为:A.【变式训练3-1】(2022•东明县二模)数轴上的点B到原点的距离是6,则点B表示的数为( )A.12或﹣12B.6C.﹣6D.6或﹣6解:∵点B到原点的距离是6,∴点B表示的是±6,故选:D.【变式训练3-2】(2021秋•绵阳期末)如图,数轴上从左至右依次排列的三个点A,B,C,其中A、C两点到原点的距离相等,且AC=8,BC=2AB,则点B表示的数为( )A.﹣1B.1C.D.解:∵A、C两点到原点的距离相等,且AC=8,∴A表示﹣4,C表示4,∵AC=8,BC=2AB,∴AB=,∴点B表示的数为﹣4+.故选:D.【变式训练3-3】(2021秋•镇江期末)如图,在一条可以折叠的数轴上,A、B两点表示的数分别是﹣7,3,以点C为折点,将此数轴向右对折,若点A折叠后在点B的右边,且AB=2,则C点表示的数是 ﹣1 .解:设点C表示的数为x,则AC=x﹣(﹣7)=x+7,BC=3﹣x.∵以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,∴AC﹣BC=2.即:x+7﹣(3﹣x)=2.解得:x=﹣1.故答案为:﹣1.【变式训练3-4】(2021秋•望城区期末)为体现社会对教师的尊重,教师节这天上午,出租车司机小王在东西走向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下:(单位:千米)+3,﹣8,+13,+15,﹣10,﹣12,﹣13,﹣17(1)当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是多少?(2)若出租车的耗油量为0.4升/千米,这天上午出租车共耗油多少升?解:(1)∵+3﹣8+13+15﹣10﹣12﹣13﹣17=﹣29,∴当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是29千米;(2)出租车司机小王这天上午行驶的路程是:|+3|+|﹣8|+|+13|+|+15|+|﹣10|+|﹣12|+|﹣13|+|﹣17|=91,∴耗油为91×0.4=36.4(升),答:这天上午出租车共耗油36.4升.【变式训练3-5】(2021秋•长汀县校级月考)解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家 7.5 千米?(3)货车每千米耗油0.08升,这次共耗油多少升?解:(1)如图:(2)从数轴上可看出,小明家距小彬家有7.5个单位,所以是7.5千米;(3)一共行驶的路程为:|+3|+|+2.5|+|﹣10|+|4.5|=20(千米),所以共耗油20×0.08=1.6(升).知识点4:相反数【典型分析04】(2021秋•临江市期末)若a+2的相反数是﹣5,则a= 3 .解:由题意得:a+2=5,a=3,故答案为:3.【变式训练4-1】(2021秋•毕节市期末)下列各对数中,互为相反数的是( )A.﹣(+1)和+(﹣1)B.﹣(﹣1)和+(﹣1)C.﹣(+1)和﹣1D.+(﹣1)和﹣1解:A、﹣(+1)=﹣1,+(﹣1)=﹣1,不是相反数,故此选项不符合题意;B、﹣(﹣1)=1,+(﹣1)=﹣1,是相反数,故此选项符合题意;C、﹣(+1)=﹣1,不是相反数,故此选项不符合题意;D、+(﹣1)=﹣1,不是相反数,故此选项不符合题意;故选:B.【变式训练4-2】(2021秋•渌口区期末)下列两个数互为相反数的是( )A.(﹣)和﹣(﹣)B.﹣0.5和C.π和﹣3.14D.+20和﹣(﹣20)解:A、﹣(﹣)=,因为﹣+≠0,所以﹣与﹣(﹣)不是互为相反数,故此选项不符合题意;B、因为﹣0.5+=0,所以﹣0.5与是互为相反数,故此选项符合题意;C、因为π+(﹣3.14)=0.0015926……,故此选项不符合题意;D、﹣(﹣20)=20,因为+20+20=40,因此+20和﹣(﹣20)不是互为相反数,故此选项不符合题意;故选:B.【变式训练4-3】(2021秋•播州区期中)已知m与n互为相反数,且m与n之间的距离为6,且m<n,则m= ﹣3 ,n= 3 .解:∵m与n互为相反数,∴n=﹣m,∵m<n,且m与n之间的距离为6,∴n﹣m=6,∴﹣m﹣m=6,∴﹣2m=6,解得m=﹣3,∴n=3.故答案为:﹣3,3.知识点5:绝对值【典型分析05】(2022•广东)|﹣2|=( )A.﹣2B.2C.D.解:根据绝对值的意义:|﹣2|=2,故选:B.【变式训练5-1】(2022•二道区模拟)下列各组数中,互为相反数的是( )A.|+1|与|﹣1|B.﹣(﹣1)与1C.|﹣(﹣3)|与﹣|﹣3|D.﹣|+2|与+(﹣2)解:A选项,1与1不是相反数,故该选项不符合题意;B选项,1与1不是相反数,故该选项不符合题意;C选项,3与﹣3是相反数,故该选项符合题意;D选项,﹣2与﹣2不是相反数,故该选项不符合题意;故选:C.【变式训练5-2】(2022•泰州)若x=﹣3,则|x|的值为 3 .解:∵x=﹣3,∴|x|=|﹣3|=3.故答案为:3.【变式训练5-3】(2019秋•海淀区校级期中)观察下面的等式:3﹣1=﹣|﹣1+2|+31﹣1=﹣|1+2|+3(﹣2)﹣1=﹣|4+2|+3回答下列问题:(1)填空: ﹣4 ﹣1=﹣|6+2|+3;(2)已知2﹣1=﹣|x+2|+3,则x的值是 0或﹣4 ;(3)设满足上面特征的等式最左边的数为y,则y的最大值是 4 ,此时的等式为 4﹣1=﹣|﹣2+2|+3 .解:(1)∵﹣|6+2|+3=﹣5,﹣4﹣1=﹣5,故答案为﹣4;(2)由所给式子可知,|x+2|=2,∴x=0或﹣4,故答案为0或﹣4;(3)∵y﹣1=﹣|2﹣y+2|+3,∴y=﹣|y﹣4|+4,当y≥4时,y=﹣y+8,∴y=4;当y<4时,式子恒成立,∴y=4时最大,此时4﹣1=﹣|﹣2+2|+3,故答案为4,4﹣1=﹣|﹣2+2|+3.【变式训练5-4】(2019秋•新抚区校级期中)已知m、n为整数,且|m﹣2|+|m﹣n|=1,求m+n的值.解:分两种情况:①当|m﹣2|=0时,|m﹣n|=1,∴m=2,n=1或n=3,∴m+n=3或5.②当|m﹣2|=1时,|m﹣n|=0,∴m=3或m=1,n=m,∴m+n=6或2.综上,m+n的值为2或3或5或6.知识点6:非负数的性质:绝对值【典型分析06】(2021秋•黔南州月考)若|x﹣1|+|y+3|=0,则y﹣x+的值是( )A.B.C.D.解:∵|x﹣1|≥0,|y+3|≥0,∴x﹣1=0,y+3=0,∴x=1,y=﹣3,∴y﹣x+=﹣3﹣1+=﹣3,故选:A.【变式训练6-1】(2021秋•长汀县校级月考)若|x﹣3|+|y+3|=0,则x﹣y= 6 .解:∵|x﹣3|+|y+3|=0,而|x﹣3|≥0,|y+3|≥0,∴x﹣3=0,y+3=0,则x=3,y=﹣3,x﹣y=3+3=6.故答案为:6.【变式训练6-2】(2019秋•崇川区校级月考)已知|3x﹣2|+|y﹣4|=0,求|6x﹣y|的值.解:由题意得,3x﹣2=0,y﹣4=0,解得x=,y=4,所以,|6x﹣y|=|6×﹣4|=|4﹣4|=0,即|6x﹣y|的值是0.【变式训练6-3】(2018秋•石鼓区校级月考)已知|a﹣3|与|2b﹣4|互为相反数.(1)求a与b的值;(2)若|x|=2a+4b,求x的相反数.解:(1)∵|a﹣3|与|2b﹣4|互为相反数,∴|a﹣3|+|2b﹣4|=0,∴a﹣3=0,2b﹣4=0,解得a=3,b=2;(2)∵a=3,b=2,∴|x|=2a+4b=2×3+4×2=14,∴x=±14,∴x的相反数为﹣14或14.知识点7:有理数大小比较【典型分析07】(2021秋•翠屏区校级期中)将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,解:如图所示:故.【变式训练7-1】(2022•仁怀市校级模拟)在2,0,﹣1,﹣2四个数中最大的数是( )A.2B.0C.﹣1D.﹣2解:∵﹣2<﹣1<0<2,∴在2,0,﹣1,﹣2四个数中最大的数是2.故选:A.【变式训练7-2】(2021秋•闽侯县期末)在﹣1,0,3,﹣5这四个数中,最大的数是( )A.﹣1B.0C.3D.﹣5解:∵﹣5<﹣1<0<3,∴在﹣1,0,3,﹣5这四个数中,最大的数是3.故选:C.【变式训练7-3】(2021秋•阳东区期末)下列四个数中:①0;②﹣;③5;④﹣1.最小的数是 ④ .(填序号)解:∵﹣1<﹣<0<5,∴所给的四个数中:①0;②﹣;③5;④﹣1,最小的数是④.故答案为:④.【变式训练7-4】(2021秋•六盘水期中)画出数轴,并解决下列问题:(1)把4,﹣3.5,,,0,2.5表示在数轴上.(2)请将上面的数用“<”连接起来;(3)观察数轴,写出绝对值不大于4的所有整数.解:(1)如图所示:(2)由(1)可得:;(3)由(1)可得,绝对值不大于4的整数有﹣4、﹣3、﹣2、﹣1、0、1、2、3、4。
有理数与数轴(知识解读+真题演练+课后巩固)2023-2024学年七年级数学上册(人教版)(解析版)

z!"#$#%&!"#$%&'()*+,-./0+123445"6$&60+12-7.890:;<=344>"6$0?+**********?C-D0?EFG0344H"IJ0?K&60L'MNO+-PQRSTU0TVWXYZ 4知识点1 :正数和负数(1)概念正数:大于0的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。
