2019-2020学年宁夏自治区中考数学模拟试卷(有标准答案)(word版)

合集下载

【附5套中考模拟试卷】宁夏吴忠市2019-2020学年第二次中考模拟考试数学试卷含解析

【附5套中考模拟试卷】宁夏吴忠市2019-2020学年第二次中考模拟考试数学试卷含解析

宁夏吴忠市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣0.2的相反数是()A.0.2 B.±0.2 C.﹣0.2 D.22.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0D.k≥﹣1且k≠03.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A.B.C.D.4.计算--|-3|的结果是()A.-1 B.-5 C.1 D.55.在同一坐标系中,反比例函数y=kx与二次函数y=kx2+k(k≠0)的图象可能为()A.B.C.D.6.下列运算正确的是()A.x3+x3=2x6B.x6÷x2=x3C.(﹣3x3)2=2x6D.x2•x﹣3=x﹣1 7.如图,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正确的是()A .AB DC =u u u r u u u rB .DE DC =u u u v u u u vC .AB ED =u u u v u u u vD .AD BE =u u u v u u u v8.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( )A .a +b>0B .ab >0C .D .9.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=1.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为( )A .(﹣91255,)B .(﹣12955,) C .(﹣161255,) D .(﹣121655,) 10.若矩形的长和宽是方程x 2-7x+12=0的两根,则矩形的对角线长度为( ) A .5B .7C .8D .1011.观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a 的值为A .75B .89C .103D .13912.如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是______.14.计算:18-2=________.15.已知三个数据3,x+3,3﹣x 的方差为23,则x=_____. 16.如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A 、B 、C 、D 、E 五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_____. (写出一个答案即可)17.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下: 成绩(分) 60 70 80 90 100 人 数4812115则该办学生成绩的众数和中位数分别是( )A .70分,80分B .80分,80分C .90分,80分D .80分,90分18.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数ky x=的图象经过点B ,则k 的值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)(1)(﹣2)2+2sin 45°﹣11()182-⨯(2)解不等式组523(1)131322x x x x +>-⎧⎪⎨-≤-⎪⎩,并将其解集在如图所示的数轴上表示出来.20.(6分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是、;(2)当点P运动的路程x=4时,△ABP的面积为y=;(3)求AB的长和梯形ABCD的面积.21.(6分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有名.22.(8分)如图,已知△ABC.(1)请用直尺和圆规作出∠A的平分线AD(不要求写作法,但要保留作图痕迹);(2)在(1)的条件下,若AB=AC,∠B=70°,求∠BAD的度数.23.(8分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?24.(10分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.求证:BC是⊙O的切线;若⊙O的半径为6,BC=8,求弦BD的长.25.(10分)在平面直角坐标系xOy 中,抛物线y=ax2﹣4ax+3a﹣2(a≠0)与x轴交于A,B 两(点 A 在点 B 左侧).(1)当抛物线过原点时,求实数 a 的值;(2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含 a 的代数式表示);(3)当AB≤4 时,求实数 a 的取值范围.26.(12分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A 处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B 处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长.(结果精确到0.1 m)27.(12分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据相反数的定义进行解答即可.【详解】负数的相反数是它的绝对值,所以﹣0.2的相反数是0.2.故选A.【点睛】本题主要考查相反数的定义,熟练掌握这个知识点是解题关键.2.C【解析】【分析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.3.B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.4.B【解析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值.【详解】原式故选:B.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.5.D【解析】【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=kx,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=kx,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.6.D【解析】分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可.详解:根据合并同类项法则,可知x3+x3=2x3,故不正确;根据同底数幂相除,底数不变指数相加,可知a6÷a2=a4,故不正确;根据积的乘方,等于各个因式分别乘方,可知(-3a3)2=9a6,故不正确;根据同底数幂相乘,底数不变指数相加,可得x2•x﹣3=x﹣1,故正确.故选D.点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.7.D∵AD//BC ,DE//AB ,∴四边形ABED 是平行四边形, ∴AB DE =u u u v u u u v ,AD BE =u u u v u u u v, ∴选项A 、C 错误,选项D 正确, 选项B 错误, 故选D. 8.C 【解析】 【分析】本题要先观察a ,b 在数轴上的位置,得b <-1<0<a <1,然后对四个选项逐一分析. 【详解】A 、因为b <-1<0<a <1,所以|b|>|a|,所以a+b <0,故选项A 错误;B 、因为b <0<a ,所以ab <0,故选项B 错误;C 、因为b <-1<0<a <1,所以+>0,故选项C 正确;D 、因为b <-1<0<a <1,所以->0,故选项D 错误.故选C . 【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数. 9.A 【解析】 【分析】直接利用相似三角形的判定与性质得出△ONC 1三边关系,再利用勾股定理得出答案. 【详解】过点C 1作C 1N ⊥x 轴于点N ,过点A 1作A 1M ⊥x 轴于点M ,由题意可得:∠C 1NO=∠A 1MO=90°, ∠1=∠2=∠1,则△A 1OM ∽△OC 1N , ∵OA=5,OC=1, ∴OA 1=5,A 1M=1, ∴OM=4,∴设NO=1x ,则NC 1=4x ,OC 1=1, 则(1x )2+(4x )2=9, 解得:x=±35(负数舍去), 则NO=95,NC 1=125,故点C 的对应点C 1的坐标为:(-95,125). 故选A . 【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A 1OM ∽△OC 1N 是解题关键. 10.A 【解析】解:设矩形的长和宽分别为a 、b ,则a+b=7,ab=12,所以矩形的对角线长=22a b +=22a b ab ()+-=27212-⨯=1.故选A .11.A 【解析】观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B . 12.C 【解析】 【分析】因为R 不动,所以AR 不变.根据三角形中位线定理可得EF= 12AR ,因此线段EF 的长不变. 【详解】 如图,连接AR ,∵E 、F 分别是AP 、RP 的中点, ∴EF 为△APR 的中位线,∴EF= 12AR,为定值.∴线段EF的长不改变.故选:C.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1 3【解析】【分析】求出黑色区域面积与正方形总面积之比即可得答案.【详解】图中有9个小正方形,其中黑色区域一共有3个小正方形,所以随意投掷一个飞镖,击中黑色区域的概率是31 93 ==,故答案为13.【点睛】本题考查了几何概率,熟练掌握概率的计算公式是解题的关键.注意面积之比=几何概率.14.【解析】试题解析:原式==故答案为15.±1【解析】【分析】先由平均数的计算公式求出这组数据的平均数,再代入方差公式进行计算,即可求出x的值.【详解】解:这三个数的平均数是:(3+x+3+3-x)÷3=3,则方差是:13[(3-3)2+(x+3-3)2+(3-x-3)2]=23,解得:x=±1;故答案为:±1.【点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.答案不唯一,如:AD【解析】【分析】根据勾股定理求出AD,根据无理数的估算方法解答即可.【详解】由勾股定理得:AD=,34<.故答案为答案不唯一,如:AD.【点睛】本题考查了无理数的估算和勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么222+=a b c.17.B.【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分.故选B.考点:1.众数;2.中位数.18【解析】【分析】已知△ABO是等边三角形,通过作高BC,利用等边三角形的性质可以求出OB和OC的长度;由于Rt△OBC中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC的长度,进而确定点B的坐标;将点B的坐标代入反比例函数的解析式kyx=中,即可求出k的值.【详解】过点B作BC垂直OA于C,∵点A的坐标是(2,0),∴AO=2,∵△ABO 是等边三角形,∴OC=1,BC=3, ∴点B 的坐标是()1,3,把()1,3代入k y x=,得3k =. 故答案为3.【点睛】考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标;三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)4﹣2;﹣52<x≤2,在数轴上表示见解析 【解析】【分析】 (1)此题涉及乘方、特殊角的三角函数、负整数指数幂和二次根式的化简,首先针对各知识点进行计算,再计算实数的加减即可;(2)首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集. 【详解】解:(1)原式=4+2×2﹣2×22﹣2=4﹣2; (2)()5231131322x x x x ⎧+>-⎪⎨-≤-⎪⎩①②, 解①得:x >﹣52, 解②得:x≤2,不等式组的解集为:﹣52<x≤2, 在数轴上表示为:.【点睛】此题主要考查了解一元一次不等式组,以实数的运算,关键是正确确定两个不等式的解集,掌握特殊角的三角函数值.20.(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1.【解析】【分析】(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.【详解】(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y.故答案为x,y;(2)由图可得:当点P运动的路程x=4时,△ABP的面积为y=2.故答案为2;(3)根据图象得:BC=4,此时△ABP为2,∴12AB•BC=2,即12×AB×4=2,解得:AB=8;由图象得:DC=9﹣4=5,则S梯形ABCD=12×BC×(DC+AB)=12×4×(5+8)=1.【点睛】本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.21.(1)120,30%;(2)作图见解析;(3)1.【解析】试题分析:(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、“一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.试题解析:(1) 12÷15%=120人;36÷120=30%;(2)120×45%=54人,补全统计图如下:(3)1800×=1人.考点:条形统计图;扇形统计图;用样本估计总体.22.(1)见解析;(2)20°;【解析】【分析】(1)尺规作一个角的平分线是基本尺规作图,根据作图步骤即可画图;(2)运用等腰三角形的性质再根据角平分线的定义计算出∠BAD的度数即可.【详解】(1)如图,AD为所求;(2)∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠BDA=90°,∴∠BAD=90°﹣∠B=90°﹣70°=20°.【点睛】考查角平分线的作法以及等腰三角形的性质,掌握角平分线的作法是解题的关键.23.官有200人,兵有800人【解析】【分析】设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设官有x人,兵有y人,依题意,得:10001410004x yx y+=⎧⎪⎨+=⎪⎩,解得:200800xy=⎧⎨=⎩.答:官有200人,兵有800人.【点睛】本题主要考查二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.24.(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD,»»»12BF DF BD==,再由圆周角定理可得BOE A∠=∠,从而得到∠ OBE+∠ DBC=90°,即90OBC∠=︒,命题得证.(2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.试题解析:(1)证明:如下图所示,连接OB.∵ E是弦BD的中点,∴ BE=DE,OE⊥ BD,»»»12BF DF BD==,∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切线.(2)解:∵ OB=6,BC=8,BC⊥OB,∴2210OC OB BC+=,∵1122OBCS OC BE OB BC=⋅=⋅V,∴684.810OB BCBEOC-⨯===,∴29.6BD BE==.点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法. 25.(1)a=23;(2)①x=2;②抛物线的顶点的纵坐标为﹣a﹣2;(3)a 的范围为a<﹣2 或a≥23.【解析】【分析】(1)把原点坐标代入y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把抛物线解析式配成顶点式,即可得到抛物线的对称轴和抛物线的顶点的纵坐标;(3)设A(m,1),B(n,1),利用抛物线与x 轴的交点问题,则m、n 为方程ax2﹣4ax+3a﹣2=1 的两根,利用判别式的意义解得a>1 或a<﹣2,再利用根与系数的关系得到m+n=4,mn=32aa-,然后根据完全平方公式利用n﹣m≤4 得到(m+n)2﹣4mn≤16,所以42﹣4•32aa-≤16,接着解关于a 的不等式,最后确定a的范围.【详解】(1)把(1,1)代入y=ax2﹣4ax+3a﹣2 得3a﹣2=1,解得a=;(2)①y=a(x﹣2)2﹣a﹣2,抛物线的对称轴为直线x=2;②抛物线的顶点的纵坐标为﹣a﹣2;(3)设A(m,1),B(n,1),∵m、n 为方程ax2﹣4ax+3a﹣2=1 的两根,∴△=16a2﹣4a(3a﹣2)>1,解得a>1 或a<﹣2,∴m+n=4,mn=,而n﹣m≤4,∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,∴42﹣4• ≤16,即≥1,解得a≥或a<1.∴a 的范围为a<﹣2 或a≥.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠1)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.26.路灯的高CD的长约为6.1 m.【解析】设路灯的高CD为xm,∵CD⊥EC,BN⊥EC,∴CD∥BN,∴△ABN∽△ACD,∴BN AB CD AC=,同理,△EAM∽△ECD,又∵EA=MA,∵EC=DC=xm,∴1.75 1.251.75x x=-,解得x=6.125≈6.1.∴路灯的高CD约为6.1m.27.见解析【解析】【分析】根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点睛】本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。

