遗传算法程序
遗传算法的原理及MATLAB程序实现.

1 遗传算法的原理1.1 遗传算法的基本思想遗传算法(genetic algorithms,GA)是一种基于自然选择和基因遗传学原理,借鉴了生物进化优胜劣汰的自然选择机理和生物界繁衍进化的基因重组、突变的遗传机制的全局自适应概率搜索算法。
遗传算法是从一组随机产生的初始解(种群)开始,这个种群由经过基因编码的一定数量的个体组成,每个个体实际上是染色体带有特征的实体。
染色体作为遗传物质的主要载体,其内部表现(即基因型)是某种基因组合,它决定了个体的外部表现。
因此,从一开始就需要实现从表现型到基因型的映射,即编码工作。
初始种群产生后,按照优胜劣汰的原理,逐代演化产生出越来越好的近似解。
在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。
这个过程将导致种群像自然进化一样,后代种群比前代更加适应环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。
计算开始时,将实际问题的变量进行编码形成染色体,随机产生一定数目的个体,即种群,并计算每个个体的适应度值,然后通过终止条件判断该初始解是否是最优解,若是则停止计算输出结果,若不是则通过遗传算子操作产生新的一代种群,回到计算群体中每个个体的适应度值的部分,然后转到终止条件判断。
这一过程循环执行,直到满足优化准则,最终产生问题的最优解。
图1-1给出了遗传算法的基本过程。
1.2 遗传算法的特点1.2.1 遗传算法的优点遗传算法具有十分强的鲁棒性,比起传统优化方法,遗传算法有如下优点:1. 遗传算法以控制变量的编码作为运算对象。
传统的优化算法往往直接利用控制变量的实际值的本身来进行优化运算,但遗传算法不是直接以控制变量的值,而是以控制变量的特定形式的编码为运算对象。
这种对控制变量的编码处理方式,可以模仿自然界中生物的遗传和进化等机理,也使得我们可以方便地处理各种变量和应用遗传操作算子。
2. 遗传算法具有内在的本质并行性。
用MATLAB实现遗传算法程序

用MATLAB实现遗传算法程序一、本文概述遗传算法(Genetic Algorithms,GA)是一种模拟自然界生物进化过程的优化搜索算法,它通过模拟自然选择和遗传学机制,如选择、交叉、变异等,来寻找问题的最优解。
由于其全局搜索能力强、鲁棒性好以及易于实现并行化等优点,遗传算法在多个领域得到了广泛的应用,包括函数优化、机器学习、神经网络训练、组合优化等。
本文旨在介绍如何使用MATLAB实现遗传算法程序。
MATLAB作为一种强大的数学计算和编程工具,具有直观易用的图形界面和丰富的函数库,非常适合用于遗传算法的实现。
我们将从基本的遗传算法原理出发,逐步介绍如何在MATLAB中编写遗传算法程序,包括如何定义问题、编码、初始化种群、选择操作、交叉操作和变异操作等。
通过本文的学习,读者将能够掌握遗传算法的基本原理和MATLAB编程技巧,学会如何使用MATLAB实现遗传算法程序,并能够在实际问题中应用遗传算法求解最优解。
二、遗传算法基础遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传学机制的优化搜索算法。
它借鉴了生物进化中的遗传、交叉、变异等机制,通过模拟这些自然过程来寻找问题的最优解。
遗传算法的核心思想是将问题的解表示为“染色体”,即一组编码,然后通过模拟自然选择、交叉和变异等过程,逐步迭代搜索出最优解。
在遗传算法中,通常将问题的解表示为一个二进制字符串,每个字符串代表一个个体(Individual)。
每个个体都有一定的适应度(Fitness),适应度越高的个体在下一代中生存下来的概率越大。
通过选择(Selection)、交叉(Crossover)和变异(Mutation)等操作,生成新一代的个体,并重复这一过程,直到找到满足条件的最优解或达到预定的迭代次数。
选择操作是根据个体的适应度,选择出适应度较高的个体作为父母,参与下一代的生成。
常见的选择算法有轮盘赌选择(Roulette Wheel Selection)、锦标赛选择(Tournament Selection)等。
遗传算法简单程序

该程序是遗传算法优化BP神经网络函数极值寻优:%% 该代码为基于神经网络遗传算法的系统极值寻优%% 清空环境变量clcclear%% 初始化遗传算法参数%初始化参数maxgen=100; %进化代数,即迭代次数sizepop=20; %种群规模pcross=[0.4]; %交叉概率选择,0和1之间pmutation=[0.2]; %变异概率选择,0和1之间lenchrom=[1 1]; %每个变量的字串长度,如果是浮点变量,则长度都为1 bound=[-5 5;-5 5]; %数据范围individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体avgfitness=[]; %每一代种群的平均适应度bestfitness=[]; %每一代种群的最佳适应度bestchrom=[]; %适应度最好的染色体%% 初始化种群计算适应度值% 初始化种群for i=1:sizepop%随机产生一个种群individuals.chrom(i,:)=Code(lenchrom,bound);x=individuals.chrom(i,:);%计算适应度individuals.fitness(i)=fun(x); %染色体的适应度end%找最好的染色体[bestfitness bestindex]=min(individuals.fitness);bestchrom=individuals.chrom(bestindex,:); %最好的染色体avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度% 记录每一代进化中最好的适应度和平均适应度trace=[avgfitness bestfitness];%% 迭代寻优% 进化开始for i=1:maxgeni% 选择individuals=Select(individuals,sizepop);avgfitness=sum(individuals.fitness)/sizepop;%交叉individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);% 变异individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,[i maxgen],bound);% 计算适应度for j=1:sizepopx=individuals.chrom(j,:); %解码individuals.fitness(j)=fun(x);end%找到最小和最大适应度的染色体及它们在种群中的位置[newbestfitness,newbestindex]=min(individuals.fitness);[worestfitness,worestindex]=max(individuals.fitness);% 代替上一次进化中最好的染色体if bestfitness>newbestfitnessbestfitness=newbestfitness;bestchrom=individuals.chrom(newbestindex,:);endindividuals.chrom(worestindex,:)=bestchrom;individuals.fitness(worestindex)=bestfitness;avgfitness=sum(individuals.fitness)/sizepop;trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度end%进化结束%% 结果分析[r c]=size(trace);plot([1:r]',trace(:,2),'r-');title('适应度曲线','fontsize',12);xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);axis([0,100,0,1])disp('适应度变量');x=bestchrom;% 窗口显示disp([bestfitness x]);。