) (2)意义:在同一个问题上,用正数和负数表示具有相反意义的量。
知识点2: 有理数(1)概念整 数:正整数、0、负整数统称为整数。
分 数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
) 注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
(2)分类:两种⑴按正、负性质分类: ⑵按整数、分数分类:正有理数 正整数 正整数 有理数 正分数 整数 0 零 有理数 负整数 负有理数 负整数 分数 正分数 负分数 负分数z知识点3:数轴(1)概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度(2)对应关系:数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大 。
(3)应用 求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)【题型 1 正数与负数】【典例1】(2023•西乡塘区二模)在﹣2,0,0.5,3四个数中,是负数的是( ) A .﹣2 B .0 C .0.5 D .3【答案】A【解答】解:在﹣2,0,0.5,3四个数中,是负数的是﹣2. 故选:A .【变式1-1】(2023•安徽模拟)数1,,0,﹣2,﹣3中正数有( )个. A .2 B .3C .4D .5【答案】A【解答】解:在:1,,0,﹣2,﹣3中, 正数有:1,,共2个. 故选:A .【变式1-2】(2022秋•防城港期末)下列各数中,是负数的是( ) A .0 B .﹣C .πD .3【答案】B【解答】解:A .0既不是正数,也不是负数,故选项不符合题意; B .﹣是负数,故选项符合题意; C .π是正数,故选项不符合题意;D.3是正数,故选项不符合题意;故选:B.【变式1-3】(2022秋•石楼县期末)下列各数:﹣2,0.8,﹣5,0,﹣3.14,8.3,﹣11,其中负数的有( )个.A.2B.3C.4D.5【答案】C【解答】解:负数有﹣2,﹣5,﹣3.14,﹣11,共4个,故选:C.【题型 2 相反意义的量表示】【典例2】(2023•船营区一模)中国是最早采用正负数表示相反意义的量并进行负数运算的国家.若气温上升7℃记作:+7℃,那么气温下降10℃可记作( )A.7℃B.10℃C.﹣10℃D.﹣7℃【答案】C【解答】解:若气温上升7℃记作:+7℃,那么气温下降10℃可记作﹣10℃.故选:C.【变式2-1】(2023•吉林一模)中国是世界上最早使用负数的国家,战国时期李悝所著的《法经》中已使用负数.如果公元前500年记作﹣500年,那么公元2023年应记作( )A.﹣2023年B.+1523年C.+2023年D.+2523年【答案】C【解答】解:∵公元前500年记作﹣500年,∴公元前为“﹣”,∴公元后为“+”,∴公元2023年就是公元后2023年,∴公元2023年应记作+2023年.故选:C.【变式2-2】(2022秋•佛山期末)下列四组量中,不具有相反意义的是( )A.海拔“上升200米”与“下降400米”B.温度计上“零上15℃”与“零下5℃”C.盈利100元与亏本25元D.长3米与重10千克【答案】D【解答】解:上升于下降具有相反意义,故A不符合题意;零上于零下具有相反意义,故B不符合题意;盈利于亏本具有相反意义,故C不符合题意;长度于质量步具有相反意义,故D符合题意;故选:D.【变式2-3】(2023•衡水二模)某日,四个城市的日平均气温如表所示:城市石家庄邢台保定张家口日平均气温/℃﹣110﹣6则日平均气温最低的是( )A.石家庄B.邢台C.保定D.张家口【答案】D【解答】解:∵﹣6<﹣1<0<1,∴日平均气温最低的城市是张家口,故选:D.【典例3】(2023•长春模拟)班级组织了一次跳远比赛,若成绩以250cm为标准,小明跳出了253cm,记做+3cm,则小亮跳出了246cm应记作( )A.+4cm B.﹣4cm C.+6cm D.﹣6cm【答案】B【解答】解:246﹣250=﹣4(cm),故选:B.【变式3-1】(2023•衡水二模)某品牌米线的包装袋上写着“300克±4%”,则下列不可能是米线的重量的是( )A.285克B.295克C.304克D.310克【答案】A【解答】解:∵300克±4%,即300×(1+4%)=312,300×(1﹣4%)=288z∴米线的重量为288~312克, 故选:A .【变式3-2】(2022秋•武陵区期末)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不是标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .【答案】D【解答】解:|﹣1.2|=1.2;|﹣2.3|=2.3;|0.9|=0.9;|﹣0.8|=0.8, ∵0.8<0.9<1.2<2.3, ∴0.8最小. 故选:D【变式3-3】(2022秋•德州期末)某中学进行立定跳远测试,男生成绩合格标准定为1.85米,体育老师记录了甲、乙、丙、丁四位男生成绩如下表:(超出标准的部分记为“+”,不足标准的部分记为“﹣”),你认为立定跳远成绩最好的是( ) 学生 甲 乙 丙丁成绩/米 +0.25+0.45 ﹣0.10 ﹣0.25A .甲B .乙C .丙D .丁【答案】B【解答】解:∵﹣0.25<﹣0.10<+0.25<+0.45, ∴四位男同学成绩最好的是乙; 故选:Bz【题型 3 相反意义的应用】【典例4】(2022秋•社旗县期末)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重 千克. (2)这8筐白菜中最重的重 千克;最轻的重 千克. (3)若白菜每千克售价2元,则出售这8筐白菜可卖多少元? 【答案】(1)24.5; (2)27;22; (3)389.【解答】解:(1)最接近标准重量的是纪录中绝对值最小的数,因而是25﹣0.5=24.5(千克), 故答案为:24.5;(2)∵记录中最大的数为2,最小的数为﹣3 ∴25+2=27(千克),25﹣3=22(千克) ∴这8筐白菜中最重的重27克;最轻的22千克,故答案为:27;22.(3)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.525×8+(﹣5.5)=194.5(千克)194.5×2=389(元),答:出售这8筐白菜可卖389元.【变式4-1】(2022秋•绥德县期末)某登山队5名队员以大本营为基地,向距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下:(单位:米)+115,﹣30,﹣45,+180,+25,﹣20,+30,+110,﹣25,+100 (1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米? (2)登山时,5名队员在行进中全程均消耗了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?【答案】(1)没有登上顶峰,他们距离顶峰60米;(2)他们共消耗了17 升氧气.【解答】解:(1)500﹣(115﹣30﹣45+180+25﹣20+30+110﹣25+100)=60(米).答:没有登上顶峰,他们距离顶峰60米;(2)115+30+45+180+25+20+30+110+25+100=680(米),因为每人每100米消耗氧气0.5升,所以680×5÷100×0.5=17(升),答:他们共消耗了17 升氧气.【变式4-2】(2022秋•枣阳市期末)某校积极开展劳动教育活动,七年级(2)班利用劳动课举行包饺子比赛,以小组为单位(共分7个小组),以包100个饺子为基准,将这7个小组所包饺子的数量(单位:个)记录如下:﹣8,+5,+3,﹣2,+3,+7,+6.(超过100个的部分记为“+”,不足100个的部分记为“﹣”)(1)包饺子数量最多的小组与数量最少的小组相差多少个?(2)本次活动该班共包饺子多少个?【答案】(1)包饺子数量最多的小组与数量最少的小组相差15个;(2)本次活动该班共包饺子714个.【解答】解:(1)由题意,得:包的最多的小组比基准多7个,包的最少的小组比基准少8个;+7﹣(﹣8)=15(个);答:包饺子数量最多的小组与数量最少的小组相差15个;(2)(﹣8+5+3﹣2+3+7+6)+7×100=714(个);答:本次活动该班共包饺子714个.【变式4-3】(2022秋•慈溪市期末)2022年足球世界杯在卡塔尔举行.某工厂设计了某款足球纪念品并进行生产,原计划每天生产10000个该款足球纪念品,但由于种种原因,实际每天的生产量与计划量相比有出入,下表是某一周的生产情况(超出记为正,不足记为负,单位:个):星期一二三四五六日与计划量的差值+43﹣35﹣50+142﹣82+21﹣29(1)根据记录的数据可知,本周生产量最多的一天比生产量最少的一天多生产多少个?(2)本周实际生产总量是否达到了计划数量?说明理由.(3)若该款足球纪念品每个生产成本25元,并按每个30元出售,则该工厂本周的生产总利润是多少元?