宁夏石嘴山市2019-2020学年第三次中考模拟考试数学试卷含解析

宁夏石嘴山市2019-2020学年第三次中考模拟考试数学试卷含解析

宁夏石嘴山市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了( )A .25本B .20本C .15本D .10本2.用配方法解下列方程时,配方有错误的是( ) A .22990x x --=化为()21100x -=B .2890x x ++=化为()2425x +=C .22740t t --=化为2781416t ⎛⎫-=⎪⎝⎭ D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭ 3.如图,在菱形ABCD 中,AB=5,∠BCD=120°,则△ABC 的周长等于( )A .20B .15C .10D .54.已知正方形ABCD 的边长为4cm ,动点P 从A 出发,沿AD 边以1cm/s 的速度运动,动点Q 从B 出发,沿BC ,CD 边以2cm/s 的速度运动,点P ,Q 同时出发,运动到点D 均停止运动,设运动时间为x (秒),△BPQ 的面积为y (cm 2),则y 与x 之间的函数图象大致是( )A .B .C .D .5.如图,G ,E 分别是正方形ABCD 的边AB ,BC 上的点,且AG =CE ,AE ⊥EF ,AE =EF ,现有如下结论:①BE =DH;②△AGE ≌△ECF;③∠FCD =45°;④△GBE ∽△ECH .其中,正确的结论有( )A .4 个B .3 个C .2 个D .1 个6.已知点M 、N 在以AB 为直径的圆O 上,∠MON=x°,∠MAN= y°, 则点(x ,y)一定在( ) A .抛物线上B .过原点的直线上C .双曲线上D .以上说法都不对7.方程x 2﹣3x =0的根是( ) A .x =0B .x =3C .10x =,23x =-D .10x =,23x =8.某圆锥的主视图是一个边长为3cm 的等边三角形,那么这个圆锥的侧面积是( ) A .4.5πcm 2B .3cm 2C .4πcm 2D .3πcm 29.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是( )A .B .C .D .10.若A(﹣4,y 1),B(﹣3,y 2),C(1,y 3)为二次函数y =x 2﹣4x+m 的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 1<y 3<y 2 11.下列四个图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .12.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ACD=30°,则∠BAD 为( )A .30°B .50°C .60°D .70°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,等边三角形AOB 的顶点A 的坐标为(﹣4,0),顶点B 在反比例函数ky x=(x <0)的图象上,则k= .14.分式方程231x x =+的解为x=_____. 15.已知:如图,△ABC 内接于⊙O ,且半径OC ⊥AB ,点D 在半径OB 的延长线上,且∠A=∠BCD=30°,AC=2,则由»BC,线段CD 和线段BD 所围成图形的阴影部分的面积为__.16.将多项式xy 2﹣4xy+4y 因式分解:_____. 17.分解因式:2242a a ++=__________________.18.如图,△ABC 中,AB =5,AC =6,将△ABC 翻折,使得点A 落到边BC 上的点A′处,折痕分别交边AB 、AC 于点E ,点F ,如果A′F ∥AB ,那么BE =_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).(Ⅰ)求二次函数的解析式及点A,B的坐标;(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.20.(6分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?21.(6分)已如:⊙O与⊙O上的一点A(1)求作:⊙O的内接正六边形ABCDEF;(要求:尺规作图,不写作法但保留作图痕迹)(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由.22.(8分)已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β求m的取值范围;若α+β+αβ=1.求m的值.23.(8分)(问题发现)(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为;(拓展探究)(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN 的形状,并说明理由;(解决问题)(3)如图(3)在正方形ABCD中,2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.24.(10分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A 品牌的足球和3个B 品牌的足球共需380元;购买4个A 品牌的足球和2个B 品牌的足球共需360元.求A ,B 两种品牌的足球的单价.求该校购买20个A 品牌的足球和2个B品牌的足球的总费用.25.(10分)某景区在同一线路上顺次有三个景点A ,B ,C ,甲、乙两名游客从景点A 出发,甲步行到景点C ;乙花20分钟时间排队后乘观光车先到景点B ,在B 处停留一段时间后,再步行到景点C .甲、乙两人离景点A 的路程s (米)关于时间t (分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A 的路程s 与t 的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C 时,乙与景点C 的路程为360米,则乙从景点B 步行到景点C 的速度是多少?26.(12分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA ,OC 为邻边作矩形 OABC , 动点 M ,N 以每秒 1 个单位长度的速度分别从点 A 、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N 沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NP ⊥BC ,交 OB 于点 P ,连接 MP .(1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;(2)记△OMP 的面积为 S ,求 S 与 t 的函数关系式()06t <<;并求 t 为何值时,S 有最大值,并求出最大值.27.(12分)如图,AB 为⊙O 的直径,点E 在⊙O 上,C 为»BE的中点,过点C 作直线CD ⊥AE 于D ,连接AC 、BC .(1)试判断直线CD 与⊙O 的位置关系,并说明理由; (2)若AD=2,AC=6,求AB 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】设甲种笔记本买了x 本,甲种笔记本的单价是y 元,则乙种笔记本买了(40﹣x )本,乙种笔记本的单价是(y+3)元,根据题意列出关于x 、y 的二元一次方程组,求出x 、y 的值即可. 【详解】解:设甲种笔记本买了x 本,甲种笔记本的单价是y 元,则乙种笔记本买了(40﹣x )本,乙种笔记本的单价是(y+3)元,根据题意,得:()()1254033006813xy xy x y =⎧⎨+-+=-+⎩,解得:2515x y =⎧⎨=⎩,答:甲种笔记本买了25本,乙种笔记本买了15本. 故选C . 【点睛】本题考查的是二元二次方程组的应用,能根据题意得出关于x 、y 的二元二次方程组是解答此题的关键. 2.B 【解析】【分析】配方法的一般步骤:(1)把常数项移到等号的右边; (2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方. 【详解】解:A 、22990x x --=Q ,2299x x ∴-=,221991x x ∴-+=+,2(1)100x ∴-=,故A 选项正确.B 、2890x x ++=Q ,289x x ∴+=-,2816916x x ∴++=-+,2(4)7x ∴+=,故B 选项错误.C 、22740t t --=Q ,2274t t ∴-=,2722t t ∴-=,274949221616t t ∴-+=+,2781()416t ∴-=,故C 选项正确.D 、23420x x --=Q ,2342x x ∴-=,24233x x ∴-=,244243939x x ∴-+=+,2210()39x ∴-=.故D 选项正确.故选:B . 【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 3.B 【解析】∵ABCD 是菱形,∠BCD=120°,∴∠B=60°,BA=BC . ∴△ABC 是等边三角形.∴△ABC 的周长=3AB=1.故选B 4.B 【解析】 【分析】根据题意,Q 点分别在BC 、CD 上运动时,形成不同的三角形,分别用x 表示即可. 【详解】(1)当0≤x≤2时, BQ =2x14242y x x =⨯⨯=当2≤x≤4时,如下图()()()()211144448242428222y x x x x x x =-+⨯-⨯---⨯⨯-=-++由上可知 故选:B. 【点睛】本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列出函数关系式. 5.C 【解析】 【分析】由∠BEG =45°知∠BEA >45°,结合∠AEF =90°得∠HEC <45°,据此知 HC <EC ,即可判断①;求出∠GAE+∠AEG =45°,推出∠GAE =∠FEC ,根据 SAS 推出△GAE ≌△CEF ,即可判断②;求出∠AGE =∠ECF =135°,即可判断③;求出∠FEC <45°,根据相似三角形的判定得出△GBE 和△ECH 不相似,即可判断④. 【详解】解:∵四边形 ABCD 是正方形, ∴AB =BC =CD , ∵AG =GE , ∴BG =BE , ∴∠BEG =45°, ∴∠BEA >45°, ∵∠AEF =90°, ∴∠HEC <45°, ∴HC <EC ,∴CD ﹣CH >BC ﹣CE ,即 DH >BE ,故①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE 和△CEF 中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE 和△ECH 不相似,∴④错误;故选:C.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.6.B【解析】【分析】由圆周角定理得出∠MON与∠MAN的关系,从而得出x与y的关系式,进而可得出答案.【详解】∵∠MON与∠MAN分别是弧MN所对的圆心角与圆周角,∴∠MAN=12∠MON,∴12y x ,∴点(x,y)一定在过原点的直线上.故选B.【点睛】本题考查了圆周角定理及正比例函数图像的性质,熟练掌握圆周角定理是解答本题的关键.7.D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.8.A【解析】【分析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.【详解】∵圆锥的轴截面是一个边长为3cm的等边三角形,∴底面半径=1.5cm,底面周长=3πcm,∴圆锥的侧面积=×3π×3=4.5πcm2,故选A.【点睛】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.9.D【解析】【分析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,∵选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1.故选D.【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键.10.B【解析】【分析】根据函数解析式的特点,其对称轴为x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在对称轴左侧,图象开口向上,利用y随x的增大而减小,可判断y3<y2<y1.【详解】抛物线y=x2﹣4x+m的对称轴为x=2,当x<2时,y随着x的增大而减小,因为-4<-3<1<2,所以y3<y2<y1,故选B.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键. 11.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.C【解析】试题分析:连接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故选C.