变异概率自适应调整的遗传算法GA程序

变异概率自适应调整的遗传算法算例一:优化函数:()()*sin 10*2,[1,2]f x x x x =+∈-+A.变异概率自适应调整公式:B.遗传算法参数 (1)种群规模设为80,遗传算子分别为轮盘法选择,多点点交叉和多点自适应变异;(2)交叉概率0.7,变异概率0.01;(3)最大进化代数为100代,保优操作。
C.程序框图图 1 程序流程框图()()12max 1max 1,,m m m avg avg m m avg P P f f P f f f f P P f f --⎧-≥⎪-=⎨⎪<⎩ 开始 确定实际问题参数对参数集进行编码 初始化群体P(t) 群体P(t+1)(更新) 位串解码得参数 计算目标函数值 函数值向适应值映射 适应值调整 选择、交叉、自适应变异群体评价 遗传操作 满足停止准则 结束二:程序及运行结果(1)%变异概率自适应调整的GA程序%优化函数为f=x*sin(10*x)+2,其中,-1=<x<=2%编码长度为12位%种群规模设为80,遗传算子分别为轮盘法选择,多点点交叉和多点自适应变异。
%交叉概率0.7,变异概率0.01%最大进化代数为100代,保优操作。
%**********************%主函数*****************************************function main()global chrom lchrom oldpop newpop varible fitness popsize sumfitness %定义全局变量global pcross pmutation temp bestfit maxfit gen bestgenglobal maxgen po pp mp nplchrom=12; %染色体长度popsize=80; %种群大小pcross=0.7; %交叉概率pmutation=0.01; %变异概率maxgen=100; %最大代数po=0.1; %淘汰概率pp=0.1; %保护概率mp=floor(pp*popsize); %保护的个数np=floor(po*popsize); %淘汰的个数initpop; % 初始化种群for gen=1:maxgenobjfun; %计算适应度值pp_po; %执行保优操作select; %选择操作selfmutation; %自变异操作crossover; %交叉操作endbestbestfit % 最佳个体适应度值输出bestgen % 最佳个体所在代数输出figuregen=1:maxgen;plot(gen,maxfit(1,gen)); % 进化曲线hold on;plot(bestgen,bestfit);xlabel('Generation');ylabel('Fitness');%********************** 产生初始种群 ************************************ function initpop()global lchrom oldpop popsize chromfor i=1:popsizechrom=rand(1,lchrom); % lchrom=12 染色体长度for j=1:lchromif chrom(1,j)<0.5chrom(1,j)=0;elsechrom(1,j)=1;endendoldpop(i,1:lchrom)=chrom;end%************************%计算适应度值************************************ function objfun()global lchrom oldpop fitness popsize chrom maxfit gen varible avgfiness savgfitness % a=0;b=3;a=0;b=10;for i=1:popsizechrom=oldpop(i,:);c=decimal(chrom);varible(1,i)=a+c*(b-a)/(2.^lchrom-1); %对应变量值fitness(1,i)=varible(1,i)*sin(10*varible(1,i))+2;avgfitness=sum(fitness)/popsize;lsort; % 个体排序maxfit(1,gen)=max(fitness); %求本代中的最大适应度值maxfit%************************二进制转十进制********************************** function c=decimal(chrom)global lchrom popsizec=0;for j=1:lchromc=c+chrom(1,j)*2.^(lchrom-j);end%************************* 个体从小到大排序 ************************ function lsort()global popsize fitness oldpopfor i=1:popsizej=i+1;while j<=popsizeif fitness(1,i)>fitness(1,j)tf=fitness(1,i); % 适应度值tc=oldpop(i,:); % 基因代码fitness(1,i)=fitness(1,j); % 适应度值互换oldpop(i,:)=oldpop(j,:); % 基因代码互换fitnescs(1,j)=tf;oldpop(j,:)=tc;endj=j+1;endend%*************************保优操作*****************************function pp_po()global popsize oldpop npi=np+1; % np=floor(po*popsize); %淘汰的个数npwhile i<=popsize %将(np+1)~popsize的个体放在toldpop中,共(popsize-np)个 toldpop(j,:)=oldpop(i,:);j=j+1;i=i+1;endfor i=1:(popsize-np) %从小到大顺序排列,将前面np个淘汰oldpop(i,:)=toldpop(i,:); % 适应度是否也要互换?end%*************************转轮法选择操作********************************** function select()global fitness popsize sumfitness oldpop temp mp npsumfitness=0; %个体适应度之和for i=1:(popsize-np-mp) % 仅计算(popsize-np-mp)个个体的选择概率sumfitness=sumfitness+fitness(1,i);endfor i=1:(popsize-mp-np) % 仅计算(popsize-np-mp)个个体的选择概率p(1,i)=fitness(1,i)/sumfitness; % 个体染色体的选择概率endq=cumsum(p); % 个体染色体的累积概率(内部函数),共(popsize-np-mp)个b=sort(rand(1,(popsize-mp))); % 产生(popsize-mp)个随机数,并按升序排列。
遗传算法matlab程序代码

遗传算法matlab程序代码
遗传算法(GA)是一种用于求解优化问题的算法,其主要思想是模拟
生物进化过程中的“选择、交叉、变异”操作,通过模拟这些操作,来寻
找最优解。
Matlab自带了GA算法工具箱,可以直接调用来实现遗传算法。
以下是遗传算法Matlab程序代码示例:
1.初始化
首先定义GA需要优化的目标函数f,以及GA算法的相关参数,如种
群大小、迭代次数、交叉概率、变异概率等,如下所示:
options = gaoptimset('PopulationSize',10,...