【答案】(1)本周生产量最多的一天比生产量最少的一天多生产224个;(2)本周实际生产总量达到了计划数量,理由见解析;(3)350050.【解答】(1)解:由表可知:因为本周生产量最多的一天是周四,最少的一天是周五,∴142﹣(﹣82)=224(个).答:本周生产量最多的一天比生产量最少的一天多生产224个.(2)∵43+(﹣35)+(﹣50)+(+142)+(﹣82)+(+21)+(﹣29)=43﹣35﹣50+142﹣82+21﹣29=10.∵10>0,∴本周实际生产总量达到了计划数量.(3)由利润=总量×(单价﹣成本)有:(10000×7+10)×(30﹣25)=70010×5=350050(元).答:该工厂本周的生产总利润是350050元.【题型 4 有理数的概念辨析】【典例5】(2022秋•朝阳区期末)下面的说法中,正确的是( )A.正有理数和负有理数统称有理数B.整数和小数统称有理数C.整数和分数统称有理数D.整数、零和分数统称有理数【答案】C【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;B.无限不循环小数是无理数,故不符合题意;C.整数和分数统称为有理数,故符合题意;D.整数包括零,故不符合题意.z故选:C .【变式5-1】(2022秋•长沙期末)在﹣3.5,,0.3070809,0,中,有理数有( )个. A .1 B .2C .3D .4【答案】D【解答】解:在﹣3.5,,0.3070809,0,中,有理数有﹣3.5,,0.3070809,0,共4个,故选:D .【变式5-2】(2022秋•南宫市期末)若有理数的分类表示为:,则“”表示的是( )A .正有理数B .负有理数C .0D .非负数【答案】C【解答】解:有理数包括:整数与分数,整数包括:正整数,0和负整数, 则“”表示的是0. 故选:C .【变式5-3】(2022秋•颍州区期末)下列说法正确的是( ) A .3.14不是分数B .不带“﹣”号的数都是正数C .0是自然数也是正数D .整数和分数统称为有理数 【答案】 Dz【解答】解:A 、3.14是分数,属于有理数,故A 不符合题意; B 、0不带“﹣”号,但不是正数,故B 不符合题意;C 、0是自然数,但既不是正数,也不是负数,故C 不符合题意;D 、整数和分数统称为有理数,说法正确,故D 符合题意. 故选:D .【题型 5 有理数的分类】【典例6】(2022秋•宁陕县校级期中)把下列各数填入相应的大括号里: ﹣3,3.14,﹣0.1,80,﹣25%,0,正数集合:{ }; 整数集合:{ }; 负数集合:{ }; 正分数集合:{ }. 【答案】3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【解答】解:﹣3,3.14,﹣0.1,80,﹣25%,0,,正数集合:{3.14,80,,};整数集合:{﹣3,80,0,}; 负数集合:{﹣3,﹣0.1,﹣25%,}; 正分数集合:{3.14,,}.故答案为:3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【变式6-1】把下列各数填入相应的集合里:﹣3.14,4.3,+72,0,,﹣6,﹣7.3,﹣12,0.4,﹣,,26.(1)正数集合:{ …}; (2)负数集合:{ …}; (3)正整数集合:{ …}; (4)负整数集合:{ …};(5)非负数集合:{ …}. 【答案】(1)4.3,+72,,0.4,,26;(2)﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)+72,26;(4)﹣6,﹣12;(5)4.3,+72,0,,0.4,,26.【解答】解:(1)正数集合:{4.3,+72,,0.4,,26…};故答案为:4.3,+72,,0.4,,26;(2)负数集合:{﹣3.14,﹣6,﹣7.3,﹣12,﹣…};故答案为:﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)正整数集合:{+72,26…};故答案为:+72,26;(4)负整数集合:{﹣6,﹣12…};故答案为:﹣6,﹣12;(5)非负数集合:{4.3,+72,0,,0.4,,26…}.故答案为:4.3,+72,0,,0.4,,26.【变式6-2】(2022秋•雁塔区校级月考)把下列各数填在相应的横线上:5%,z﹣,﹣12,0,0.,﹣3.14,+6,0.101101110,.整数集合:{…};正数集合:{…};负分数集合:{…};非负整数集合:{…}.【答案】﹣12,0,+6;5%,0.,+6,0.101101110,;﹣,﹣3.14;0,+6.【解答】解:整数集合:{﹣12,0,+6…};z正数集合:{5%,0.,+6,0.101101110,…};负分数集合:{﹣,﹣3.14…}; 非负整数集合:{0,+6…}; 故答案为:﹣12,0,+6; 5%,0.,+6,0.101101110,;﹣,﹣3.14; 0,+6.【题型 6 数轴的画法及应用】【典例7】(2022•苏州模拟)以下是四位同学画的数轴,其中正确的是( ) A . B .C .D .【答案】D【解答】解:∵数轴要有三要素:单位长度,原点,正方向,并且数轴上表示的数从左到右增大,∴四个选项中只有选项D 符合题意, 故选:D .【变式7-1】(2022•杭州模拟)下列说法中正确的是( )A .数轴是一条射线B .数轴上离开原点距离越远的点表示的数越大C .数轴上的点所表示的数从左到右依次减小D .任何一个有理数都可以用数轴上的一个点表示 【答案】D【解答】解:数轴是一条直线,A 说法错误;在数轴的负半轴上,到原点距离越远的点所表示的数一定越小,B 说法错误; 数轴上的点所表示的数从左到右依次增大,C 说法错误; 任何一个有理数都可以用数轴上的一个点表示,D 说法正确. 故选:D .【变式7-2】(2021秋•凉州区校级期末)判断下列图中所画的数轴正确的个数是( )个.A.0B.1C.2D.3【答案】B【解答】解:数轴的三要素是:原点、正方向、单位长度,图(1)没有原点,故(1)不正确;图(2)满足数轴的定义,故(2)正确;图(3)所画负半轴上的数字排列顺序不对,故(3)错误;图(4)所画单位长度不一致,故(4)不正确.故选:B.【典例8】(2022秋•自贡期末)a,b为有理数,它们在数轴上对应点的位置如z图所示.则下列关系式正确的是( )A.﹣a<﹣b<b<a B.﹣a<b<﹣b<aC.﹣b<b<﹣a<a D.a<﹣b<b<﹣a【答案】B【解答】解:如图,由数轴可得,﹣a<b<﹣b<a,故选:B.【变式8-1】(2023•贵阳模拟)有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )zA .a +b >0B .a ﹣b >0C .ab >0D .【答案】D【解答】解:由数轴可知b >0>a ,且b <|a|, ∴a+b <0,故A 错误,不符合题意; a ﹣b <0,故B 错误,不符合题意; ab <0,故C 错误,不符合题意;,故D 正确,符合题意.故选:D .【变式8-2】(2022秋•鼓楼区校级期末)如图,A ,B ,C ,D 是数轴上的四个点,已知a ,b 均为有理数,且a +b =0,则它们在数轴上的位置不可能落在( )A .线段AB 上 B .线段BC 上 C .线段BD 上 D .线段AD 上【答案】A【解答】解:∵a ,b 均为有理数,且a+b =0, ∴a ,b 位于原点两侧,∴a ,b 在数轴上的位置不可能落在线段AB 上.故选:A .【变式8-3】(2022秋•江阴市期末)如图,数轴上的点A ,B 分别对应有理数a ,b ,下列结论正确的是( )A .a +b >0B .a ﹣b >0C .ab >0D .以上都不正确【答案】C【解答】解:由数轴可知,a <b <0, ∴a+b <0,故A 不符合题意; a ﹣b <0,故B 不符合题意;ab >0,故C 符合题意,D 不符合题意.【题型 7 数轴上的点所表示的数】【典例9】(2022秋•天津期末)已知数轴上点A到点B的距离是4,且点B所表示的数是2,则点A所表示的数是( )A.4或﹣4B.6或﹣2C.6或2D.﹣6或﹣2【答案】B【解答】解:∵点B到点A的距离是4.∵B表示2,∴A表示为2﹣4=﹣2或2+4=6.故选:B.【变式9-1】(2022秋•武冈市期末)点A为数轴上表示﹣2的点,当点A沿数轴移动5个单位长度到点B时,点B所表示的数为( )A.7或﹣3B.3或﹣7C.3或﹣3D.7或﹣7【答案】B【解答】解:向左移动5个单位长度对应的点表示﹣2﹣5=﹣7,向右移动5个单位长度对应的点表示﹣2+5=3,故选:B.【变式9-2】(2023•义乌市校级开学)如图,小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是( )A.﹣1B.0C.1D.2【答案】C【解答】解:由图可知,被墨水盖住的整数为:﹣3,﹣2,1,2,3,相加为﹣3+(﹣2)+1+2+3=1;故选:C【变式9-3】(2023•新邵县校级一模)在数轴上表示数﹣1和2021的两个点之间的距离为( )个单位长度.A.2022B.2021C.2020D.2019z【解答】解:|﹣1﹣2021|=2022, 故选:A .