考点:圆周角定理二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-43.【解析】【分析】过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(-4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.【详解】过点B作BD⊥x轴于点D,∵△AOB是等边三角形,点A的坐标为(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD= OB=2,BD=OB•sin60°=4×323,∴B(﹣2,3),∴k=﹣2×3=﹣3【点睛】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.14.2【解析】根据分式方程的解法,先去分母化为整式方程为2(x+1)=3x ,解得x=2,检验可知x=2是原分式方程的解.故答案为2.15.23π. 【解析】试题分析:根据题意可得:∠O=2∠A=60°,则△OBC 为等边三角形,根据∠BCD=30°可得:∠OCD=90°,OC=AC=2,则CD=OCD 122S =⨯=V OBC 60423603S ππ⨯==扇形,则23S π=阴影. 16.y (xy ﹣4x+4)【解析】【分析】直接提公因式y 即可解答.【详解】xy 2﹣4xy+4y=y (xy ﹣4x+4).故答案为:y (xy ﹣4x+4).【点睛】本题考查了因式分解——提公因式法,确定多项式xy 2﹣4xy+4y 的公因式为y 是解决问题的关键. 17.22(1)a +【解析】【分析】原式提取2,再利用完全平方公式分解即可.【详解】原式()()22=221=21a a a +++ 【点睛】先考虑提公因式法,再用公式法进行分解,最后考虑十字相乘,差项补项等方法.18.2511【解析】【分析】设BE =x ,则AE =5﹣x =AF =A'F ,CF =6﹣(5﹣x)=1+x ,依据△A'CF ∽△BCA ,可得'CF A F CA BA=,即16x +=55x -,进而得到BE =2511. 【详解】由折叠可得,∠AFE=∠A'FE,∵A'F∥AB,∴∠AEF=∠A'FE,∴∠AEF=∠AFE,∴AE=AF,由折叠可得,AF=A'F,设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,∵A'F∥AB,∴△A'CF∽△BCA,∴'CF A FCA BA=,即16x+=55x-,解得x=25 11,∴BE=25 11,故答案为:25 11.【点睛】本题主要考查了折叠问题以及相似三角形的判定与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q55;(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).【解析】【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).把点Q′坐标代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴m=5或5(舍弃),∴Q(5,45).(Ⅲ)如图,作MK⊥对称轴x=2于K.①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.∵此时点M的横坐标为1,∴y=8,∴M(1,8),N(2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,此时M′的横坐标为3,可得M′(3,8),N′(2,3).【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.20.大和尚有25人,小和尚有75人.【解析】【分析】设大和尚有x人,小和尚有y人,根据100个和尚吃100个馒头且1个大和尚分3个、3个小和尚分1个,即可得出关于x,y的二元一次方程组,解之即可得出结论.解:设大和尚有x人,小和尚有y人,依题意,得:100 131003x yx y+=⎧⎪⎨+=⎪⎩,解得:{x25y75==.答:大和尚有25人,小和尚有75人.【点睛】考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.(1)答案见解析;(2)证明见解析.【解析】【分析】(1)如图,在⊙O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF;(2)连接BE,如图,利用正六边形的性质得AB=BC=CD=DE=EF=FA,»»»»»»AB BC CD DE EF AF=====,则判断BE为直径,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判断四边形BCEF为矩形.【详解】解:(1)如图,正六边形ABCDEF为所作;(2)四边形BCEF为矩形.理由如下:连接BE,如图,∵六边形ABCDEF为正六边形,∴AB=BC=CD=DE=EF=FA,∴»»»»»»AB BC CD DE EF AF=====,∴»»»»»»BC CD DE EF AF AB++=++,∴¼¼BAE BCE=,∴BE为直径,∴∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,∴四边形BCEF为矩形.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定与正六边形的性质.22.(1)m≥﹣;(2)m的值为2.【解析】【分析】(1)根据方程有两个相等的实数根可知△>1,求出m的取值范围即可;(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.【详解】(1)由题意知,(2m+2)2﹣4×1×m2≥1,解得:m≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m2,∵α+β+αβ=1,∴﹣(2m+2)+m2=1,解得:m1=﹣1,m1=2,由(1)知m≥﹣,所以m1=﹣1应舍去,m的值为2.【点睛】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=﹣,x1x2=是解答此题的关键.23.(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)316﹣3【解析】【分析】(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC垂直平分BD;(2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN 是矩形;(3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.【详解】(1)∵AB=AD,CB=CD,∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,∴AC垂直平分BD,故答案为AC垂直平分BD;(2)四边形FMAN是矩形.理由:如图2,连接AF,∵Rt△ABC中,点F为斜边BC的中点,∴AF=CF=BF,又∵等腰三角形ABD 和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四边形AMFN是矩形;(3)BD′的平方为316﹣3分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,如图所示:过D'作D'E⊥AB,交BA的延长线于E,由旋转可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=22=AD',∴D'E=12AD'=2,AE=6,∴BE=22+6,∴Rt△BD'E中,BD'2=D'E2+BE2=(2)2+(22+6)2=16+83②以点A为旋转中心将正方形ABCD顺时针旋转60°,如图所示:过B作BF⊥AD'于F,旋转可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=22=AD',∴BF=12AB=2,AF=6,∴26,∴Rt△BD'F中,BD'2=BF2+D'F2=2)2+(26)2=16﹣3综上所述,BD′平方的长度为316﹣3.【点睛】本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解.解题时注意:有三个角是直角的四边形是矩形.24.(1)一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)1.【解析】【分析】(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需y 元,根据“购买2个A 品牌的足球和3个B 品牌的足球共需380元;购买4个A 品牌的足球和2个B 品牌的足球共需360元”列出方程组并解答; (2)把(1)中的数据代入求值即可.【详解】(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需y 元,依题意得:23380{42360x y x y +=+=,解得:40{100x y ==. 答:一个A 品牌的足球需40元,则一个B 品牌的足球需100元;(2)依题意得:20×40+2×100=1(元).答:该校购买20个A 品牌的足球和2个B 品牌的足球的总费用是1元.考点:二元一次方程组的应用.25.(1)60;(2)s =10t -6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B 步行到景点C 的速度是2米/分钟.【解析】【分析】(1)观察图像得出路程和时间,即可解决问题.(2)利用待定系数法求一次函数解析式即可;(3)分两种情况讨论即可;(4)设乙从B 步行到C 的速度是x 米/分钟,根据当甲到达景点C 时,乙与景点C 的路程为360米,所用的时间为(90-60)分钟,列方程求解即可.【详解】(1)甲的速度为540090=60米/分钟. (2)当20≤t ≤1时,设s=mt +n ,由题意得:200303000m n m n +=⎧⎨+=⎩,解得:3006000m n =⎧⎨=-⎩,所以s=10t -6000; (3)①当20≤t ≤1时,60t=10t -6000,解得:t=25,25-20=5;②当1≤t ≤60时,60t=100,解得:t=50,50-20=1.综上所述:乙出发5分钟和1分钟时与甲在途中相遇.(4)设乙从B 步行到C 的速度是x 米/分钟,由题意得:5400-100-(90-60) x=360解得:x=2.答:乙从景点B 步行到景点C 的速度是2米/分钟.【点睛】本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型.26.(1)(6,4),23y x =;(2)21(3)3(06)3S t t =--+<<,1,1. 【解析】【分析】(1)根据四边形OABC 为矩形即可求出点B 坐标,设直线OB 解析式为y kx =,将B (6,4)代入即可求直线OB 的解析式; (2)由题意可得6OM t =-,由(1)可得点P 的坐标为2,3t t ⎛⎫ ⎪⎝⎭, 表达出△OMP 的面积即可,利用二次函数的性质求出最大值.【详解】解:(1)∵OA=6,OC=4, 四边形OABC 为矩形,∴AB=OC=4,∴点B (6,4),设直线OB 解析式为y kx =,将B (6,4)代入得46k =,解得23k =, ∴23y x =, 故答案为:(6,4);23y x =(2)由题可知,CN AM t ==,6OM t ∴=-由(1)可知,点P 的坐标为2,3t t ⎛⎫ ⎪⎝⎭ 1223OMP S OM t ∴=⨯⨯V , 12(6)23t t =⨯-⨯ 21t 2t 3=-+ 21(3)3(06)3t t =--+<< ∴当3t =时,S 有最大值1.【点睛】本题考查了二次函数与几何动态问题,解题的关键是根据题意表达出点的坐标,利用几何知识列出函数关系式.27.(1)证明见解析(2)3【解析】【分析】(1)连接OC ,由C 为BE ∧的中点,得到12∠=∠,等量代换得到2ACO ∠=∠,根据平行线的性质得到OC CD ⊥,即可得到结论;(2)连接CE ,由勾股定理得到222CD AC AD =-=,根据切割线定理得到2CD AD DE =⋅,根据勾股定理得到223CE CD DE =+=,由圆周角定理得到90ACB ∠=︒,即可得到结论.【详解】 ()1相切,连接OC ,∵C 为¶BE的中点, ∴12∠=∠,∵OA OC =,∴1ACO ∠=∠,∴2ACO ∠=∠,∴//AD OC ,∵CD AD ⊥,∴OC CD ⊥,∴直线CD 与O e 相切;()2方法1:连接CE ,∵2AD =,6AC =∵90ADC ∠=o ,∴222CD AC AD -∵CD 是O e 的切线,∴2CD AD DE =⋅,∴1DE =,∴223CE CD DE =+∵C 为¶BE的中点,∴BC CE ==∵AB 为O e 的直径,∴90ACB ∠=o ,∴3AB ==.方法2:∵DCA B ∠=∠,易得ADC ACB V V ∽, ∴AD AC AC AB=, ∴3AB =.【点睛】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.。

