数值计算方法主要知识点

合集下载

数值计算方法和应用

数值计算方法和应用

数值计算方法和应用数值计算方法是指将数学问题转化为计算机程序来求解的一种方法。

随着计算机技术的不断发展,数值计算方法已经成为解决各种实际问题的重要手段。

在这篇文章中,我们将介绍数值计算方法的基础知识和应用。

一、基础知识1.1 数值解数值解是指通过数值计算方法得到的近似解。

对于某些复杂的数学问题,很难得到精确解,这时就需要采用数值计算方法来求解。

数值解的精度取决于算法本身的精度以及所使用的计算机的精度。

1.2 常用数值计算方法常用的数值计算方法包括求解方程、插值和拟合、微积分等。

其中,求解方程是数值计算方法中应用最广泛的一种方法。

通过数值计算方法求解方程的思路是将方程转化为一个数值逼近问题,然后采用数值计算方法求解出近似解。

插值和拟合是另外一种常用的数值计算方法,它们主要用于分析和处理实验数据,用来预测未知变量的值。

1.3 数值稳定性在进行数值计算时,数值稳定性是非常重要的一方面。

数值稳定性指的是计算结果受到输入数据误差的影响程度。

如果计算结果对输入数据的微小变化非常敏感,那么该算法就是不稳定的。

否则,该算法就是稳定的。

在选择数值计算方法时,需要考虑计算结果的稳定性。

二、应用2.1 工程计算数值计算方法在工程计算中也得到了广泛的应用。

工程计算包括结构分析、流体力学等领域。

在这些领域中,需要对各种物理现象进行数值模拟和分析。

利用数值计算方法可以得到复杂系统的数值解,帮助工程师掌握系统的性能和行为规律,做出正确的决策。

2.2 金融计算金融计算是另外一种需要应用数值计算方法的领域。

金融计算通常涉及大量的金融数据,例如股票价格、汇率等。

利用数值计算方法可以对这些数据进行分析,预测未来的价格趋势,提高投资的成功率。

2.3 数据科学数据科学是近年来兴起的一种新兴领域。

数据科学利用大数据分析技术,对各种数据进行分析,预测未来的趋势,挖掘出隐藏在数据背后的信息。

数值计算方法是数据科学中最基础的方法之一,无论是数据采集、数据处理还是数据分析,都需要通过数值计算方法得到精确的数据结果。

数值计算方法重点复习内容

数值计算方法重点复习内容
及其收敛性判定;
Newton迭代方法求非线性方程组的迭代格式。
➢第七章
最小二乘问题的定义、思想及其求法;
❖广义逆矩阵 A和 最小二乘解的关系;
Householder变换的定义、性质、求法及应用;
Givens变换的定义、性质、求法及应用;
➢第八章
幂法的迭代格式及其应用; ❖反幂法的迭代格式及其应用; QR方法的思想。
《数值计算方法》重点复习内容 ➢第一章
基本概念:误差的分类、绝对误差和相对误差、
有效字;
❖误差分析的原则:避免相近的数相减等。
➢第二章
二分法及对分次数的计算; ❖不动点迭代:几何意义、迭代函数的构造、迭代
格式的收敛性判定方法。
Newton迭代及其收敛性。
➢第三章
代数插值函数的定义、存在唯一性、误差估计式; ❖Lagrange插值多项式、n次Lagrange插值基函数
➢第九章
单步法的构造方法:Taylor展开法; ❖Euler公式、 Euler预报-校正公式
和经典4阶Runge-Kutta公式及其应用;
单步法的局部截断误差、收敛阶的定义;
梯形公式、Simpson公式及其余项;
复化梯形公式、复化Simpson公式及其余项; Gauss型求积公式的定义及其特点。 数值微分的三点公式计算近似导数定理。
➢第五章
常用的向量范数和矩阵范数的定义及求法;
❖列主元Gauss消去法、Doolittle分解方法;
条件数的定义及其计算。
➢第六章
了解向量序列和矩阵序列的定义、收敛性; ❖一般迭代法的形式、收敛性判定; Jacobi、Gauss-Seidel迭代格式(包括分量形式)
的性质(习题4-4)、Newton插值多项式