【题型 8 数轴中点规律问题】【典例10】(2023•新华区校级二模)如图,不完整的数轴上有A ,B 两点,原点在A 、B 之间,沿原点将负半轴折叠到正半轴上,点A 落在点B 左侧4个单位长度处,则线段AB 的中点表示的数为( )A .2B .﹣2C .4D .﹣4【答案】A【解答】解:根据题意可设点A 表示的数为a ,则折叠后的点A 的对称点为﹣a , 因为点A 落在点B 左侧4个单位长度处,所以点B 表示的数为﹣a+4, 则AB =﹣a+4﹣a =4﹣2a , 线段AB 的一半为2﹣a ,所以AB 中点为:﹣a+4﹣(2﹣a )=2, 故选:A .【变式10-1】(2022秋•公安县期末)在数轴上,若点A ,B 表示的数分别是﹣3和5,点M 是线段AB 的中点,则M 表示的数为( ) A .1 B .2C .4D .﹣4【答案】A【解答】解:∵点A ,B 表示的数分别是﹣3和5, ∴AB =5﹣(﹣3)=8, ∵点M 是线段AB 的中点, ∴,∴点M 表示的数为:5﹣4=1; 故选:A .【变式10-2】(2022秋•江岸区期末)如图,在数轴上,点A 、B 表示的数分别是﹣19和3.点C 为线段AD 的中点,且BC =6BD ,则点C 表示的数为( )zA .﹣9B .﹣9.5C .﹣10D .﹣10.5【答案】A【解答】解:∵数轴上A ,B 两点所表示的数分别是﹣19和3, ∴AB =3+19=22, 设BD =x , ∵BC =6BD , ∴BC =6x , ∴CD =5x ,∵点C 为线段AD 的中点, ∴AD =2CD =10x , ∴AB =11x =22, ∴x =2, ∴AC =5x =10,∴点C 所表示的数是﹣19+10=﹣9. 故选:A .1.(2022•襄阳)若气温上升2℃记作+2℃,则气温下降3℃记作( ) A .﹣2℃ B .+2℃C .﹣3℃D .+3℃【答案】C【解答】解:∵气温上升2℃记作+2℃, ∴气温下降3℃记作﹣3℃. 故选:C .2.(2022•益阳)四个实数﹣,1,2,中,比0小的数是( )A .﹣B .1C .2D .【答案】A【解答】解:根据负数都小于零可得,﹣<0.故选:A.3.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作( )A.+20元B.﹣20元C.+30元D.﹣30元【答案】B【解答】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B.4.(2021•南京)北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00.小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A.10:00B.12:00C.15:00D.18:00【答案】C【解答】解:由题意得,北京时间应该比莫斯科时间早5小时,当莫斯科时间为9:00,则北京时间为14:00;当北京时间为17:00,则莫斯科时间为12:00;所以这个时刻可以是14:00到17:00之间,所以这个时刻可以是北京时间15:00.故选:C.5.(2021•滨州)在数轴上,点A表示﹣2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是( )A.﹣6B.﹣4C.2D.4【答案】C【解答】解:由题意可得,点B表示的数为﹣2+4=2,故选:C.z6.(2021•广州)如图,在数轴上,点A 、B 分别表示a 、b ,且a +b =0,若AB =6,则点A 表示的数为( )A .﹣3B .0C .3D .﹣6【答案】A【解答】解:∵a+b =0, ∴a =﹣b ,即a 与b 互为相反数. 又∵AB =6, ∴b ﹣a =6. ∴2b =6. ∴b =3.∴a =﹣3,即点A 表示的数为﹣3. 故选:A .7.(2021•凉山州)下列数轴表示正确的是( ) A . B .C .D .【答案】D【解答】解:A 选项,应该正数在右边,负数在左边,故该选项错误;B 选项,负数的大小顺序不对,故该选项错误;C 选项,没有原点,故该选项错误;D 选项,有原点,正方向,单位长度,故该选项正确; 故选:D .8.(2020•乐山)数轴上点A 表示的数是﹣3,将点A 在数轴上平移7个单位长度得到点B ,则点B 表示的数是( ) A .4 B .﹣4或10C .4或﹣10D .﹣10【答案】C【解答】解:如果A 向右平移得到,点B 表示的数是:﹣3+7=4, 如果A 向左平移得到,点B 表示的数是:﹣3﹣7=﹣10,z故点B 表示的数是4或﹣10. 故选:C .9.(2020•临沂)如图,数轴上点A 对应的数是,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A .﹣B .﹣2C .D .【答案】A【解答】解:点A 向左移动2个单位, 点B 对应的数为:﹣2=﹣. 故选:A .10.(2020•湘潭)在数轴上到原点的距离小于4的整数可以为 .(任意写出一个即可) 【答案】见试题解答内容【解答】解:在数轴上到原点的距离小于4的整数有:﹣3,3,﹣2,2,﹣1,1,0从中任选一个即可故答案为:3(答案不唯一,3,2,1,0,﹣1,﹣2,﹣3任意一个均可);1.(2023•河北模拟)向东走2m ,记为+2m ,那么走﹣7m ,表示( ) A .向南走7m B .向东走7mC .向西走7mD .向北走7m【答案】C【解答】解:向东走2m ,记为+2m ,那么走﹣7m ,表示向西走7m . 故选:C .2.(2022秋•河池期末)下列说法错误的是( ) A .0既不是正数,也不是负数B .零上4摄氏度可以写成+4°C ,也可以写成4°CzC .若盈利100元记作+100元,则﹣20元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示 【答案】D【解答】解:A .0既不是正数,也不是负数,正确,故不符合题意; B .零上4摄氏度可以写成+4°C ,也可以写成4°C ,正确,故不符合题意; C .若盈利100元记作+100元,则﹣20元表示亏损20元,正确,故不符合题意; D .规定向正北走用正数表示,则向正南走才用负数表示,原说法错误,故符合题意. 故选:D .3.(2023•海安市一模)手机移动支付给生活带来便捷.如图是小颖某天微伯账单的收支明细(正数表示收入,负数表示支出,单位:元),小颖当天微信收支的最终结果是( )A .收入18元B .收入6元C .支出6元D .支出12元【答案】B【解答】解:+18+(﹣12)=6(元),即小颖当天微信收支的最终结果是收入6元.故选:B .4.(2023•官渡区校级模拟)检查四个篮球的质量,把超过标准的克数记为正数,不足标准质量的克数记为负数,结果如下表: 其中质量最好的是( )篮球编号 甲 乙 丙 丁与标准质量的差(g ) +4+7﹣3﹣8A .甲B .乙C .丙D .丁【答案】C【解答】解:根据题意可得:超过标准质量的克数记为正数,不足标准质量的克z数记为负数;观察图表,找绝对值最小的.易得|﹣3|=3最小, 故3号球最接近标准质量,质量最好, 故选:C .5.(2022秋•广西期末)在,﹣4,0,这四个数中,属于负整数的是( ) A .B .C .0D .﹣4【答案】D【解答】解:∵﹣,都是分数, ∴选项A ,B 不符合题意; ∵0既不是正数,也不是负数, ∴选项C 不符合题意; ∵﹣4是负整数, ∴选项D 符合题意, 故选:D .6.(2022秋•红河县期末)下列说法正确的是( ) A .0不是正数,不是负数,也不是整数 B .正整数与负整数包括所有的整数C .﹣0.6是分数,负数,也是有理数D .没有最小的有理数,也没有最小的自然数【答案】C【解答】解:A 0不是正数也不是负数,0是整数,故A 错误; B 正整数于负整数不包括0,故B 错误; C ﹣0.6是分数,负数,有理数,故C 正确; D 0是最小的自然数,故D 错误; 故选:C .7.(2023•晋安区校级模拟)如图,数轴的单位长度是1,若点A 表示的数是﹣1,则点B 表示的数是( )zA .1B .2C .3D .4【答案】D【解答】解:∵数轴的单位长度为1,如果点A 表示的数是﹣1, ∴点B 表示的数是:﹣1+5=4,故D 正确. 故选:D .8.(2022秋•惠阳区期末)有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣1B .﹣a <bC .a +b <0D .a ﹣b >0【答案】B【解答】解:观察数轴得:﹣2<a <﹣1,2<b <3, ∴A 选项错误,不符合题意; ∴1<﹣a <2,∴﹣a <b ,故B 选项正确,符合题意; ∴|a|<|b|,∴a+b >0,故C 选项错误,不符合题意; ∴a ﹣b <0,故D 选项错误,不符合题意; 故选:B .9.(2022秋•沈丘县月考)已知数轴上A ,B 两点到原点的距离分别是3和9,则A ,B 两点间的距离是( ) A .6 B .9或12C .12D .6或12【答案】D【解答】解:A 、B 两点表示的数同号时,A ,B 两点间的距离是9﹣3=6或﹣3﹣(﹣9)=6,A 、B 两点表示的数异号时,A ,B 两点间的距离是9﹣(﹣3)=12或3﹣(﹣9)=12,∴A ,B 两点间的距离是6或12. 