宁夏吴忠市2019-2020学年第三次中考模拟考试数学试卷含解析

宁夏吴忠市2019-2020学年第三次中考模拟考试数学试卷含解析

宁夏吴忠市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环).下列说法中正确的是( ) A .若这5次成绩的中位数为8,则x =8 B .若这5次成绩的众数是8,则x =8 C .若这5次成绩的方差为8,则x =8 D .若这5次成绩的平均成绩是8,则x =82.如图,有一矩形纸片ABCD ,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将AED ∆以DE 为折痕向右折叠,AE 与BC 交于点F ,则CEF ∆的面积为( )A .4B .6C .8D .103.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( ) A .x(x+1)=1035B .x(x-1)=1035C .12x(x+1)=1035 D .12x(x-1)=1035 4.3-的倒数是( ) A .13-B .3C .13D .13±5.若一组数据2,3,4,5,x 的平均数与中位数相等,则实数x 的值不可能是( ) A .6B .3.5C .2.5D .16.有一种球状细菌的直径用科学记数法表示为2.16×10﹣3米,则这个直径是( ) A .216000米 B .0.00216米 C .0.000216米D .0.0000216米7.如图,已知点A ,B 分别是反比例函数y=k x (x <0),y=1x(x >0)的图象上的点,且∠AOB=90°,tan ∠BAO=12,则k 的值为( )A.2 B.﹣2 C.4 D.﹣48.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为()A.B.C.D.9.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确10.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山11.如图,某计算机中有、、三个按键,以下是这三个按键的功能.(1).:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成1.(2).:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.2. (3).:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成3.若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少( )A .0.01B .0.1C .10D .10012.-5的倒数是 A .15B .5C .-15D .-5二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.分解因式x 2﹣x=_______________________14.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=23,∠AEO=120°,则FC 的长度为_____.15.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,23=AB BC ,DE=6,则EF= .16.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.17.一个圆锥的母线长为5cm ,底面半径为1cm ,那么这个圆锥的侧面积为_____cm 1. 18.一次函数y=kx+b 的图象如图所示,当y >0时,x 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣3|.20.(6分)平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═kx(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.(1)设a=2,点B(4,2)在函数y1、y2的图象上.①分别求函数y1、y2的表达式;②直接写出使y1>y2>0成立的x的范围;(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;(3)设m=12,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.21.(6分)已知:关于x的方程x2﹣(2m+1)x+2m=0(1)求证:方程一定有两个实数根;(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.22.(8分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元.(1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?23.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.小礼诵读《论语》的概率是;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.24.(10分)某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表.A种产品B种产品成本(万元/件) 2 5利润(万元/件) 1 3(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?25.(10分)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=1.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.26.(12分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?27.(12分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】根据中位数的定义判断A ;根据众数的定义判断B ;根据方差的定义判断C ;根据平均数的定义判断D . 【详解】A 、若这5次成绩的中位数为8,则x 为任意实数,故本选项错误;B 、若这5次成绩的众数是8,则x 为不是7与9的任意实数,故本选项错误;C 、如果x=8,则平均数为15(8+9+7+8+8)=8,方差为15[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;D 、若这5次成绩的平均成绩是8,则15(8+9+7+8+x )=8,解得x=8,故本选项正确; 故选D . 【点睛】本题考查中位数、众数、平均数和方差:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差()()()()22221232...n x x x x x x x xS n-+-+-++-=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 2.C 【解析】 【分析】根据折叠易得BD ,AB 长,利用相似可得BF 长,也就求得了CF 的长度,△CEF 的面积=12CF•CE . 【详解】解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2, 因为BC ∥DE ,所以BF :DE=AB :AD , 所以BF=2,CF=BC-BF=4,所以△CEF 的面积=12CF•CE=8; 故选:C . 点睛:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,平行线的性质,三角形的面积公式等知识点. 3.B 【解析】试题分析:如果全班有x 名同学,那么每名同学要送出(x-1)张,共有x 名学生,那么总共送的张数应该是x (x-1)张,即可列出方程. ∵全班有x 名同学,∴每名同学要送出(x-1)张; 又∵是互送照片,∴总共送的张数应该是x (x-1)=1. 故选B考点:由实际问题抽象出一元二次方程. 4.A 【解析】 【分析】 【详解】解:3-的倒数是13-. 故选A . 【点睛】本题考查倒数,掌握概念正确计算是解题关键. 5.C 【解析】 【分析】因为中位数的值与大小排列顺序有关,而此题中x 的大小位置未定,故应该分类讨论x 所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置. 【详解】(1)将这组数据从小到大的顺序排列为2,3,4,5,x , 处于中间位置的数是4, ∴中位数是4,平均数为(2+3+4+5+x)÷5,∴4=(2+3+4+5+x)÷5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)÷5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)÷5=x,解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,符合排列顺序;∴x的值为6、3.5或1.故选C.【点睛】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.6.B【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】2.16×10﹣3米=0.00216米.故选B.【点睛】考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.D【解析】【分析】首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y=k x(x<0),y=1x(x>0)的图象上,即可得S△OBD=12,S△AOC=12|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值【详解】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD+∠AOC=90°,∴∠OBD=∠AOC,∴△OBD∽△AOC,又∵∠AOB=90°,tan∠BAO=12,∴OBAO=12,∴BODOACSSVV=14,即112142k,解得k=±4,又∵k<0,∴k=-4,故选:D.【点睛】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。