数值计算方法复习知识点

数值计算方法复习知识点

数值计算方法复习知识点2015计算方法复习1. 会高斯消去法;会矩阵三角分解法;会Cholesky 分解的平方根法求解方程组2. 会用插值基函数;会求Lagrange, 会计算差商和Newton 插值多项式和余项3. 会Jacobi 迭代、Gauss-Seidel 迭代的分量形式,迭代矩阵,谱半径,收敛性4. 会写非线性方程根的Newton 迭代格式;斯蒂芬森加速5. 会用欧拉预报—校正法和经典四阶龙格—库塔法求解初值问题6. 会最小二乘法多项式拟合7. 会计算求积公式的代数精度;(复化)梯形公式和(复化)辛普生公式求积分;高斯-勒让德求积公式第1章、数值计算引论(一)考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;误差的传播。

(二) 复习要求1.了解数值分析的研究对象与特点。

2.了解误差来源与分类,会求有效数字; 会简单误差估计。

3.了解误差的定性分析及避免误差危害。

(三)例题例1. 设x =0.231是精确值x *=0.229的近似值,则x 有2位有效数字。

例2. 为了提高数值计算精度, 当正数x 充分大时, 应将)1ln(2--x x 改写为)1ln(2++-x x 。

例3. 3*x 的相对误差约是*x 的相对误差的1/3 倍.第2章、非线性方程的数值解法(一)考核知识点对分法;不动点迭代法及其收敛性;收敛速度; 迭代收敛的加速方法;埃特金加速收敛方法;Steffensen 斯特芬森迭代法;牛顿法;弦截法。

(二) 复习要求1.了解求根问题和二分法。

2.了解不动点迭代法和迭代收敛性;了解收敛阶的概念和有关结论。

3.理解掌握加速迭代收敛的埃特金方法和斯蒂芬森方法。

4.掌握牛顿法及其收敛性、下山法, 了解重根情形。

5.了解弦截法。

(三)例题1.为求方程x 3―x 2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A)(B)11,1112-=-=+k k x x x x 迭代公式21211,11kk x x x x +=+=+迭代公式(C)(D)迭代公式解:在(A)中,=1.076 故迭代发散。

《数值计算方法》复习资料

《数值计算方法》复习资料

《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。

第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

二复习要求1. 知道产生误差的主要来源。

2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。

3. 知道四则运算中的误差传播公式。

三例题例1设x*= π=3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00解因为x1=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即m=1,n=5,故x=2.000 4有5位有效数字. a1=2,相对误差限x2=-0.002 00,绝对误差限0.000 005,因为m=-2,n=3,x2=-0.002 00有3位有效数字. a1=2,相对误差限εr==0.002 5x3=9 000,绝对误差限为0.5×100,因为m=4, n=4, x3=9 000有4位有效数字,a=9,相对误差限εr==0.000 056x4=9 000.00,绝对误差限0.005,因为m=4,n=6,x4=9 000.00有6位有效数字,相对误差限为εr==0.000 000 56由x3与x4可以看到小数点之后的0,不是可有可无的,它是有实际意义的.例3ln2=0.69314718…,精确到10-3的近似值是多少?解精确到10-3=0.001,意旨两个近似值x1,x2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。