'Generations',50,...
2.运行遗传算法
运行GA算法时,需要调用MATLAB自带的ga函数,将目标函数、问
题的维度、上下界、约束条件和算法相关参数作为输入参数。
其中,上下
界和约束条件用于限制空间,防止到无效解。
代码如下:
[某,fval,reason,output,population] = ga(f,2,[],[],[],[],[-10,-10],[10,10],[],options);
3.结果分析
最后,将结果可视化并输出,可以使用Matlab的plot函数绘制出目
标函数的值随迭代次数的变化,如下所示:
plot(output.generations,output.bestf)
某label('Generation')
ylabel('Best function value')
总之,Matlab提供了方便易用的GA算法工具箱,开发者只需要根据具体问题定义好目标函数和相关参数,就能够在短时间内快速实现遗传算法。
2020年遗传算法matlab程序实例精编版

%-----------------------------------------------%---------------------------------------------------遗传算法程序(一):说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作!function [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation)% Finds a maximum of a function of several variables.% fmaxga solves problems of the form:% max F(X) subject to: LB <= X <= UB% BestPop - 最优的群体即为最优的染色体群% Trace - 最佳染色体所对应的目标函数值% FUN - 目标函数% LB - 自变量下限% UB - 自变量上限% eranum - 种群的代数,取100--1000(默认200)% popsize - 每一代种群的规模;此可取50--200(默认100)% pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8)% pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1)% pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2)% options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编%码,option(2)设定求解精度(默认1e-4)%% ------------------------------------------------------------------------T1=clock;if nargin<3, error('FMAXGA requires at least three input arguments'); endif nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];endif nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];endif nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];endif nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];endif nargin==7, pInversion=0.15;options=[0 1e-4];endif find((LB-UB)>0)error('数据输入错误,请重新输入(LB<UB):');ends=sprintf('程序运行需要约%.4f 秒钟时间,请稍等......',(eranum*popsize/1000));disp(s);global m n NewPop children1 children2 VarNumbounds=[LB;UB]';bits=[];VarNum=size(bounds,1);precision=options(2);%由求解精度确定二进制编码长度bits=ceil(log2((bounds(:,2)-bounds(:,1))' ./ precision));%由设定精度划分区间[Pop]=InitPopGray(popsize,bits);%初始化种群[m,n]=size(Pop);NewPop=zeros(m,n);children1=zeros(1,n);children2=zeros(1,n);pm0=pMutation;BestPop=zeros(eranum,n);%分配初始解空间BestPop,TraceTrace=zeros(eranum,length(bits)+1);i=1;while i<=eranumfor j=1:mvalue(j)=feval(FUN(1,:),(b2f(Pop(j,:),bounds,bits)));%计算适应度end[MaxValue,Index]=max(value);BestPop(i,:)=Pop(Index,:);Trace(i,1)=MaxValue;Trace(i,(2:length(bits)+1))=b2f(BestPop(i,:),bounds,bits);[selectpop]=NonlinearRankSelect(FUN,Pop,bounds,bits);%非线性排名选择[CrossOverPop]=CrossOver(selectpop,pCross,round(unidrnd(eranum-i)/eranum));%采用多点交叉和均匀交叉,且逐步增大均匀交叉的概率%round(unidrnd(eranum-i)/eranum)[MutationPop]=Mutation(CrossOverPop,pMutation,VarNum);%变异[InversionPop]=Inversion(MutationPop,pInversion);%倒位Pop=InversionPop;%更新pMutation=pm0+(i^4)*(pCross/3-pm0)/(eranum^4);%随着种群向前进化,逐步增大变异率至1/2交叉率p(i)=pMutation;i=i+1;endt=1:eranum;plot(t,Trace(:,1)');title('函数优化的遗传算法');xlabel('进化世代数(eranum)');ylabel('每一代最优适应度(maxfitness)');[MaxFval,I]=max(Trace(:,1));X=Trace(I,(2:length(bits)+1));hold on; plot(I,MaxFval,'*');text(I+5,MaxFval,['FMAX=' num2str(MaxFval)]);str1=sprintf ('进化到%d 代,自变量为%s 时,得本次求解的最优值%f\n对应染色体是:%s',I,num2str(X),MaxFval,num2str(BestPop(I,:)));disp(str1);%figure(2);plot(t,p);%绘制变异值增大过程T2=clock;elapsed_time=T2-T1;if elapsed_time(6)<0elapsed_time(6)=elapsed_time(6)+60; elapsed_time(5)=elapsed_time(5)-1;endif elapsed_time(5)<0elapsed_time(5)=elapsed_time(5)+60;elapsed_time(4)=elapsed_time(4)-1;end %像这种程序当然不考虑运行上小时啦str2=sprintf('程序运行耗时%d 小时%d 分钟%.4f 秒',elapsed_time(4),elapsed_time(5),elapsed_time(6));disp(str2);%初始化种群%采用二进制Gray编码,其目的是为了克服二进制编码的Hamming悬崖缺点function [initpop]=InitPopGray(popsize,bits)len=sum(bits);initpop=zeros(popsize,len);%The whole zero encoding individualfor i=2:popsize-1pop=round(rand(1,len));pop=mod(([0 pop]+[pop 0]),2);%i=1时,b(1)=a(1);i>1时,b(i)=mod(a(i-1)+a(i),2)%其中原二进制串:a(1)a(2)...a(n),Gray串:b(1)b(2)...b(n)initpop(i,:)=pop(1:end-1);endinitpop(popsize,:)=ones(1,len);%The whole one encoding individual%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%解码function [fval] = b2f(bval,bounds,bits)% fval - 表征各变量的十进制数% bval - 表征各变量的二进制编码串% bounds - 各变量的取值范围% bits - 各变量的二进制编码长度scale=(bounds(:,2)-bounds(:,1))'./(2.^bits-1); %The range of the variablesnumV=size(bounds,1);cs=[0 cumsum(bits)];for i=1:numVa=bval((cs(i)+1):cs(i+1));fval(i)=sum(2.^(size(a,2)-1:-1:0).*a)*scale(i)+bounds(i,1);end%选择操作%采用基于轮盘赌法的非线性排名选择%各个体成员按适应值从大到小分配选择概率:%P(i)=(q/1-(1-q)^n)*(1-q)^i, 其中P(0)>P(1)>...>P(n), sum(P(i))=1function [selectpop]=NonlinearRankSelect(FUN,pop,bounds,bits)global m nselectpop=zeros(m,n);fit=zeros(m,1);for i=1:mfit(i)=feval(FUN(1,:),(b2f(pop(i,:),bounds,bits)));%以函数值为适应值做排名依据endselectprob=fit/sum(fit);%计算各个体相对适应度(0,1)q=max(selectprob);%选择最优的概率x=zeros(m,2);x(:,1)=[m:-1:1]';[y x(:,2)]=sort(selectprob);r=q/(1-(1-q)^m);%标准分布基值newfit(x(:,2))=r*(1-q).^(x(:,1)-1);%生成选择概率newfit=cumsum(newfit);%计算各选择概率之和rNums=sort(rand(m,1));fitIn=1;newIn=1;while newIn<=mif rNums(newIn)<newfit(fitIn)selectpop(newIn,:)=pop(fitIn,:);newIn=newIn+1;elsefitIn=fitIn+1;endend%交叉操作function [NewPop]=CrossOver(OldPop,pCross,opts)%OldPop为父代种群,pcross为交叉概率global m n NewPopr=rand(1,m);y1=find(r<pCross);y2=find(r>=pCross);len=length(y1);if len>2&mod(len,2)==1%如果用来进行交叉的染色体的条数为奇数,将其调整为偶数y2(length(y2)+1)=y1(len);y1(len)=[];endif length(y1)>=2for i=0:2:length(y1)-2if opts==0[NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=EqualCrossOver(OldPop(y1(i+1),:),OldPop(y1(i+2),:));else[NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=MultiPointCross(OldPop(y1(i+1),:),OldPop(y1(i+2),:));endendendNewPop(y2,:)=OldPop(y2,:);%采用均匀交叉function [children1,children2]=EqualCrossOver(parent1,parent2)global n children1 children2hidecode=round(rand(1,n));%随机生成掩码crossposition=find(hidecode==1);holdposition=find(hidecode==0);children1(crossposition)=parent1(crossposition);%掩码为1,父1为子1提供基因children1(holdposition)=parent2(holdposition);%掩码为0,父2为子1提供基因children2(crossposition)=parent2(crossposition);%掩码为1,父2为子2提供基因children2(holdposition)=parent1(holdposition);%掩码为0,父1为子2提供基因%采用多点交叉,交叉点数由变量数决定function [Children1,Children2]=MultiPointCross(Parent1,Parent2)global n Children1 Children2 VarNumChildren1=Parent1;Children2=Parent2;Points=sort(unidrnd(n,1,2*VarNum));for i=1:VarNumChildren1(Points(2*i-1):Points(2*i))=Parent2(Points(2*i-1):Points(2*i));Children2(Points(2*i-1):Points(2*i))=Parent1(Points(2*i-1):Points(2*i));end%变异操作function [NewPop]=Mutation(OldPop,pMutation,VarNum)global m n NewPopr=rand(1,m);position=find(r<=pMutation);len=length(position);if len>=1for i=1:lenk=unidrnd(n,1,VarNum); %设置变异点数,一般设置1点for j=1:length(k)if OldPop(position(i),k(j))==1OldPop(position(i),k(j))=0;elseOldPop(position(i),k(j))=1;endendendendNewPop=OldPop;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%倒位操作function [NewPop]=Inversion(OldPop,pInversion)global m n NewPopNewPop=OldPop;r=rand(1,m);PopIn=find(r<=pInversion);len=length(PopIn);if len>=1for