宁夏石嘴山市2019-2020学年第五次中考模拟考试数学试卷含解析

宁夏石嘴山市2019-2020学年第五次中考模拟考试数学试卷含解析

宁夏石嘴山市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.302.若代数式23x-有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0D.x≠33.如图,已知点A在反比例函数y=kx上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y=4xB.y=2xC.y=8xD.y=﹣8x4.把不等式组11xx<-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是()A.B.C.D.5.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为().A.12B.33C.31-D.314-6.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C .D .7.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根8.如图,正方形ABCD 的对角线AC 与BD 相交于点O ,∠ACB 的角平分线分别交AB ,BD 于M ,N 两点.若AM =2,则线段ON 的长为( )A .22B .3 C .1 D .6 9.如图,直线a ∥b ,点A 在直线b 上,∠BAC=100°,∠BAC 的两边与直线a 分别交于B 、C 两点,若∠2=32°,则∠1的大小为( )A .32°B .42°C .46°D .48°10.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )A .10.7×104B .1.07×105C .1.7×104D .1.07×10411.如图,△ABC 为直角三角形,∠C=90°,BC=2cm ,∠A=30°,四边形DEFG 为矩形,3, EF=6cm ,且点C 、B 、E 、F 在同一条直线上,点B 与点E 重合.Rt △ABC 以每秒1cm 的速度沿矩形DEFG 的边EF 向右平移,当点C 与点F 重合时停止.设Rt △ABC 与矩形DEFG 的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A.B.C.D.12.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF 的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B 顺时针旋转90°得到线段BF,连接BF,则图中阴影部分的面积是_____.14.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)15.如图,将△AOB以O为位似中心,扩大得到△COD,其中B(3,0),D(4,0),则△AOB与△COD 的相似比为_____.16.分解因式:4m 2﹣16n 2=_____.17.已知一个正数的平方根是3x -2和5x -6,则这个数是_____. 18.分解因式:mx 2﹣4m =_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A ,B ,C ,D 表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l )杨老师采用的调查方式是______(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C 班作品数量所对应的圆心角度数______. (3)请估计全校共征集作品的件数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.20.(6分)如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于()A 2,3-,B ()4,n 两点.(1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x 的取值范围.21.(6分)如图,Rt ABC ∆中,90ACB ∠=︒,CE AB ⊥于E ,BC mAC nDC ==,D 为BC 边上一点.(1)当2m =时,直接写出CE BE =,AEBE= . (2)如图1,当2m =,3n =时,连DE 并延长交CA 延长线于F ,求证:32EF DE =. (3)如图2,连AD 交CE 于G ,当AD BD =且32CG AE =时,求m n的值. 22.(8分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A .非常了解;B .比较了解;C .基本了解;D .不了解.根据调查统计结果,绘制了不完整的三种统计图表. 对雾霾了解程度的统计表: 对雾霾的了解程度百分比 A .非常了解5% B .比较了解m C .基本了解45% D .不了解n请结合统计图表,回答下列问题.(1)本次参与调查的学生共有 人,m= ,n= ;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.23.(8分)已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.24.(10分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.25.(10分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台.求甲、乙两种品牌空调的进货价;该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.26.(12分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.采用树状图或列表法列出两次摸出小球出现的所有可能结果;求摸出的两个小球号码之和等于4的概率.27.(12分)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知当这种商品每月的广告费用为m(千元)时,每月销售量将是原销售量的p倍,且p =.试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】【详解】试题解析:根据题意得9n=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.考点:利用频率估计概率.2.D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.3.C【解析】【分析】由双曲线中k的几何意义可知12AOCS kV,据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答. 【详解】∵S△AOC=4,∴k=2S△AOC=8;∴y=8x;故选C.【点睛】本题是关于反比例函数的题目,需结合反比例函数中系数k 的几何意义解答; 4.C 【解析】 【分析】求得不等式组的解集为x <﹣1,所以C 是正确的. 【详解】解:不等式组的解集为x <﹣1. 故选C . 【点睛】本题考查了不等式问题,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 5.C 【解析】 【分析】设B′C′与CD 的交点为E ,连接AE ,利用“HL”证明Rt △AB′E 和Rt △ADE 全等,根据全等三角形对应角相等∠DAE =∠B′AE ,再根据旋转角求出∠DAB′=60°,然后求出∠DAE =30°,再解直角三角形求出DE ,然后根据阴影部分的面积=正方形ABCD 的面积﹣四边形ADEB′的面积,列式计算即可得解. 【详解】如图,设B′C′与CD 的交点为E ,连接AE ,在Rt △AB′E 和Rt △ADE 中,AE AEAB AD '=⎧⎨=⎩, ∴Rt △AB′E ≌Rt △ADE (HL ), ∴∠DAE =∠B′AE , ∵旋转角为30°, ∴∠DAB′=60°, ∴∠DAE =12×60°=30°, ∴DE =1×33=33,∴阴影部分的面积=1×1﹣2×(12×1×3)=1﹣3. 故选C . 【点睛】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE =∠B′AE ,从而求出∠DAE =30°是解题的关键,也是本题的难点. 6.D 【解析】试题解析:设现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,由题意得.故选D .考点:由实际问题抽象出二元一次方程组 7.C 【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2ba-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误; ∵对称轴x=2ba-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确; ∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2ba-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.8.C 【解析】【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=22AM=2,再根据角平分线性质得BM=MH=2,则AB=2+2,于是利用正方形的性质得到AC=2AB=22+2,OC=12AC=2+1,所以CH=AC-AH=2+2,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.【详解】试题分析:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴222,∵CM平分∠ACB,∴2,∴2,∴22(2)2,∴OC=122+1,CH=AC﹣2+222,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴ON OCMH CH=21222+=+∴ON=1.故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.9.D【解析】【分析】根据平行线的性质与对顶角的性质求解即可.【详解】∵a∥b,∴∠BCA=∠2,∵∠BAC=100°,∠2=32°∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.∴∠1=∠CBA=48°.故答案选D.【点睛】本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.10.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:10700=1.07×104,故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.A【解析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:∵四边形DEFG为矩形,∠C=90,∴DE=GF=23,∠C=∠DEF=90°, ∴AC ∥DE ,此题有三种情况:(1)当0<x <2时,AB 交DE 于H ,如图∵DE ∥AC ,∴EH BE AC BC =, 即223EH x =, 解得:EH=3x ,所以y=12•3x•x=32x 2, ∵x 、y 之间是二次函数,所以所选答案C 错误,答案D 错误,∵a=32>0,开口向上; (2)当2≤x≤6时,如图,此时y=12×2×23=23, (3)当6<x≤8时,如图,设△ABC 的面积是s 1,△FNB 的面积是s 2,BF=x ﹣6,与(1)类同,同法可求3﹣3∴y=s 1﹣s 2,=12×2×312×(x ﹣6)×3﹣3,=﹣3x2+63x﹣163,∵﹣3<0,∴开口向下,所以答案A正确,答案B错误,故选A.点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.12.B【解析】【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.6﹣π【解析】过F作FM⊥BE于M,则∠FME=∠FMB=90°,∵四边形ABCD是正方形,AB=2,∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,由勾股定理得:2,∵将线段CD 绕点C 顺时针旋转90°得到线段CE ,线段BD 绕点B 顺时针旋转90°得到线段BF ,∴∠DCE=90°,,∠FBE=90°-45°=45°,∴BM=FM=2,ME=2,∴阴影部分的面积BCD BFE DCE DBF S S S S S =++-V V 扇形扇形=12×2×2+12×4×2+2902360π⨯-290360π⨯=6-π. 故答案为:6-π.