数值计算方法期末总结

数值计算方法期末总结

数值计算方法期末总结导言数值计算是近年来发展迅速的一门学科,它研究如何利用数字近似计算数学方程和问题的解。

在科学计算、工程分析、金融建模等领域都有广泛应用。

本文将对数值计算方法进行总结,包括数值逼近、插值与外推、数值微积分、线性方程组解法、非线性方程解法、数值积分与数值微分以及随机数生成与蒙特卡洛方法。

通过总结这些方法的基本原理、优缺点和应用领域,可以帮助读者更好地理解和运用数值计算方法。

一、数值逼近数值逼近是指通过有限次数的计算,利用某一数列逐步逼近函数的值。

数值逼近可以分为插值和外推。

插值是在给定的有限个数据点之间找到一个函数,使得函数经过这些数据点。

而外推是利用已知数据点的决策逐渐增加,以获得更精确的近似值。

在实际应用中,数值逼近被广泛应用于数据处理和数据分析中,常用于构造曲线拟合、图像处理和信号处理中。

数值逼近的方法有拉格朗日插值、牛顿插值和埃尔米特插值等。

二、插值与外推插值与外推是数值计算中用于估计未知函数值的重要工具。

插值是在给定数据点之间构造一个模型函数,使得函数经过这些数据点。

外推是利用一些已知数据点的决策逐渐逼近未知函数的方向。

常用的插值与外推方法有多项式外推、样条插值、最小二乘法、有限差分法等。

它们可以用于函数逼近、数据拟合和数值求解等问题。

三、数值微积分数值微积分是一种利用数值方法来近似计算积分和求解微分方程的方法。

数值微积分广泛应用于工程计算、金融建模和科学研究等领域,是计算机辅助设计和分析的关键技术之一。

在数值微积分中,常用的方法有数值积分和数值微分。

数值积分主要用于求解曲线下面积和计算函数的平均值等问题,常用方法有复合梯形公式、复合辛普森公式、复合高斯公式等。

而数值微分主要用于近似计算函数的导数,常用方法有有限差分法、龙贝格公式和微分方程的数值解法等。

四、线性方程组解法线性方程组是科学计算中的重要问题之一,其求解方法的好坏直接影响到计算结果的精度和稳定性。

线性方程组的求解方法有直接法和迭代法两种。

数值计算方法总结计划复习总结提纲.docx

数值计算方法总结计划复习总结提纲.docx

数值计算方法复习提纲第一章数值计算中的误差分析12.了解误差 ( 绝对误差、相对误差 )3.掌握算法及其稳定性,设计算法遵循的原则。

1、误差的来源模型误差观测误差截断误差舍入误差2误差与有效数字绝对误差E(x)=x-x *绝对误差限x*x x*相对误差E r (x) ( x x* ) / x ( x x* ) / x*有效数字x*0.a1 a2 ....a n10 m若x x*110m n ,称x*有n位有效数字。

2有效数字与误差关系( 1)m 一定时,有效数字n 越多,绝对误差限越小;( 2)x*有 n 位有效数字,则相对误差限为E r (x)110 (n 1)。

2a1选择算法应遵循的原则1、选用数值稳定的算法,控制误差传播;例I n 11n xdxex eI 0 11I n1nI n1e△ x n n! △x02、简化计算步骤,减少运算次数;3、避免两个相近数相减,和接近零的数作分母;避免第二章线性方程组的数值解法1.了解 Gauss 消元法、主元消元法基本思想及算法;2.掌握矩阵的三角分解,并利用三角分解求解方程组;(Doolittle 分解; Crout分解; Cholesky分解;追赶法)3.掌握迭代法的基本思想,Jacobi 迭代法与 Gauss-Seidel4.掌握向量与矩阵的范数及其性质, 迭代法的收敛性及其判定。

本章主要解决线性方程组求解问题,假设n 行 n 列线性方程组有唯一解,如何得到其解?a11x1a12x2...a1nxn b1a21x1a22x2...a2nxn b2...an1x1an 2x2...annxn b n两类方法,第一是直接解法,得到其精确解;第二是迭代解法,得到其近似解。