i=1:lend=sort(unidrnd(n,1,2));if d(1)~=1&d(2)~=nNewPop(PopIn(i),1:d(1)-1)=OldPop(PopIn(i),1:d(1)-1);NewPop(PopIn(i),d(1):d(2))=OldPop(PopIn(i),d(2):-1:d(1));NewPop(PopIn(i),d(2)+1:n)=OldPop(PopIn(i),d(2)+1:n);endendend遗传算法程序(二):function youhuafunD=code;N=50; % Tunablemaxgen=50; % Tunablecrossrate=0.5; %Tunablemuterate=0.08; %Tunablegeneration=1;num = length(D);fatherrand=randint(num,N,3);score = zeros(maxgen,N);while generation<=maxgenind=randperm(N-2)+2; % 随机配对交叉A=fatherrand(:,ind(1:(N-2)/2));B=fatherrand(:,ind((N-2)/2+1:end));% 多点交叉rnd=rand(num,(N-2)/2);ind=rnd tmp=A(ind);A(ind)=B(ind);B(ind)=tmp;% % 两点交叉% for kk=1:(N-2)/2% rndtmp=randint(1,1,num)+1;% tmp=A(1:rndtmp,kk);% A(1:rndtmp,kk)=B(1:rndtmp,kk);% B(1:rndtmp,kk)=tmp;% endfatherrand=[fatherrand(:,1:2),A,B];% 变异rnd=rand(num,N);ind=rnd [m,n]=size(ind);tmp=randint(m,n,2)+1;tmp(:,1:2)=0;fatherrand=tmp+fatherrand;fatherrand=mod(fatherrand,3);% fatherrand(ind)=tmp;%评价、选择scoreN=scorefun(fatherrand,D);% 求得N个个体的评价函数score(generation,:)=scoreN;[scoreSort,scoreind]=sort(scoreN);sumscore=cumsum(scoreSort);sumscore=sumscore./sumscore(end);childind(1:2)=scoreind(end-1:end);for k=3:Ntmprnd=rand;tmpind=tmprnd difind=[0,diff(tmpind)];if ~any(difind)difind(1)=1;endchildind(k)=scoreind(logical(difind));endfatherrand=fatherrand(:,childind);generation=generation+1;end% scoremaxV=max(score,[],2);minV=11*300-maxV;plot(minV,'*');title('各代的目标函数值');F4=D(:,4);FF4=F4-fatherrand(:,1);FF4=max(FF4,1);D(:,5)=FF4;save DData Dfunction D=codeload youhua.mat% properties F2 and F3F1=A(:,1);F2=A(:,2);F3=A(:,3);if (max(F2)>1450)||(min(F2)<=900)error('DATA property F2 exceed it''s range (900,1450]')end% get group property F1 of data, according to F2 valueF4=zeros(size(F1));for ite=11:-1:1index=find(F2<=900+ite*50);F4(index)=ite;endD=[F1,F2,F3,F4];function ScoreN=scorefun(fatherrand,D)F3=D(:,3);F4=D(:,4);N=size(fatherrand,2);FF4=F4*ones(1,N);FF4rnd=FF4-fatherrand;FF4rnd=max(FF4rnd,1);ScoreN=ones(1,N)*300*11;% 这里有待优化for k=1:NFF4k=FF4rnd(:,k);for ite=1:11F0index=find(FF4k==ite);if ~isempty(F0index)tmpMat=F3(F0index);tmpSco=sum(tmpMat);ScoreBin(ite)=mod(tmpSco,300);endendScorek(k)=sum(ScoreBin);endScoreN=ScoreN-Scorek;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%遗传算法程序(三):%IAGAfunction best=gaclearMAX_gen=200; %最大迭代步数best.max_f=0; %当前最大的适应度STOP_f=14.5; %停止循环的适应度RANGE=[0 255]; %初始取值范围[0 255]SPEEDUP_INTER=5; %进入加速迭代的间隔advance_k=0; %优化的次数popus=init; %初始化for gen=1:MAX_genfitness=fit(popus,RANGE); %求适应度f=fitness.f;picked=choose(popus,fitness); %选择popus=intercross(popus,picked); %杂交popus=aberrance(popus,picked); %变异if max(f)>best.max_fadvance_k=advance_k+1;x_better(advance_k)=fitness.x;best.max_f=max(f);best.popus=popus;best.x=fitness.x;endif mod(advance_k,SPEEDUP_INTER)==0RANGE=minmax(x_better);RANGEadvance=0;endendreturn;function popus=init%初始化M=50;%种群个体数目N=30;%编码长度popus=round(rand(M,N));return;function fitness=fit(popus,RANGE)%求适应度[M,N]=size(popus);fitness=zeros(M,1);%适应度f=zeros(M,1);%函数值A=RANGE(1);B=RANGE(2);%初始取值范围[0 255]for m=1:Mx=0;for n=1:Nx=x+popus(m,n)*(2^(n-1));endx=x*((B-A)/(2^N))+A;for k=1:5f(m,1)=f(m,1)-(k*sin((k+1)*x+k));endendf_std=(f-min(f))./(max(f)-min(f));%函数值标准化fitness.f=f;fitness.f_std=f_std;fitness.x=x;return;function picked=choose(popus,fitness)%选择f=fitness.f;f_std=fitness.f_std;[M,N]=size(popus);choose_N=3; %选择choose_N对双亲picked=zeros(choose_N,2); %记录选择好的双亲p=zeros(M,1); %选择概率d_order=zeros(M,1);%把父代个体按适应度从大到小排序f_t=sort(f,'descend');%将适应度按降序排列for