点睛:本题考查了旋转的性质,解直角三角形,正方形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.14.5π【解析】【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积,利用扇形的面积公式计算即可求解.【详解】∵△AOC ≌△BOD ,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积2212041201360360ππ⨯⨯⨯⨯=-=5π. 故答案为:5π.【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积是解题的关键.15.3:1.【解析】∵△AOB 与△COD 关于点O 成位似图形,∴△AOB ∽△COD ,则△AOB 与△COD 的相似比为OB :OD=3:1,故答案为3:1 (或34). 16.4(m+2n )(m ﹣2n ).【解析】【分析】原式提取4后,利用平方差公式分解即可.【详解】解:原式=4(224m n - )()()422m n m n =+-.故答案为()()422m n m n +-【点睛】本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.17.1【解析】【详解】试题解析:根据题意,得:32560,x x -+-=解得:1,x =321,56 1.x x ∴-=-=-()21 1.±=故答案为1【点睛】:一个正数有2个平方根,它们互为相反数.18.m (x+2)(x ﹣2)【解析】【分析】提取公因式法和公式法相结合因式分解即可.【详解】原式()24,m x =- ()()22.m x x =+-故答案为()()22.m x x +-【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)抽样调查(2)150°(3)180件(4)25 【解析】分析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷90360=24(件),C 班作品的件数为:24-4-6-4=10(件);继而可补全条形统计图;(3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案.详解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷90360=24件, C 班有24﹣(4+6+4)=10件,补全条形图如图所示,扇形统计图中C 班作品数量所对应的圆心角度数360°×1024=150°; 故答案为150°;(3)∵平均每个班244=6件, ∴估计全校共征集作品6×30=180件.(4)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况, ∴恰好选取的两名学生性别相同的概率为82=205. 点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时古典概型求法:(1)算出所有基本事件的个数n ;(2)求出事件A 包含的所有基本事件数m ;(3)代入公式P(A)=m n,求出P (A ).. 20.(1)6y x =-;3342y x =-+;(2)2x <-或04x <<; 【解析】【分析】(1)利用点A 的坐标可求出反比例函数解析式,再把B (4,n )代入反比例函数解析式,即可求得n 的值,于是得到一次函数的解析式;(2)根据图象和A ,B 两点的坐标即可写出一次函数的值大于反比例函数时自变量x 的取值范围.【详解】(1)m y x=Q 过点()2,3A -, 6m ∴=-, ∴反比例函数的解析式为6y x =-; Q 点()4,B n 在6y x=- 上, 32n ∴=-, 3(4,2B ∴- ), Q 一次函数y kx b =+过点()2,3A -,3(4,2B - ) 23342k b k b -+=⎧⎪∴⎨+=-⎪⎩, 解得:3432k b ⎧=-⎪⎪⎨⎪=⎪⎩. ∴一次函数解析式为3342y x =-+; (2)由图可知,当2x <-或04x <<时,一次函数值大于反比例函数值.【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.21.(1)12,14;(2)证明见解析;(3)34m n =. 【解析】【分析】(1)利用相似三角形的判定可得BCE CAE BAC ∆∆∆∽∽,列出比例式即可求出结论;(2)作//DH CF 交AB 于H ,设AE a =,则4BE a =,根据平行线分线段成比例定理列出比例式即可求出AH 和EH ,然后根据平行线分线段成比例定理列出比例式即可得出结论;(3)作DH AB ⊥于H ,根据相似三角形的判定可得AEG CEA ∆∆∽,列出比例式可得2AE EG EC =g ,设3CG a =,2AE a =,EG x =,即可求出x 的值,根据平行线分线段成比例定理求出::5:8BD BC DH CE ==,设5BD AD b ==,8BC b =,3CD b =,然后根据勾股定理求出AC ,即可得出结论.【详解】(1)如图1中,当2m =时,2BC AC =.CE AB ⊥Q ,90ACB ∠=︒,BCE CAE BAC ∴∆∆∆∽∽, ∴12CE AC AE EB BC EC ===, 2EB EC ∴=,2EC AE =,∴14AE EB =. 故答案为:12,14. (2)如图11-中,作//DH CF 交AB 于H .2m =Q ,3n =,∴tan ∠B=12CE AC BE BC ==,tan ∠ACE= tan ∠B=12AE CE = ∴BE=2CE ,12AE CE = 4BE AE ∴=,2BD CD =,设AE a =,则4BE a =,//DH AC Q ,∴2BH BD AH CD==,53AH a ∴=,5233EH a a a =-=, //DH AF Q ,∴3223EF AE a DE EH a ===, 32EF DE ∴=. (3)如图2中,作DH AB ⊥于H .90ACB CEB ∠=∠=︒Q ,90ACE ECB ∴∠+∠=︒,90B ECB ∠+∠=︒,ACE B ∴∠=∠,DA DB =Q ,EAG B ∠=∠,EAG ACE ∴∠=∠,90AEG AEC ∠=∠=︒Q ,AEG CEA ∴∆∆∽,2AE EG EC ∴=g ,32CG AE =Q ,设3CG a =,2AE a =,EG x =, 则有24(3)a x x a =+,解得x a =或4a -(舍弃),1tan tan tan 2EG EAG ACE B AE ∴∠=∠=∠==, 4EC a ∴=,8EB a =,10AB a =,DA DB =Q ,DH AB ⊥,5AH HB a ∴==,52DH a ∴=, //DH CE Q ,::5:8BD BC DH CE ∴==,设5BD AD b ==,8BC b =,3CD b =,在Rt ACD ∆中,224AC AD CD b -=,:4:3AC CD ∴=,mAC nDC =Q ,::4:3AC CD n m ∴==, ∴34m n =. 【点睛】此题考查的是相似三角形的应用和锐角三角函数,此题难度较大,掌握相似三角形的判定及性质、平行线分线段成比例定理和利用锐角三角函数解直角三角形是解决此题的关键.22.解:(1)400;15%;35%.(2)1.(3)∵D 等级的人数为:400×35%=140, ∴补全条形统计图如图所示:(4)列树状图得:∵从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,∴小明参加的概率为:P (数字之和为奇数)82123==; 小刚参加的概率为:P (数字之和为偶数)41123==. ∵P (数字之和为奇数)≠P (数字之和为偶数),∴游戏规则不公平.【解析】(1)根据“基本了解”的人数以及所占比例,可求得总人数:180÷45%=400人.在根据频数、百分比之间的关系,可得m ,n 的值:60m 100%15%n 15%15%45%35%400=⨯==---=,. (2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360°的比可得出统计图中D 部分扇形所对应的圆心角:360°×35%=1°.(3)根据D 等级的人数为:400×35%=140,据此补全条形统计图. (4)用树状图或列表列举出所有可能,分别求出小明和小刚参加的概率,若概率相等,游戏规则公平;反之概率不相等,游戏规则不公平.23.见解析【解析】试题分析:已知AB ∥CD ,根据两直线平行,内错角相等可得∠B=∠ECD ,再根据SAS 证明△ABC ≌△ECD 全,由全等三角形对应边相等即可得AC=ED .试题解析:∵AB ∥CD ,∴∠B=∠DCE .在△ABC 和△ECD 中,∴△ABC ≌△ECD (SAS ),∴AC=ED .考点:平行线的性质;全等三角形的判定及性质.24.(1)证明见解析(2)3【解析】试题分析:(1)根据平行四边形的性质,可证DF ∥EB ,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF 是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;(2)根据(1)可知DE=BF ,然后根据勾股定理可求AD 的长,然后根据角平分线的性质和平行线的性质可求得DF=AD ,然后可求CD 的长,最后可用平行四边形的面积公式可求解.试题解析:(1)∵四边形ABCD 是平行四边形,∴DC ∥AB ,即DF ∥EB .又∵DF =BE ,∴四边形DEBF 是平行四边形.∵DE ⊥AB ,∴∠EDB =90°.∴四边形DEBF 是矩形.(2)∵四边形DEBF 是矩形,∴DE =BF =4,BD =DF .∵DE ⊥AB ,∴AD 22AE DE +2234+1.∵DC ∥AB ,∴∠DFA =∠FAB .∵AF 平分∠DAB ,∴∠DAF =∠FAB .∴∠DAF =∠DFA .∴DF =AD =1.∴BE =1.∴AB =AE +BE =3+1=2.∴S □ABCD =AB·BF =2×4=3.25.(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元【解析】【分析】(1)设甲种品牌空调的进货价为x 元/台,则乙种品牌空调的进货价为1.2x 元/台,根据数量=总价÷单价可得出关于x 的分式方程,解之并检验后即可得出结论;(2)设购进甲种品牌空调a 台,所获得的利润为y 元,则购进乙种品牌空调(10-a )台,根据总价=单价×数量结合总价不超过16000 元,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再由总利润=单台利润×购进数量即可得出y 关于a 的函数关系式,利用一次函数的性质即可解决最值问题.【详解】(1)由(1)设甲种品牌的进价为x 元,则乙种品牌空调的进价为(1+20%)x 元,由题意,得 ()720030002120%xx =++, 解得x=1500,经检验,x=1500是原分式方程的解,乙种品牌空调的进价为(1+20%)×1500=1800(元). 答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)设购进甲种品牌空调a 台,则购进乙种品牌空调(10-a )台,由题意,得1500a+1800(10-a )≤16000,解得 203≤a , 设利润为w ,则w=(2500-1500)a+(3500-1800)(10-a )=-700a+17000,因为-700<0,则w 随a 的增大而减少,当a=7时,w 最大,最大为12100元.答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x 的分式方程;(2)根据总利润=单台利润×购进数量找出y 关于a 的函数关系式. 26. (1)见解析;(2)13. 【解析】【分析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率. 【详解】 解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点睛】本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.27.方案二能获得更大的利润;理由见解析【解析】【分析】方案一:由利润=(实际售价-进价)×销售量,列出函数关系式,再用配方法求最大利润;方案二:由利润=(售价-进价)×500p-广告费用,列出函数关系式,再用配方法求最大利润. 【详解】解:设涨价x 元,利润为y 元,则方案一:涨价x 元时,该商品每一件利润为:50+x−40,销售量为:500−10x ,∴22(5040)(50010)10400500010(20)9000y x x x x x =+--=-++=--+,∵当x=20时,y 最大=9000,∴方案一的最大利润为9000元;方案二:该商品售价利润为=(50−40)×500p ,广告费用为:1000m 元,∴()2250405001000200090002000( 2.25)10125y p m m m m =-⨯-=-+=--+, ∴方案二的最大利润为10125元;∴选择方案二能获得更大的利润.本题考查二次函数的实际应用,根据题意,列出函数关系式,配方求出最大值.。