一、Gauss消去法1、顺序G auss 消去法记方程组为:a11(1) x1a12(1) x2... a1(1n) x n b1(1)a21(1) x1a22(1) x2... a2(1n) x n b2(1)...a n(11) x1a n(12) x2... a nn(1) x nb n(1)消元过程:经n-1步消元,化为上三角方程组a11(1) x1b1(1)a 21(2) x1a22(2 ) x2b2( 2 )...a n(1n) x1a n(n2) x2...a nn(n ) x nb n( n )第k步若a kk(k)0( k 1)( k)a ik(k )(k )( k 1)( k )a ik(k )( k)aij aij a kk(k )akj bi b i a kk(k )b k k 1,...n 1 i, j k 1,....,n回代过程:x n b n(n)/ a nn(n)nx i (b i(i )a ij(i ) x j ) / a ii(i)(i n 1, n 2,...1)j i 12、G auss—Jordan消去法避免回代,消元时上下同时消元3、G auss 列主元消去法例:说明直接消元,出现错误0.00001x12x22x1x23由顺序G auss 消去法,得x21, x10 ;Ga uss 列主元消去法原理:每步消元前,选列主元,交换方程。

数值计算方法总结.

数值计算方法总结.

运算量
1 1 分解A LR需 (n3 n)次, 解Ly b需 (n 2 n)次, 3 2 1 2 n3 n 解Rx y需 (n n)次, 共N n 2 2 3 3
第2章 解线性代数方程的直接法
2.2 三角分解法 2.2.2 克洛特分解法
对A进行杜里特尔分解时, A=LR, L为单位下三角阵, R为上三角阵
1i n j 1
2

( AT A), 称为谱范数
第2章 解线性代数方程的直接法
2.3 舍入误差对解的影响 2.3.1 向量和矩阵的范数
这些系数的绝对值称为求y问题的条件数,其值很大时的问题 称为坏条件问题或病态问题
凡是计算结果接近于零的问题往往是病态问题。
应避免相近数相减,小除数和大乘数
第1章 数值计算方法的一般概念
1.2.3 数据误差影响的估计
由误差估计式(1 1)可知 (x1 x2 ) x1 x2 x1 x2 (x1 x2 ) x x x1 x x x2 1 2 1 2 (x1 x2 ) x2 x1 x1x2 (x1 x2 ) x1 x2 x1 x1 x1 ( ) 2 x 2 x x2 x2 2 ( x1 ) x x 1 2 x 2
2.[回代] 按相反顺序求解上三角形方程组,得到方程组的解
第一步得到xn ,第二步得到xn1,...,第n步得到x1
将方程组写成增广矩阵的形式,将有利于计算机实现
A A b
第2章 解线性代数方程的直接法
2.1 高斯消去法 2.1.2 运算量估计 高斯消去法运算量估计 1.消去算法运算量
第1章 数值计算方法的一般概念
1.2.3 数据误差影响的估计

数值计算方法总复习.docx

数值计算方法总复习.docx

数值计算方法总复习第一章算法与误差 第二章非线性方程求解 第三章线性代数方程求解 第四章函数插值与曲线拟合 第五章数值积分与数值微分 第六章當微分方程的数值解法 Chap. 1 (1)关于数值计算方法,What,特点教窗才算方法是应用数学的一个分支, 又称数值分析或计算方法,它是研究数字计算机求解各种数学问题的数值方法及其理论的一门科学,是程序设计 和对数值结果进行分析的依据和基础。