k=1:Mx=find(f==f_t(k));%降序排列的个体序号d_order(k)=x(1);endfor m=1:Mpopus_t(m,:)=popus(d_order(m),:);endpopus=popus_t;f=f_t;p=f_std./sum(f_std); %选择概率c_p=cumsum(p)'; %累积概率for cn=1:choose_Npicked(cn,1)=roulette(c_p); %轮盘赌picked(cn,2)=roulette(c_p); %轮盘赌popus=intercross(popus,picked(cn,:));%杂交endpopus=aberrance(popus,picked);%变异return;function popus=intercross(popus,picked) %杂交[M_p,N_p]=size(picked);[M,N]=size(popus);for cn=1:M_pp(1)=ceil(rand*N);%生成杂交位置p(2)=ceil(rand*N);p=sort(p);t=popus(picked(cn,1),p(1):p(2));popus(picked(cn,1),p(1):p(2))=popus(picked(cn,2),p(1):p(2));popus(picked(cn,2),p(1):p(2))=t;endreturn;function popus=aberrance(popus,picked) %变异P_a=0.05;%变异概率[M,N]=size(popus);[M_p,N_p]=size(picked);U=rand(1,2);for kp=1:M_pif U(2)>=P_a %如果大于变异概率,就不变异continue;endif U(1)>=0.5a=picked(kp,1);elsea=picked(kp,2);endp(1)=ceil(rand*N);%生成变异位置p(2)=ceil(rand*N);if popus(a,p(1))==1%0 1变换popus(a,p(1))=0;elsepopus(a,p(1))=1;endif popus(a,p(2))==1popus(a,p(2))=0;elsepopus(a,p(2))=1;endendreturn;function picked=roulette(c_p) %轮盘赌[M,N]=size(c_p);M=max([M N]);U=rand;if U<c_p(1)picked=1;return;endfor m=1:(M-1)if U>c_p(m) & U<c_p(m+1)picked=m+1;break;endend全方位的两点杂交、两点变异的改进的加速遗传算法(IAGA)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%。
python蒙卡遗传算法
python蒙卡遗传算法Python蒙特卡洛遗传算法介绍蒙特卡洛遗传算法(Monte Carlo Genetic Algorithm)是一种基于概率和随机性的优化算法。
它结合了蒙特卡洛模拟和遗传算法的思想,用于解决复杂的优化问题。
Python作为一种强大的编程语言,提供了丰富的库和工具,使得实现蒙特卡洛遗传算法变得简单且高效。
基本原理蒙特卡洛遗传算法通过模拟随机事件来估计问题的最优解。
它使用遗传算法中的进化过程来搜索解空间,并使用蒙特卡洛模拟来评估每个个体的适应度。
1. 初始化种群:随机生成初始种群,其中每个个体代表一个可能的解。
2. 评估适应度:对每个个体进行适应度评估,即计算其在问题空间中的目标函数值。
3. 选择操作:根据适应度值选择父代个体进行交叉和变异操作。
4. 交叉操作:对选定的父代个体进行交叉操作,生成子代个体。
5. 变异操作:对子代个体进行变异操作,引入新的基因组合。
6. 更新种群:将子代个体与父代个体合并,形成新的种群。
7. 重复步骤2-6,直到满足停止条件(达到最大迭代次数或找到满意的解)。
Python实现下面是一个简单的Python代码示例,演示了如何使用蒙特卡洛遗传算法解决一个简单的优化问题。
```pythonimport random# 目标函数:计算x^2 + y^2 的最小值def objective_function(x, y):return x**2 + y**2# 初始化种群def initialize_population(population_size):population = []for _ in range(population_size):x = random.uniform(-10, 10)y = random.uniform(-10, 10)population.append((x, y))return population# 计算适应度值def calculate_fitness(population):fitness_values = []for individual in population:x, y = individualfitness_values.append(objective_function(x, y))return fitness_values# 选择操作:轮盘赌选择def selection(population, fitness_values):total_fitness = sum(fitness_values)probabilities = [fitness / total_fitness for fitness infitness_values]selected_population = []for _ in range(len(population)):selected_individual = random.choices(population, probabilities)[0]selected_population.append(selected_individual)return selected_population# 交叉操作:单点交叉def crossover(parent1, parent2):crossover_point = random.randint(1, len(parent1) - 1)child1 = parent1[:crossover_point] + parent2[crossover_point:] child2 = parent2[:crossover_point] + parent1[crossover_point:] return child1, child2# 变异操作:随机变异def mutation(individual, mutation_rate):mutated_individual = []for gene in individual:if random.random() < mutation_rate:mutated_gene = random.uniform(-10, 10)mutated_individual.append(mutated_gene)else:mutated_individual.append(gene)return tuple(mutated_individual)# 更新种群def update_population(selected_population, population_size, mutation_rate):new_population = []while len(new_population) < population_size:parent1, parent2 = random.sample(selected_population, 2) child1, child2 = crossover(parent1, parent2)mutated_child1 = mutation(child1, mutation_rate)mutated_child2 = mutation(child2, mutation_rate)new_population.extend([mutated_child1, mutated_child2]) return new_population[:population_size]# 主函数def main():population_size = 100max_iterations = 1000mutation_rate = 0.01population = initialize_population(population_size)for iteration in range(max_iterations):fitness_values = calculate_fitness(population)selected_population = selection(population, fitness_values) population = update_population(selected_population, population_size, mutation_rate)best_solution = min(population, key=lambda individual: objective_function(*individual))print("Best solution:", best_solution)```总结蒙特卡洛遗传算法是一种强大的优化算法,通过结合蒙特卡洛模拟和遗传算法的思想,可以解决各种复杂的优化问题。
遗传算法及其MATLAB程序代码
遗传算法及其MATLAB程序代码遗传算法及其MATLAB实现主要参考书:MATLAB 6.5 辅助优化计算与设计飞思科技产品研发中⼼编著电⼦⼯业出版社2003.1遗传算法及其应⽤陈国良等编著⼈民邮电出版社1996.6主要内容:遗传算法简介遗传算法的MATLAB实现应⽤举例在⼯业⼯程中,许多最优化问题性质⼗分复杂,很难⽤传统的优化⽅法来求解.⾃1960年以来,⼈们对求解这类难解问题⽇益增加.⼀种模仿⽣物⾃然进化过程的、被称为“进化算法(evolutionary algorithm)”的随机优化技术在解这类优化难题中显⽰了优于传统优化算法的性能。
⽬前,进化算法主要包括三个研究领域:遗传算法、进化规划和进化策略。
其中遗传算法是迄今为⽌进化算法中应⽤最多、⽐较成熟、⼴为⼈知的算法。
⼀、遗传算法简介遗传算法(Genetic Algorithm, GA)最先是由美国Mic-hgan⼤学的John Holland于1975年提出的。
遗传算法是模拟达尔⽂的遗传选择和⾃然淘汰的⽣物进化过程的计算模型。
它的思想源于⽣物遗传学和适者⽣存的⾃然规律,是具有“⽣存+检测”的迭代过程的搜索算法。
遗传算法以⼀种群体中的所有个体为对象,并利⽤随机化技术指导对⼀个被编码的参数空间进⾏⾼效搜索。
其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定等5个要素组成了遗传算法的核⼼内容。
遗传算法的基本步骤:遗传算法是⼀种基于⽣物⾃然选择与遗传机理的随机搜索算法,与传统搜索算法不同,遗传算法从⼀组随机产⽣的称为“种群(Population)”的初始解开始搜索过程。
种群中的每个个体是问题的⼀个解,称为“染⾊体(chromos ome)”。
染⾊体是⼀串符号,⽐如⼀个⼆进制字符串。
这些染⾊体在后续迭代中不断进化,称为遗传。
在每⼀代中⽤“适值(fitness)”来测量染⾊体的好坏,⽣成的下⼀代染⾊体称为后代(offspring)。
遗传算法程序2
种群表示和初始化函数 bs2rv: 二进制串到实值的转换Phen=bs2rv(Chrom,FieldD)FieldD=[len, lb, ub, code, scale, lbin, ubin]len是字串的长度,lb和ub是每个变量的下界和上界,lbin和ubin指明表示范围中是否包含边界,0不包括,1包括。
code(i)=1为标准的二进制编码,code(i)=0为格雷编码scale(i)=0为算术刻度,scale(i)=1为对数刻度函数 crtbp: 创建初始种群[Chrom,Lind,BaseV]=crtbp(Nind,Lind)[Chrom,Lind,BaseV]=crtbp(Nind,BaseV)[Chrom,Lind,BaseV]=crtbp(Nind,Lind,BaseV)Nind指定种群中个体的数量,Lind指定个体的长度,Basev与base是一样的,返回的是个体的各个位的进制数函数 crtrp: 创建实值原始种群Chrom=crtrp(Nind,FieldDR)适应度计算函数 ranking: 基于排序的适应度分配(此函数是从最小化方向对个体进行排序的)FitV=ranking(ObjV)FitV=ranking(ObjV, RFun)FitV=ranking(ObjV, RFun, SUBPOP)Rfun(1)线性排序标量在[1 2]间,代表的是选择压差,比如压差为2,那就限制了Objv的结果fitv在0-2之间,如果是1.5,就在0.5-1.5之间,结果的最大值与最小值加起来就是2,非线性排序在[1 length(ObjV)-2]Rfun(2)指定排序方法,0为线性排序,1为非线性排序SUBPOP指明ObjV中子种群的数量,默认为1其实我对这个函数没了解得太深刻,不过我觉得这是一种变比技术。
将原先的适应度值压缩到一定的范围,而且目标值越大,分配的适应度值越小。
例如 A=[1;2;3;4;2;3];ranking(A)= 2.0000 1.4000 0.6000 0 1.4000 0.6000,所以如果是求最大值,就得-A,求最小值就直接A就可以了,因为目标值越大分配的适应度越小,目标值越小,分配的适应度越大。
用遗传算法求解多目标函数优化c++程序
遗传算法是一种优化搜索方法,它模拟了自然选择和遗传学中的一些概念,如基因突变、交叉和选择。
这种方法可以用于解决多目标优化问题,其中多个目标之间可能存在冲突。
以下是一个使用C++和OpenCV库实现遗传算法的基本示例。
这个例子解决的是一个简单的多目标优化问题,目标是找到一个最优的图像分割方案,使得两个目标(分割的精度和计算的效率)同时最大化。
注意:这个示例是为了演示遗传算法的基本概念,并不一定适用于所有问题。
你可能需要根据你的具体需求来调整遗传算法的参数和约束条件。
```cpp#include <iostream>#include <vector>#include <algorithm>#include <opencv2/opencv.hpp>// 多目标函数优化struct ObjectiveFunction {std::vector<double> values;void operator()(const std::vector<double>& x) const {// 这里应该根据你的具体问题来定义函数的具体形式// 这里只是一个简单的示例,只考虑了分割精度和计算效率两个目标values.resize(x.size(), 0); // 初始化所有目标值为0values[0] = 1.0; // 精度目标values[1] = 1.0; // 效率目标}};class GeneticAlgorithm {public:GeneticAlgorithm(int populationSize, int generations, double crossoverRate, double mutationRate) : populationSize(populationSize), generations(generations), crossoverRate(crossoverRate), mutationRate(mutationRate) {} std::vector<std::vector<double>> optimize(const std::vector<std::vector<double>>& inputs) {std::vector<std::vector<double>>bestSolution(inputs.size(),std::vector<double>(populationSize, 