故选:D .10.(2022秋•文成县期中)点A、B在同一条数轴上,其中点A表示的数为1,若点B到点A的距离为4,则点B表示的数是( )A.3B.5C.3或﹣3D.5或﹣3【答案】D【解答】解:∵1+4=5,1﹣4=﹣3,∴点B表示的数是5或﹣3,故选:D.11.(2022秋•济南期中)如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣14,10,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是( )A.1B.﹣3C.1或﹣5D.1或﹣4【答案】C【解答】解:10+6=16,10﹣6=4,当A落在16对应的点时,C表示的数为:(16﹣14)=1,z当A落在4对应的点时,C表示的数为:(4﹣14)=﹣5,故选:C.12.(2023春•荣县月考)观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).【答案】见试题解答内容【解答】解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1,∴第16个答案为:.故答案为:.13.(2022秋•武侯区校级月考)把下列各数分别填入相应的集合里.0,,5,3.14,π,﹣3,0.1.(1)整数集合:{…};(2)分数集合:{…};(3)有理数集合:{…};(4)非负数集合:{…}.【答案】(1)0,5,﹣3;(2),3.14,0.1;(3)0,,5,3.14,﹣3,0.1;(4)0,5,3.14,π,0.1.【解答】解:0,,5,3.14,π,﹣3,0.1.(1)整数集合:{0,5,﹣3,…};故答案为:0,5,﹣3;(2)分数集合:{,3.14,0.1,…};、故答案为:,3.14,0.1;z(3)有理数集合:{0,,5,3.14,﹣3,0.1,…};故答案为:0,,5,3.14,﹣3,0.1;(4)非负数集合:{0,5,3.14,π,0.1,…}.故答案为:0,5,3.14,π,0.1.14.(2023•泰山区校级开学)自行车厂要生产一批相同型号的自行车,计划每天生产200辆.但由于各种原因,实际每天的生产量与计划量相比会有所差异.下表是工人在某周的生产情况:(超过200辆记为正,不足200辆记为负)星期一二三四五六日增减(辆)+5﹣3﹣4+13﹣10+15﹣9(1)根据记录可知,前三天共生产了辆;(2)生产量最多的一天比生产量最少的一天多生产了辆;(3)该厂实行计件工资制,每生产一辆得100元,对于每天的计划生产量,若每多生产一辆再额外奖20元,若每少生产一辆则要扣20元,求工人这一周的工资总额是多少元.【答案】(1)598;(2)25;(3)工人这一周的工资总额是140840元.【解答】解:(1)由表格可得,(200+5)+(200﹣3)+(200﹣4)=205+197+196=598(辆),即前三天共生产了598辆,故答案为:598;(2)由表格可得,生产量最多的一天比生产量最少的一天多生产了15﹣(﹣10)=15+10=25(辆),故答案为:25;(3)200×7×100+[5+(﹣3)+(﹣4)+13+(﹣10)+15+(﹣9)]×120=140000+7×120=140000+840=140840(元),答:工人这一周的工资总额是140840元.15.(2022秋•长安区校级期末)某食品厂在产品中抽出20袋样品,检查其质量是否达标,超过标准的部分用正数表示,不足的部分用负数表示:﹣3﹣2﹣1.501 1.5 2.5与标准质量的差/克袋数1434323(1)这批样品的总质量比标准总质量多还是少?多或少几克?(2)若每袋的标准质量为200克,求这批样品平均每袋的质量是多少克?【答案】(1)这批样品的总质量比标准总质量少,少2克;(2)这批样品平均每袋的质量是199.9克.【解答】解:(1)(﹣3)×1+(﹣2)×4+(﹣1.5)×3+0×4+1×3+1.5×2+2.5×3=﹣3﹣8﹣4.5+0+3+3+7.5=﹣2(克),即这批样品的总质量比标准总质量少,少2克;(2)200×20﹣2=4000﹣2=3998(克),3998÷20=199.9(克),即这批样品平均每袋的质量是199.9克.。
正数和负数教材详解

第二章 有理数第一节 正数和负数研习教材重难点教材文本研习研习点1:正数和负数1.相反意义的量。
在人们的生活和生产实践中,存在大量的相反意义的量,如,温度是零上5℃和零下3℃;汽车前进3米和后退10米;收入500元和支出100元;珠穆朗玛峰高出海平面8844米和吐鲁番盆地低于海平面155米;……,若用小学学过的数表示以上各数,要另加说明,不方便,也不利于计算,为了解决这些问题,就必须引入一种新的数——负数。
2.正数负数和零象1、2.5、313、48等大于零的数叫正数;为了强调,正数前面也可加“+”(读作正)号,如1也可写作+1,读作正1。
象-1、-2.5,-31,-48等小于零的数叫负数;其中“-”读作“负”,如-1读作 “负1”.0叫做零,0既不是正数也不是负数。
它是正数、负数的分界,是一个中性的数。
典例1:用正、负数表示下列问题中的数量;并指出这些问题中,数0表示的意义。
(1)出门向东走300米,向西走300米;(2)某单位今年盈利50000元,去年亏损5000元;(3)收人300元,支出200元;【研析】要用正负号表示一对相反意义的量,就要规定好哪一个量表示正,哪一个量表示负。
但是正负的规定有它的随意性,如:⑴若规定向东为正,则“向东走300米”可表示为+300米,“向西走300米”则可表示为-300米;若规定向西为正,则“向东走300米”可表示为-300米,“向西走300米”则可表示为+300米。
一般规定:不增加也不减少;不收入也不支出;不盈利也不亏损,不上升也不下降;海平面高度;原地不动;某一标准;……它们的意义都用0表示。
因此⑴中的0应表示站在原地不动。
为了方便我们不妨设盈利与收入为正,那么:⑵某单位今年盈利50000元,可记做+50000元;去年亏损5000元,可记做-5000元。
0表示既不盈利也不亏损。
⑶收人300元,可记做+300元;支出200元,可记做-200元。
典例2:判断正误⑴.最小的整数是0。
正数和负数经典例题

1.正数、负数的概念:(1)大于0的数叫做,小于0的数叫做.(2)正数是大于0的数,负数是的数,0既不是正数也不是负数.2.正数和负数的表示方法:一般地,我们把上升、运进、零上、收入、前进、高出等规定为的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为的.正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如5、7、50、+14200等;负的量用小学学过的数前面放上“–”(读作负)号来表示,如–3、–8、–47、–4745等.3.正数和负数的意义:(1)正数和负数的引入是为了在实际问题中区分表示相反意义的量.为了用数表示具有相反意义的量,我们把某种量的一种意义规定为正的,而把与它相反的一种意义规定为的.负数是根据实际需要产生的.(2)描述一堆具有的量的词语一般是一对反义词,如上升与下降,增加与减少,盈利与亏损,收入与支出等.4.注意:(1)小学学过的数,除了0以外,都是,在学习时为了简便把“+”都省略了.(2)用正数和负数表示相反意义的量时,规定哪种意义的量为正是可以任意选定的(如将上升2米规定为+2米或–2米都可以),一旦选定一种意义的量为正,则另一种相反意义的量就只能为.(3)带有“+”号的数不一定是正数,带有“–”号的数不一定是负数.如+(–2)是,–(–5)是.(4)0的意义:①小学学习了0可以表示;②现在我们知道,0比任何都小,比任何都大,0是正数和负数的分界点,因此0还常用来表示某个量的基准,如0°C不能理解为没有温度,而是温度中的一个值,也是零上和零下的分界点,在物理学中,0°C表示冰的熔点,0°C常用来作为计量温度的基准.(5)用正数和负数表示具有相反意义的量时,哪种意义为正是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负.具有相反意义的量一定是具体的数量.具有相反意义的两个量必须是同类量.具有相反意义的量是成对出现的.K知识参考答案:1.(1)正数,负数(2)小于0(3)2.正,负3.(1)负(2)相反意义4.(1)正数(2)负(3)负数,正数(4)没有,正数,负数一、正数和负数的定义1.像3,1.8%,3.5这样大于0的数叫做正数.2.像–3,–2.7%,–4.5,–1.2这样在正数前加符号“–”(负)号的数叫做负数.【例1】下列各组量中,具有相反意义的量有:①仓库的货物“运进30吨”和“运出20吨”;②“重100千克”与“高100米”;③水库的水位“上升2.6米”与“下降0.8米”;④温度计上的“零上4°C”与“零下6°C”.A.3组B.2组C.1组D.4组【答案】A故选A.二、用正数、负数表示具有相反意义的量1.相反意义的量注意两点:(1)它们都是数量,而且必须是同类的量.如节约3吨汽油与浪费1吨水就不具有相反意义的量.(2)表示的意义要完全相反,而不仅仅是不同.如:向东和向南就不是相反意义的量.2.通常将上升、增加、盈利、收入等记为正的,下降、减少、亏损、支出等记为负的.【例2】下列各对量中,不具有相反意义的是A.胜3局与负4局B.收入3000元与支出2000元C.气温升高4°C与气温升高10°C D.转盘逆时针转3圈与顺时针转5圈【答案】C三、“0”的意义1.0是正数和负数的分界点;2.0还常用来表示某个量的基准.【例3】如果正午记作0时,下午3点记作+3时,那么上午8点记作.【答案】–4时【解析】由题意,上午8时在正午之前4个小时,故上午8时应记作–4时.【名师点睛】本题考查0的意义,0是正数和负数的分界点,正午记作0时,下午3点记作+3时,说明以正午为分界点,正午之后几小时,就记作正几时,正午之前几小时,就记作负几时.本题易错解为–8时.。