【附5套中考模拟试卷】宁夏银川市2019-2020学年中考第三次模拟数学试题含解析

【附5套中考模拟试卷】宁夏银川市2019-2020学年中考第三次模拟数学试题含解析

宁夏银川市2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5D.a2p÷a﹣p=a3p2.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×1073.下面几何的主视图是()A.B.C.D.4.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9 17 20 9 5关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是265.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是()A.-1 B.-C.D.–π6.下列二次根式中,最简二次根式是()A.9a B.35a C.22a b+D.1 2 a+7.下列手机手势解锁图案中,是轴对称图形的是( ) A.B.C.D.8.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为()A.12B.13C.23D.349.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()10.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为()A.5B.512-C.12D.111.在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④12.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)134x-x的取值范围为_____.14.如图,以长为18的线段AB为直径的⊙O交△ABC的边BC于点D,点E在AC上,直线DE与⊙O 相切于点D.已知∠CDE=20°,则»AD的长为_____.15.因式分解:2()4()a a b a b ---=___.16.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =6cm ,动点P 从点A 出发,沿AB 方向以每秒2cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒lcm 的速度向终点C 运动,将△PQC沿BC 翻折,点P 的对应点为点P′,设Q 点运动的时间为t 秒,若四边形QP′C P 为菱形,则t 的值为_____.17.如果点A (-1,4)、B (m ,4)在抛物线y =a (x -1)2+h 上,那么m 的值为_____.18.若方程x 2+2(1+a )x+3a 2+4ab+4b 2+2=0有实根,则b a=_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC . (1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB=8,CE=2时,求AC 的长.20.(6分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.21.(6分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP =AD . 求证:PD =AB .如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E ,当BE CE的值是多少时,△PDE 的周长最小?如图(3),点 Q 是连接 CF ,G 为 CF 的中点,M 、N 分别为线段 QF 和 CD 上的动点,且始终保持 QM =CN ,MN 与 DF 相交于点 H ,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.22.(8分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)调查了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.23.(8分)如图,抛物线2y ax 2ax c =-+(a≠0)交x 轴于A 、B 两点,A 点坐标为(3,0),与y 轴交于点C (0,4),以OC 、OA 为边作矩形OADC 交抛物线于点G .求抛物线的解析式;抛物线的对称轴l 在边OA (不包括O 、A 两点)上平行移动,分别交x 轴于点E ,交CD 于点F ,交AC 于点M ,交抛物线于点P ,若点M 的横坐标为m ,请用含m 的代数式表示PM 的长;在(2)的条件下,连结PC ,则在CD 上方的抛物线部分是否存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似?若存在,求出此时m 的值,并直接判断△PCM24.(10分)如图,以△ABC的边AB为直径的⊙O分别交BC、AC于F、G,且G是»AF的中点,过点G作DE⊥BC,垂足为E,交BA的延长线于点D(1)求证:DE是的⊙O切线;(2)若AB=6,BG=4,求BE的长;(3)若AB=6,CE=1.2,请直接写出AD的长.25.(10分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.26.(12分)(1)计算:|3-1|+(2017-π)0-(14)-1-3tan30°+38;(2)化简:(22369a aa a--++23a-)÷229aa--,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.27.(12分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO 绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;直接写出点A1的坐标,点A2的坐标.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】直接利用合并同类项法则以及完全平方公式和整式的乘除运算法则分别计算即可得出答案.【详解】解:A.﹣5x﹣2x=﹣7x,故此选项错误;B.(a+3)2=a2+6a+9,故此选项错误;C.(﹣a3)2=a6,故此选项错误;D.a2p÷a﹣p=a3p,正确.故选D.【点睛】本题主要考查了合并同类项以及完全平方公式和整式的乘除运算,正确掌握运算法则是解题的关键.2.D【解析】试题解析:55000000=5.5×107,故选D.考点:科学记数法—表示较大的数3.B【解析】【分析】主视图是从物体正面看所得到的图形.【详解】解:从几何体正面看故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.C【解析】【分析】根据众数、中位数、平均数以及方差的概念求解.A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数=91720955++++=12,故本选项正确;D、方差=15[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=1565,故本选项错误.故选C.【点睛】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.5.B【解析】【分析】根据两个负数,绝对值大的反而小比较.【详解】解:∵−>−1>−>−π,∴负数中最大的是−.故选:B.【点睛】本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.6.C【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A.被开方数含能开得尽方的因数或因式,故A不符合题意,B.被开方数含能开得尽方的因数或因式,故B不符合题意,C.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意,D.被开方数含分母,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开【解析】【分析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.8.D【解析】【分析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是34,故选:D.【点睛】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.9.A【解析】【分析】根据已知得出直径是60cm的圆形铁皮,被分成三个圆心角为120︒半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。