0)); // 初始化最优解double bestScore = -1; // 初始最佳分数为-1,通常需要先运行一次算法以找到初始最佳分数for (int generation = 0; generation <generations; ++generation) {std::vector<std::vector<double>>population(populationSize,std::vector<double>(populationSize, 0)); // 初始化种群for (int i = 0; i < populationSize; ++i) { std::vector<double>randomSolution(inputs.size(), 0); // 随机生成解for (int j = 0; j < inputs.size(); ++j) {randomSolution[j] = inputs[j][rand() % inputs[j].size()]; // 在输入范围内随机选择一个数作为解}population[i] = randomSolution; // 将随机解加入种群}while (!population.empty()) { // 当种群不为空时继续迭代std::sort(population.begin(), population.end(), [](const std::vector<double>& a, const std::vector<double>& b) { // 对种群进行排序,根据适应度进行排序(这里适应度是解的分数)return ObjectiveFunction()(a) > ObjectiveFunction()(b); // 如果分数更高,则适应度更好,优先选择这个解作为下一代解的一部分});std::vector<double>nextGeneration(population[0]); // 选择当前种群中的第一个解作为下一代解的一部分for (int j = 1; j < populationSize; ++j) { // 对剩余的解进行交叉和变异操作,生成下一代解if (rand() / double(RAND_MAX) < crossoverRate) { // 如果满足交叉条件,则进行交叉操作for (int k = 0; k < inputs.size(); ++k) { // 将两个解的部分基因进行交叉操作,生成新的基因序列nextGeneration[k] = population[j][k]; // 将两个解的部分基因复制到下一代解中if (rand() / double(RAND_MAX) < mutationRate) { // 如果满足变异条件,则对部分基因进行变异操作,增加种群的多样性nextGeneration[k] = nextGeneration[k] * (1 - mutationRate) + population[j][k] * mutationRate; // 对部分基因进行变异操作,增加种群的多样性}}} else { // 如果不满足交叉条件,则直接复制当前解作为下一代解的一部分for (int k = 0; k < inputs.size(); ++k) { // 将当前解的部分基因复制到下一代解中 nextGeneration[k] = population[。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1clear
2
3%% 遗传算法参数
4maxgen=30; %进化代数
5sizepop=100; %种群规模
6pcross=[0.6]; %交叉概率
7pmutation=[0.01]; %变异概率
8lenchrom=[1 1 1 1 1]; %变量字串长度
9bound=[0 0.9*pi;0 0.9*pi;0 0.9*pi;0 0.9*pi;0 0.9*pi]; %变量范围
10
11%% 个体初始化
12individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]); %种群结构体13avgfitness=[]; %种群平均适应度
14bestfitness=[]; %种群最佳适应度
15bestchrom=[]; %适应度最好染色体
16% 初始化种群
17for i=1:sizepop
18individuals.chrom(i,:)=Code(lenchrom,bound); %随机产生个体
19x=individuals.chrom(i,:);
20individuals.fitness(i)=fun(x); %个体适应度
21end
22
23%找最好的染色体
24[bestfitness bestindex]=min(individuals.fitness);
25bestchrom=individuals.chrom(bestindex,:); %最好的染色体
26avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度
27% 记录每一代进化中最好的适应度和平均适应度
28trace=[avgfitness bestfitness];
29
30%% 进化开始
31for i=1:maxgen
32
33% 选择操作
34individuals=Select(individuals,sizepop);
35avgfitness=sum(individuals.fitness)/sizepop;
36% 交叉操作
37individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound); 38% 变异操作
39individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,[i maxgen],bound);
40
41% 计算适应度
42for j=1:sizepop
43x=individuals.chrom(j,:);
44individuals.fitness(j)=fun(x);
45end
46
47%找到最小和最大适应度的染色体及它们在种群中的位置
48[newbestfitness,newbestindex]=min(individuals.fitness);
49[worestfitness,worestindex]=max(individuals.fitness);
50% 代替上一次进化中最好的染色体
51if bestfitness>newbestfitness
52bestfitness=newbestfitness;
53bestchrom=individuals.chrom(newbestindex,:);
54end
55individuals.chrom(worestindex,:)=bestchrom;
56individuals.fitness(worestindex)=bestfitness;
57
58avgfitness=sum(individuals.fitness)/sizepop;
59
60trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度61end
62%进化结束
63
64%% 结果显示
65[r c]=size(trace);
66plot([1:r]',trace(:,1),'r-',[1:r]',trace(:,2),'b--');
67title(['函数值曲线 ' '终止代数=' num2str(maxgen)]);
68xlabel('进化代数');ylabel('函数值');
69legend('各代平均值','各代最佳值');
70disp('函数值变量');
71% 窗口显示
disp([bestfitness x]);。