【暑期衔接】专题01《正数与负数》 精编讲义)-2022年暑假小升初数学衔接(人教版)(原卷版)

2022年人教版暑假小升初数学衔接知识讲练精编讲义专题01《正数与负数》教学目标1.了解正数与负数是从实际需要中产生的.2.理解正数、负数及0的意义,掌握正数、负数的表示方法.3.会用正数、负数表示具有相反意义的量.(重点、难点)新课导入课堂引入观察下列图片,体会数的产生和发展过程.新课讲授思考:根据实际生活的需要,人们引进了另一种数,你知道是什么数吗?结合你在实际生活中接触到的数,试举例新闻报道:某年,我国花生产量比上年增长1.8%,油菜籽产量比上年增长-2.7%.知识点01:正、负数的认识问题1:说一说上面用到的各数的含义.(1)天气预报中的3,电梯按钮中的1-10,新闻报道中的1.8%;2)天气预报中的-3,电梯按钮中的-1,-2,新闻报道中的-2.7%.问题2:上面这两类数,分别属于什么数?概念归纳像1,2,3,1.8%这样大于0的数叫做正数.像-3,-1,-2,-2.7%这样在正数前面加上符号“-”(负)的数叫做负数.注意有时,我们为了明确表达意义,在正数前面也加上“+”(正)号,如+3,+1.8%,+0.5,….不过一般情况下我们省略“+”不写.思考1 :(1)负数有什么特点?(2)如果一个数不是正数就是负数,对吗?(1)从定义中我们发现负数的前面必须有负号“-”.(2)不对.0既不是正数,也不是负数.思考2:0只表示没有吗?1.空罐中的金币数量;2.温度中的0℃;3.海平面的高度;4.标准水位;5.身高比较的基准;6.正数和负数的界点;……引入正、负数后,0不再简简单单的只表示没有.它具有丰富的意义,是正负数的分界点.知识点02:用正、负数表示具有相反意义的量你会用正、负数来表示它们吗?我们以海平面高度为基准,珠穆朗玛峰的海拔高度比海平面高8848米,记为+8844.4米;鲁番盆地的海拔高度比海平面低155米,我们记为-155米.方法归纳根据相反意义合理使用正、负数对实际问题进行表示.一般情况下,把向北(东)、上升、增加、收入等规定为正,把它们的相反意义规定为负典例分析【典例分析01】(2022•南平模拟)手机移动支付给生活带来便捷.右图是张老师2021年9月18日微信账单的收支明细(正数表示收入,负数表示支出,单位:元),张老师当天微信收支的最终结果是()A.收入19元B.支出8元C.支出5元D.收入6元【思路引导】根据有理数的加法法则求和即可.【完整解答】解:19+(﹣8)+(﹣5)=6(元),故选:D.【考察注意点】本题考查了正数和负数,掌握正数和负数表示相反意义的量是解题的关键.【典例分析02】(2021秋•虎林市校级期末)用正数或负数填空:(1)小商店平均每天可盈利250元,一个月(按30天计算)的利润是元;(2)小商店每天亏损20元,一周的利润是元;(3)小商店一周的利涧是1400元,平均每天的利润是元;(4)小商店一周共亏损840元,平均每天的利润是元.【思路引导】(1)利用每天的利润乘天数即可;(2)利用每天的利润乘天数即可;(3)利用总利润除以7即可;(4)利用总利润除以7即可.【完整解答】解:(1)由题意得:250×30=7500(元),∴小商店平均每天可盈利250元,一个月(按30天计算)的利润是7500元,故答案为:7500;(2)小商店每天亏损20元,即小商店每天的利润是﹣20元,则一周的利润是:﹣20×7=﹣140(元),故答案为:﹣140;(3)由题意得:1400÷7=200(元),∴小商店一周的利涧是1400元,平均每天的利润是200元,故答案为:200;(4)因为小商店一周共亏损840元,即小商店一周的利润是﹣840元,则平均每天的利润是:﹣840÷7=﹣120(元),故答案为:﹣120.【考察注意点】本题考查了正数和负数,熟练掌握正数和负数的意义是解题的关键.【变式训练01】(2021秋•延庆区期末)据北京市金融监管局消息,将在2022年2月举办的北京冬奥会试点数字人民币.市场预期有关部门会以其作为起始点,在全国普及数字人民币.2021年12月10日,小明的妈妈在北京建行数字人民币钱包中存入100元,记作+100,那么﹣40表示()A.支出40元B.收入40元C.支出60元D.收入60元【变式训练02】(2021秋•鞍山期末)“惠天”超市新进5袋萝卜准备在冬季零售,每袋包装100kg为标准,超市员工以超过的千克数记为正数,不足的千克数记为负数记录如下:﹣2.5,3,5.5,﹣3.5,4,则超市这批萝卜的总重量是千克.【变式训练03】(2021秋•涡阳县期末)李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前259年,可记作.课堂巩固基础达标一.选择题1.(2022•巧家县二模)如果将175cm作为标准身高,高于标准身高3cm记作+3cm,那么身高170cm应记作()A.﹣3cm B.﹣5cm C.+5cm D.﹣170cm2.(2021秋•井研县期末)为庆祝建党100周年,某党支部制作了精美的纪念章,其质量要求是“50±0.20克”,则下列纪念章质量符合标准的是()A.49.70克B.50.30克C.50.25克D.49.85克3.(2021秋•潍坊期末)按照国际规定,巴黎的时间比北京的时间晚7小时(例如,当北京时间是上午8:00时,则巴黎时间是凌晨1:00),从巴黎乘飞机飞往北京需11个小时,飞机从巴黎5:00起飞,那么到达北京的当地时间是()A.23:00 B.16:00 C.11:00 D.8:004.(2021秋•吉林期末)北京与巴黎的时差为7小时,例如:北京时间13:00,同一时刻的巴黎时间是早上6:00.笑笑和霏霏分别在北京和巴黎,她们相约在各自当地时间13:00~22:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A.14:00 B.16:00 C.21:00 D.23:005.(2021秋•岱岳区期中)某水库的水位将80米作为标准水位,水位为85.3米记为+5.3米,则水位为76.8米应记为()A.+76.8米B.﹣76.8米C.+3.2米D.﹣3.2米二.填空题6.(2021秋•济南期末)如果+40m表示向东走40m,那么向西走30m可以表示为m.7.(2021秋•仁寿县期末)某水果店盈利701元时我们记作+701元,那么亏本259元记作元.(2021秋•历下区期末)中国是最早采用正负数表示相反意义的量的国家,一艘潜水艇向下潜50m记为+50m,8.则向上浮30m记为m.9.(2021秋•朝阳区期末)月球表面的白天平均温度为零上126℃,夜间平均温度为零下150℃.如果零上126℃记作+126℃,那么零下150℃应该记作℃.10.(2021秋•海门市期末)如果“盈利10%'记为+10%,那么“亏损6%”记为.三.解答题11.(2021秋•莲池区校级期中)体课上全班女生进行了百米测验,达标成绩为18秒,下面是第一组8名女生的成绩记录,其中,“+”号表示成绩大于18秒,“﹣”号表示成绩小于18秒.﹣1,+0.8,0,﹣1.2,﹣0.1,0,+0.5,﹣0.6(1)这个小组女生的达标率是.(2)求出这个小组的平均成绩.12.(2021秋•蒙阴县期中)蒙阴县的蜜桃闻名全国,现有20筐蜜桃,以每筐23千克为标准,超过或不足的千克数分别用正数或负数来表示,记录如下:(1)与标准重量比较,20筐蜜桃总计超过或不足多少千克?﹣3 ﹣2 ﹣1.5 0 1 2.5 与标准质量的差值(单位:千克)筐数 1 4 2 3 2 8 (2)若蜜桃每千克售价5元,则这20筐可卖多少元?13.(2021秋•丹阳市期中)乒乓球,被称为“国球”,在中华大地有着深厚的群众基础.2000年2月23日,国际乒联特别大会决定从2000年10月1日起,乒乓球比赛将使用直径40mm、重量2.7g的大球,以取代38mm的小球.某工厂按要求加工一批标准化的直径为40mm乒乓球,但是实际生产的乒乓球直径可能会有一些偏差.随机抽查检验该批加工的10个乒乓球直径并记录如下:﹣0.4,﹣0.2,﹣0.1,﹣0.1,﹣0.1,0,+0.1,+0.2,+0.3,+0.5(“+”表示超出标准;“﹣”表示不足标准).(1)其中偏差最大的乒乓球直径是mm;(2)抽查的这10个乒乓球中,平均每个球的直径是多少mm?(3)若误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品,这10个球的合格率是;良好率是.14.