应用计算机解决科学计算问题包括以下几个过程:提出实际问题;建立数 学模型;选用数值计算方法;程序设计和上机计算。

可见数值计算方法是进行 科学计算全过程的一个重要环节。

计算机计算的特点:(1)运算速度快;(2)但只能完成加、减、乘、除和 一些逻辑运算。

所以,各种复朵的数学问题 T 归结为四则运算 ------------- 9 编程指令。

把对数学问题的解法归纳为有加、减、乘、除等基本运算,并对运算顺序 有完整而准确的描述的算法称为数值计算方法或简称数值算法。

研究各种算法 和和关理论的一门课程。

§1.2误差一、 误差的来源数分为两类:精确数(准确数、真值); 近似数/近似值。

1) 模型课差或描述误差2) 测量误差(观测误差)3) 截断误并(方法误并)4) 舍入误差(计算误差):数值计算关心的是截断谋差(方法谋差)和舍入谋差(计算谋差) 二、误差限和有效数字1. 误差限的定义设Z 是准确值Z 的某个近似值,如果根据具体测量或计算的情况,可以事 先估计出误差的绝对值不超过某个正数5即:关于《数值计算方法》IZ - Z| W £则称£为近似值的谋差限。

或称在允许谋差£的情况下,结果z是“准确的”・2.误差限和有效数字在表示一个近似数时,常常用到“有效数字”,有效数字和谋差限都是用来定量表示误差的大小,且它们之间有对应关系。

有效数字的定义:设数x的近似值T=0內兀2…乙xl(T ,其中灯是0到9之间的任一个数,但力工0门二1,2,3.・・,n正整数,刃整数,若lx-x* l< jxlO,n-n则称x*为x的具有n位有效数字的近似值,准确到第n位,x 1x2...xn是/ 的有效数字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值计算方法主要知识点
数值计算方法是数学中的一门基础课程,主要研究数值计算的理论、
方法和算法。

它是现代科学和工程技术领域中不可或缺的重要工具,广泛
应用于数值模拟、优化计算、数据处理等诸多领域。

下面是数值计算方法
的主要知识点(第一部分)。

1.近似数与误差:
数值计算的基本问题是将无法精确计算的数值通过近似计算来求得。

近似数即为真实数的近似值,其与真实值之间的差称为误差。

误差可以分
为绝对误差和相对误差。

绝对误差为真实值与近似值之差的绝对值,相对
误差为绝对误差与真实值的比值。

通过控制误差可以评估数值计算结果的
准确性。

2.插值与多项式:
插值是指通过已知离散点构造一个函数,并在给定点处对其进行近似
计算。

插值函数通常采用多项式拟合,即通过已知点构造一个多项式函数,并利用此函数进行近似计算。

主要的插值方法有拉格朗日插值、牛顿插值
和埃尔米特插值等。

3.数值微分与数值积分:
数值微分主要研究如何通过数值方法去近似计算函数的导数。

常用的
数值微分方法有差商、中心差商和插值微分等。

数值积分则是研究如何通
过数值方法去近似计算函数的定积分。

常用的数值积分方法有矩形法、梯
形法和辛普森法等。

4.非线性方程的数值解法:
非线性方程的数值解法是指通过数值方法求解形如f(x)=0的方程。

常用的非线性方程数值解法有二分法、牛顿法和二次插值法等。

这些方法
基于一些基本原理和定理,通过迭代的方式逐步逼近方程的根即可求得方
程的近似解。

5.线性方程组的数值解法:
线性方程组的数值解法是指通过数值方法求解形如Ax=b的线性方程组。

其中,A是一个已知的系数矩阵,b是一个已知的常数向量,x是未
知的解向量。

常用的线性方程组数值解法有高斯消元法、追赶法和LU分
解法等。

这些方法通过一系列的变换和迭代来求解线性方程组的解。

6.插值型和积分型数值方法:
数值计算方法可以分为插值型和积分型两类。

插值型数值方法是通过
插值的方式进行近似计算,如插值法和数值微分。

而积分型数值方法是通
过数值积分的方式进行近似计算,如数值积分和微分方程的数值解法。


两类方法在实际问题中有不同的应用领域和特点。

以上是数值计算方法的主要知识点的第一部分,涵盖了近似数与误差、插值与多项式、数值微分与数值积分、非线性方程的数值解法、线性方程
组的数值解法以及插值型和积分型数值方法等内容。

掌握这些知识点对于
理解和应用数值计算方法具有重要的意义。

相关文档
最新文档