(2021秋•临汾期末)山西稷山板枣栽培历史有上千年,种类繁多,有板枣、长枣、圆枣等,以板枣最为有名.小明所在的小区购买了8筐稷山板枣,若以每筐10kg为基准,把超过10kg的千克数记为正数,不足10kg的千克数记为负数,记录如下:①+3;②﹣1.4;③+2;④﹣4;⑤+5;⑥﹣3.5;⑦+1;⑧﹣0.5.(1)这8筐稷山板枣中,重量最重的是kg,比重量最轻的重了kg.(2)这8筐稷山板枣的总重量是多少kg?15.(2021秋•宁波期末)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.宁国把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是宁国第一周柚子的销售情况:星期一二三四五六日+3 ﹣5 ﹣2 +11 ﹣7 +13 +5柚子销售超过或不足计划量情况(单位:千克)(1)宁国第一周销售柚子最多的一天比最少的一天多销售多少千克?(2)宁国第一周实际销售柚子的总量是多少千克?(3)若宁国按8元/千克进行柚子销售,平均运费为3元/千克,则宁国第一周销售柚子一共收入多少元?一.选择题1.(2021秋•吉林期末)北京与巴黎的时差为7小时,例如:北京时间13:00,同一时刻的巴黎时间是早上6:00.笑笑和霏霏分别在北京和巴黎,她们相约在各自当地时间13:00~22:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A.14:00 B.16:00 C.21:00 D.23:002.(2021秋•虎林市校级期末)下列各数﹣2,2,﹣5,0,π,0.0123中,负数的个数有()A.1个B.2个C.3个D.4个3.(2021秋•孝感月考)如果“盈利10%”记作+10%,那么﹣4%表示()A.亏损4% B.亏损6% C.盈利4% D.少赚4%4.(2021•淄川区一模)某超市出售的三种品牌月饼袋上,分别标有质量为(500±5)g,(500±10)g,(500±20)g的字样,从中任意拿出两袋,它们的质量最多相差()A.10g B.20g C.30g D.40g5.(2009秋•宝应县校级期末)学校、家、书店,依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家的北边70米,小明同学从家出发,向北走了50米,接着又向南走了﹣20米,此时小明的位置是()A.在家B.在书店C.在学校D.在家的北边30米处二.填空题6.(2021秋•郧阳区期中)某蓄水池的标准水位记为0m,如果水面高于标准水位0.26m表示为+0.26m,那么水面低于标准水位0.5m表示为m.7.(2021秋•宜州区期中)某种零件,标明要求是Φ20±0.02mm(Φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm,该零件(填“合格”或“不合格”).8.(2020秋•荔湾区期末)如果把顺时针旋转21°记作+21°,那么逆时针旋转15°应记作.9.(2021•福建模拟)一次数学测试,如果96分为优秀,以96分为基准简记,例如106分记为+10分,那么85分应记为分.10.(2021•双柏县模拟)如果盈利80元记作+80元,那么亏损40元记作元.11.(2021秋•罗城县期末)生活中常有用正负数表示范围的情形,例如某种药品的说明书上标明保存温度是(20±2)℃,由此可知在℃范围内保存才合适.三.解答题12.(2021秋•楚雄市校级期中)小明用50元买了10支钢笔,准备以一定的价格出售,如果每支钢笔以6元的价格为标准,超过的记作正数,不足的记为负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2,1.9,0.9.(1)这10支钢笔的最高售价和最低售价各是几元?(2)当小亮卖完钢笔后是盈利还是亏损?盈利或亏损了多少元?13.(2020秋•大足区期末)2020年6月小黄到银行开户,存入了3000元钱,以后的每月都根据家里的收支情况存入一笔钱,如表为小黄从7月到12月的存款情况:月份7 8 9 10 11 12﹣400 ﹣100 +500 +300 +100 ﹣500与上一月比较/元(1)从7月到12月中,哪个月存入的钱最多?哪个月最少?(2)截止到12月,存折上共有多少元存款?14.(2021秋•深圳期中)滨海大道是我市一条东西走向的最美的景观大道.某天出租车司机李师傅从上午8:00﹣9:15在该路上运营,共连续载了十批乘客,若把第一批乘客的出发地定为原点,向东为正,向西为负,李师傅运营这十批乘客的里程表示如下(单位:千米):+8,﹣6,+3,﹣7,+8,+4,﹣9,﹣4,+3,+3;(1)将最后一批乘客送到目的地时,李师傅在原点边千米;(2)上午8:00﹣9:15李师傅开车的平均速度大约多少千米/时?15.(2021秋•达川区期中)出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”.他这天下午行车情况如下:(单位:千米:每次行车都有乘客)﹣2,+5,﹣2,﹣3,﹣2,+6请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午收到的乘客所给车费共多少元?(3)若小王的出租车每千米耗油0.3升,每升汽油6元.不计汽车的损耗,那么小王这天下午是盈利(或亏损)多少钱?16.(2021秋•射洪市期中)出租车司机李师傅某日上午8:00﹣9:20一直在某市区一条东西方向的公路上营运,共连续运载八批乘客.若规定向东为正,向西为负,李师傅营运八批乘客里程如下:(单位:千米)+8,﹣6,+3,﹣4,+8,﹣4,+4,﹣3(1)将最后一批乘客送到目的地时,李师傅位于第一批乘客出发地的什么方向?距离多少千米?(2)这时间段李师傅开车的平均速度是多少?(3)若出租车的收费标准为:起步价10元(不超过5千米),超过5千米,超过部分每千米2元.则李师傅在这期间一共收入多少元?。
第01讲 正数与负数(五类知识点+八大题型+强化训练)(学生版)2024-2025学年六年级数学上册
第01讲正数与负数(八大题型)学习目标1、了解具有相反意义的量;2、掌握正数和负数的概念及表示;3、理解有理数的概念及分类.一、具有相反意义的量①、具有相反意义的量的实例实例1 某一天的最高气温是零上5℃,最低气温是零下2℃.零上5℃表示比0℃高5℃,零下2℃表示比0℃低2℃.零上温度和零下温度是具有相反意义的量.实例2 在地形图上表示某地高度时,需要以海平面为基准.珠穆朗玛峰最高处高于海平面约8848.86 m,吐鲁番盆地最低处低于海平面约154.31m.海平面以上高度和海平面以下高度也是具有相反意义的量.②表示具有相反意义的量实例1 在表示温度时,为了区别零上温度和零下温度,通常规定在零上温度的前面添上符号“+”(读作“正”),而在零下温度的前面添上符号“-”(读作“负”)。
零上5℃,就记作+5℃,读作“正五摄氏度”;零下2℃,就记作-2℃,读作“负二摄氏度”实例2 在表示某地的海拔高度时,通常在高于海平面的高度前面添上符号“+”,而在低于海平面的高度前面添上符号“一”。
珠穆朗玛峰的海拔高度是+8848.86 m,吐鲁番盆地的艾丁湖底海拔高度-154.31m.二、正数与负数像+5、+8848.86、+3、+1.5、、+584等大于0的数,叫做正数; 像-2、-154.31、-1.5、、-584等在正数前面加“-”号的数,叫做负数.要点:(1)一个数前面的“+”“-”是这个数的性质符号, “+”常省略,但 “-”不能省略.(2)一般地,我们可以用正数和负数来表示一个问题中出现的具有相反意义的量。
但哪种为正可任意选择,我们习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.(3)0既不是正数也不是负数,它是正数和负数的分界线.三、有理数的概念像71、-12分别是正整数、负整数,它们和零都是整数;215和712是正分数,43-和59-是负分数,正分数和负分数都是分数。
我们把正整数、0、负整数统称整数.所有的整数都可以写成分母为1的分数,如133=,10=能够写成分数ab(a ,b 是整数,a ≠0)的数叫有理数。
七年级上,第一章第一讲.正负数绝对值相反数
1.1正负数【知识点一】正数和负数为了表示物体的个数或事物的顺序,产生了数1,2,3,...;为了表示“没有”,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示。
总之,数是为了满足生产和生活的需要而产生发展起来的。
思考:如何表示温度10℃和零下10℃?讨论:对于这两个温度的表示,如果还按照原来所学的数来表示,可能会让人误解。
现在我们引入另一类的数,我们称之为负数,它用来表示相反的量,符合为‘—’。
有了这类的数,我们就可以表示出思考题中的温度了。
我们把温度10℃和零下10℃分别表示为,10℃和-10℃。
正数:把大于0的数叫做正数。
正数用来表示正方向上的量,如5、2.1、100等,正数前面的符号为‘+’,通常省略不写。
负数:在正数前面加上负号“—”的数叫做负数。
负数用来表示负方向上的量,如-3、-2.3、-100等,负数前面的符合为‘-’,不能省略。
注:零既不是正数,也不是负数。
【典例精析】例1:如果规定东为正方向,如何表示向东行驶5千米和向西行驶5千米。
例2: 规定地平线上方为正,请说出下列数字表示的意义,5、0、-5。
例3:如果以你家所住的上方为正,如何表示你楼上住户的楼层,你家所在的楼层,你楼下的楼层。
【举一反三】1.请表示水位升高5.5米和下降3.6米。
(上升为正)2.下列各数中,哪些是正数?哪些是负数?1、-3.2、π、100、0、0.0001、-10003.“一个数如果不是正数,就是负数”这句话正确吗?为什么?【知识点二】有理数正整数、零和负整数统称整数,正分数和负分数统称分数,整数和分数统称有理数。
学习了负数之后,我们总结一下所学的数的类型: 正整数:如1,2,3,…; 零: 0;负整数: 如-1,-2,-3,...;正分数:如31, 722,4.5(即214);负分数: 如-21,722-,-0.3(即103-),53-.... 上述这几种类型的数,在数学上都可以一个名词来表示,即有理数。
正数与负数
正数与负数知识要点1、 正负数和0像1.6.5.100……这样的数都是正数,有时在正数前面添上......“+..”号..,如+1.+6.5+100…… 像-2.-3.4.-20……这样的数都是负数,负数前面有负号.......。
0既不是正数,也不是负数。
注意:在2+3.20-12中“+.-”表示加减运算符号;而+6.5.-20中“+.-”表示正负..性质符号。
2、 数轴规定了“方向.原点和长度单位”三要素的直线叫数轴。
-5-4-3-2-1432103、 正数.0和负数的大小比较在数轴上,所有的负数..都在0的左边..,也就是负数都比.0.小.;而正.数都在0的右.边,也 就是正数都比0.大.;负数..都比正数小...。
典型例题例1.把下列数归类。
-2.2 34 +19 0 -32 5.792 +14 -302.1正数 O 负数例2.在数轴上表示下列各数。
-2 3 -3.5 +5 例3.比较各组数的大小。
-5()-2;-12()12;-4.5()-3;-1000()0例4. 下图每格表示1米,小华刚开始的位置在0处。
(1)小华从0点向东行5米,表示为+5米,那么从0点向西行3米,表示为____米。
(2)如果小华现在+7米处,说明他是向_______行_____米。
(3)如果小华现在-8米处,说明他是向_______行_____米。
(4)如果小华从0点先向东行5米,又向西行8米,这时小华的位置在____米处。
例5.有5名同学的体重分别为:24.5千克,23千克,25千克,24千克,22.5千克。
(1)求出他们的平均体重。
(2)把他们的平均体重记为0kg,超过的记为正数,不足的记为负数。
例6.看图回答问题。
(1)上海与天津,哪个城市温度高?(2)天津与青岛,哪个城市温度高?(3)长春与天津,哪个城市温度低?低多少度?例7. 出租车司机小王某天下午的营运全是在东西走向的人民大道上行驶的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15 -3 +14 -11 +10-12 +4 -15 +16 -18(1)将最后一名乘客送到目的地时,小王距下午出车地点的距离是多少千米?(2)若汽油耗油率为x升/千米,则这天下午汽车共耗油多少升?例8. 一次体育测试中,老师对8名女生进行了仰卧起坐的测试,以能做36个为标准,超过的次数用正数表示,不足的次数用负数表示,她们8人的成绩如下:2,-3,4,-1,0,1,-5,0.(1)这8名同学实际各做了多少个?(2)她们的达标率是多少?1. 填空。
七年级数学上册1.1正数和负数《正数和负数》典型例题素材新人教版
《正数和负数》典型例题
例1.请写出10个正数和10个负数分别填入下面的椭圆框内:
分析:要求学生知道正数和负数的概念.
解:略.
例2.“一个数,如果不是正数,必定就是负数.”这句话对不对?为什么?
解:不对,还有零.
例3.A地海拔高度是70m,B地海拔高度是30m,C地海拔高度是-10m,D 地海拔高度是-30m.哪个地方最高?哪个地方最低?最高的地方比最低的地方高多少?
分析根据题意,海拔高度是高于海平面为正,低于海平面的为负,所以-10m是低于海平面10米,-30m 是低于海平面30米.画出示意图即可求解.
解:由图知,A地最高,D地最低.
所以,A地与D地的高度差为70+30=100(m).
所以,最高的地方比最低的地方高100米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正数和负数典例解析
山东 胡伟
例1.(1)在一次知识竞赛中,如果加10分用+10表示,那么扣20分表示为 分. (2)设前进为正,前进20米记作 米,后退15米记作 米,原地不动记作 米,前进-12米表示 12米.
(3)在图纸上零件的加工尺寸003.025±(mm),甲工人加工出来的零件尺寸为25.002mm ,乙工人加工出来的零件尺寸为24.995mm , 工人加工出来的零件合格,加工出来的零件允许最小尺寸是 mm.
(4)钟表的指针逆时针方向旋转20°记作 ,顺时针方向旋转30°记作 . 解析:(1)加分与扣分意义相反,加分用正表示,则扣分用负表示;(2)规定前进为正,则后退为负,原地不动记作0米,前进-12米,实际意义是后退12米;(3)003.025±表示25+0.003=25.003,25-0.003=24.997.加工尺寸003.025±mm ,指的是尺寸应在24.997~25.003mm 之间,故甲工人加工出来的零件合格,加工出来的零件允许最小尺寸是24.997mm.;(4)本题没有规定谁正谁负,应按常规来确定正、负.通常规定逆时针方向为正,顺时针方向为负.
答案:(1)-20;(2)-15,0,后退;(3)甲,24.997;(4)20°,-30°.
说明:生活中通常用正负数来表示具有相反意义的量,在具体应用时,一般规定其中的一个量为正,则另一个具有相反意义的量就为负.如果题目中没有规定,则应遵循生活习惯的规定.
拓展练习1:填空:
(1)如果收入50元记作50元,那么支出30元记作 ,-80元表示 . (2)仪表上的指针顺时针方向旋转45°记作-45°,那么逆时针方向旋转50°则记作 . (3)某天气温为零下6度至零上10度,可以记作 ℃至 ℃. (4)比海平面高150m 的地方,它的海拔高度记做 .
例2.一面关于0的一些说法:①0是最小的正数;②0是最小的非负数;③0既不是正数也不是负数;④0既不是奇数也不是偶数;⑤是最小的自然数.其中正确的说法的个数是( ) A.0 B.1 C.2 D.3
解析:大于0的数是正数,小于0的数是负数,0既不是正数也不是负数,它只是正数和负数的分界线,故①不正确.根据《中华人民共和国国家标准》(BG3100~3102-93)可知0是自然数.所以第②③⑤都是正确的.0能被2整除,它是偶数,因此④不正确.故正确的答案应是②③⑤,选D.
说明:引进负数后,数的范围扩大,熟悉和理解数的分类,特别是掌握与0有关的概念的是正确解答此类问题的关键.
拓展练习2:
下列各数中,哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数?
-9,18,-
3
1,-2.17,0.58,-8884,0,-15%.
例3.某校对七年级男生进行俯卧撑测试,有8名学生的成绩如下表所示:
请规定一个有意义的量为正,并用正、负数重新填上上表.
解析:此处要求我们确定一个合适的标准,超出为正,不足为负.
答案:以5个为标准,按习惯我们规定:超出为正,不足为负,填表如下:
便,注意在具体选取标准时,要整体考虑这组数值的特点,不要过大,也不要过小,要使其便于观察和运算为标准.
拓展练习3:
河务局防汛办公室为了能够更好的利用水资源,对一条河流的水位作了记录.记录的正常水位是28米,另有6次的记录结果分别为+2.1,0,-1.2,-3,-2.0,+1,这6次记录的实际水位分别是 . 例4.观察下面一组数据,探求其规律:
2
1-
,
3
2,4
3-
,
5
4,6
5-
,
7
6,…
(1) 填出第7、8、9项的三个数;
(2) 第2004个数是什么?
(3) 如果这一组数据无限排列下去,与哪两个数越来越接近?
解析:要解决此题,关键是研究其规律.经观察比较我们会发现,这一组数据的分母分别为2,3,4,…,分子相应地为1,2,3,…,并且奇数项为负,偶数项为正.找出这些特征后,此题就不难解决了. 答案:(1)8
7-
,
9
8,10
9-
;(2)
2005
2004;(3)-1和1.
说明:解决此类问题一定不要盲目的进行运算,只有把握解题技巧,发现其内在的特点,找出规律,才是解题的关键.
拓展练习4:
观察下面排列的每一列数,研究它的排列有什么规律?并填出空格上的数. (1)1,-2,1,-2,1,-2, , , ,… (2)-2,4,-6,8,-10, , , ,… (3)1,0,-1,1,0,-1, , , ,… 拓展练习题答案:
1.答案:(1)-30元,支出80元;(2)50°;(3)-6℃至10℃;(4)150m.
2.答案:正整数有18;负整数有:-9,-8884;正分数有:0.58;负分数有:-3
1,-2.17,
-15%.
3.答案:30.1米,28米,26.8米,25米,26米,29米.
4. 答案:(1)1,-2,1;(2)12,-14,16;(3)1,0,-1.。