【附5套中考模拟试卷】宁夏吴忠市2019-2020学年中考数学模拟试题含解析

【附5套中考模拟试卷】宁夏吴忠市2019-2020学年中考数学模拟试题含解析

宁夏吴忠市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是( ) 用水量x (吨) 3 4 5 6 7 频数1254﹣xxA .平均数、中位数B .众数、中位数C .平均数、方差D .众数、方差2.为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指( ) A .80B .被抽取的80名初三学生C .被抽取的80名初三学生的体重D .该校初三学生的体重3.如图,在四边形ABCD 中,如果∠ADC=∠BAC ,那么下列条件中不能判定△ADC 和△BAC 相似的是( )A .∠DAC=∠ABCB .AC 是∠BCD 的平分线 C .AC 2=BC•CD D .AD DCAB AC= 4.关于x 的一元二次方程x 2-4x+k=0有两个相等的实数根,则k 的值是( ) A .2B .-2C .4D .-45.若点()()()112233,,,,,x y x y x y 都是反比例函数21a y x--=的图象上的点,并且1230x x x <<<,则下列各式中正确的是(( ) A .132y y y <<B .231y y y <<C .321y y y <<D .123y y y <<6.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A.34°B.56°C.66°D.146°7.某运动会颁奖台如图所示,它的主视图是()A.B.C.D.8.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣69.在﹣3,0,4,6这四个数中,最大的数是()A.﹣3 B.0 C.4 D.610.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设P n(x n,y n),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为()A.1 B.3 C.﹣1 D.201911.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°12.6的相反数为()A.-6 B.6 C.16D.16二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为▲ 辆.14.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为_____.15.用48米长的竹篱笆在空地上,围成一个绿化场地,现有两种设计方案,一种是围成正方形的场地;另一种是围成圆形场地.现请你选择,围成________(圆形、正方形两者选一)场在面积较大. 16.抛物线y=(x ﹣3)2+1的顶点坐标是____.17.如图(a ),有一张矩形纸片ABCD ,其中AD=6cm ,以AD 为直径的半圆,正好与对边BC 相切,将矩形纸片ABCD 沿DE 折叠,使点A 落在BC 上,如图(b ).则半圆还露在外面的部分(阴影部分)的面积为_______.18.如图,以锐角△ABC 的边AB 为直径作⊙O ,分别交AC ,BC 于E 、D 两点,若AC =14,CD =4,7sinC =3tanB ,则BD =_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)观察与思考:阅读下列材料,并解决后面的问题在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图(1)),则sinB=ADc,sinC=AD b ,即AD =csinB ,AD =bsinC ,于是csinB =bsinC ,即sin sin b cB C =,同理有:sin sin c a C A=,sin sin a b A B=,所以sin sin sin a b cA B C ==. 即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素. 根据上述材料,完成下列各题.(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=;AC=;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,6≈2.449)20.(6分)如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km,点B位于点A北偏东60°方向且与A相距10km.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5分钟后该轮船行至点A的正北方向的D处.(1)求观测点B到航线l的距离;(2)求该轮船航行的速度(结果精确到0.1km/h).(参考数据:3,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)21.(6分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?22.(8分)今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题:分组分数段(分)频数A 36≤x<41 22B 41≤x<46 5C 46≤x<51 15D 51≤x<56 mE 56≤x<61 10(1)求全班学生人数和m的值;(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段;(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.23.(8分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).24.(10分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图.(1)测试不合格人数的中位数是.(2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图.25.(10分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线DE 交AC于点E,交AB延长线于点F.(1)求证:BD=CD;(2)求证:DC2=CE•AC;(3)当AC=5,BC=6时,求DF的长.26.(12分)如图,在平面直角坐标系中,一次函数1(0)y ax b a =+≠的图象与y 轴相交于点A ,与反比例函数2(0)ky k x=≠的图象相交于点(3,2)B ,(1,)C n -.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出12y y >时,x 的取值范围;(3)在y 轴上是否存在点P ,使PAB △为等腰三角形,如果存在,请求点P 的坐标,若不存在,请说明理由.27.(12分)如图1,抛物线l 1:y=﹣x 2+bx+3交x 轴于点A 、B ,(点A 在点B 的左侧),交y 轴于点C ,其对称轴为x=1,抛物线l 2经过点A ,与x 轴的另一个交点为E (5,0),交y 轴于点D (0,﹣5). (1)求抛物线l 2的函数表达式;(2)P 为直线x=1上一动点,连接PA 、PC ,当PA=PC 时,求点P 的坐标;(3)M 为抛物线l 2上一动点,过点M 作直线MN ∥y 轴(如图2所示),交抛物线l 1于点N ,求点M 自点A 运动至点E 的过程中,线段MN 长度的最大值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.【详解】∵6吨和7吨的频数之和为4-x+x=4,∴频数之和为1+2+5+4=12,则这组数据的中位数为第6、7个数据的平均数,即=5,∴对于不同的正整数x,中位数不会发生改变,∵后两组频数和等于4,小于5,∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.故选B.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.2.C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】样本是被抽取的80名初三学生的体重,故选C.【点睛】此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. 3.C 【解析】 【分析】结合图形,逐项进行分析即可. 【详解】在△ADC 和△BAC 中,∠ADC=∠BAC ,如果△ADC ∽△BAC ,需满足的条件有:①∠DAC=∠ABC 或AC 是∠BCD 的平分线; ②AD DCAB AC=, 故选C . 【点睛】本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键. 4.C 【解析】 【分析】 【详解】对于一元二次方程a 2x +bx+c=0,当Δ=2b -4ac=0时,方程有两个相等的实数根. 即16-4k=0,解得:k=4. 考点:一元二次方程根的判别式 5.B 【解析】 【分析】 【详解】解:根据题意可得:210a --p∴反比例函数处于二、四象限,则在每个象限内为增函数, 且当x <0时y >0,当x >0时,y <0, ∴2y <3y <1y . 6.B 【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a ∥b ,∴∠2+∠BAD=180°.∵AC ⊥AB 于点A ,∠1=34°,∴∠2=180°﹣90°﹣34°=56°. 故选B .点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大. 7.C 【解析】 【分析】 【详解】从正面看到的图形如图所示:,故选C . 8.D 【解析】 【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 【详解】解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而60.0000025 2.510-=⨯. 故选D . 9.C 【解析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,在﹣3,0,16这四个数中,﹣3<06<1,最大的数是1.故选C . 10.C 【解析】 【分析】根据各点横坐标数据得出规律,进而得出x 1 +x 2 +…+x 7 ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果. 【详解】解:根据平面坐标系结合各点横坐标得出:x 1、x 2、x 3、x 4、x 5、x 6、x 7、x 8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5; ∴x 1+x 2+…+x 7=﹣1∵x 1+x 2+x 3+x 4=1﹣1﹣1+3=2; x 5+x 6+x 7+x 8=3﹣3﹣3+5=2; …x 97+x 98+x 99+x 100=2…∴x 1+x 2+…+x 2016=2×(2016÷4)=1. 而x 2017、x 2018、x 2019的值分别为:1009、﹣1009、﹣1009, ∴x 2017+x 2018+x 2019=﹣1009,∴x 1+x 2+…+x 2018+x 2019=1﹣1009=﹣1, 故选C . 【点睛】此题主要考查规律型:点的坐标,解题关键在于找到其规律 11.D 【解析】 【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD 为菱形.所以根据菱形的性质进行判断. 【详解】 解:Q 四边形ABCD 是用两张等宽的纸条交叉重叠地放在一起而组成的图形,//AB CD ∴,//AD BC ,∴四边形ABCD 是平行四边形(对边相互平行的四边形是平行四边形);过点D 分别作BC ,CD 边上的高为AE ,AF .则 AE AF =(两纸条相同,纸条宽度相同); Q 平行四边形ABCD 中,ABC ACD S S ∆∆=,即⨯=⨯BC AE CD AF ,BC CD ∴=,即AB BC =.故B 正确;∴平行四边形ABCD 为菱形(邻边相等的平行四边形是菱形).ABC ADC ∠=∠∴,BAD BCD ∠=∠(菱形的对角相等),故A 正确; AB CD =,AD BC =(平行四边形的对边相等),故C 正确; 如果四边形ABCD 是矩形时,该等式成立.故D 不一定正确. 故选:D . 【点睛】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”. 12.A 【解析】 【分析】根据相反数的定义进行求解. 【详解】1的相反数为:﹣1.故选A. 【点睛】本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.2.85×2. 【解析】 【分析】根据科学记数法的定义,科学记数法的表示形式为a×20n ,其中2≤|a|<20,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于2还是小于2.当该数大于或等于2时,n 为它的整数位数减2;当该数小于2时,-n 为它第一个有效数字前0的个数(含小数点前的2个0). 【详解】解:28500000一共8位,从而28500000=2.85×2.14.【解析】 【分析】过A 作关于直线MN 的对称点A′,连接A′B ,由轴对称的性质可知A′B 即为PA+PB 的最小值, 【详解】解:连接OB ,OA′,AA′, ∵AA′关于直线MN 对称, ∴»¼''AN A N =∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=即PA+PB的最小值【点睛】本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键. 15.圆形【解析】【分析】根据竹篱笆的长度可知所围成的正方形的边长,进而可计算出所围成的正方形的面积;根据圆的周长公式,可知所围成的圆的半径,进而将圆的面积计算出来,两者进行比较.【详解】围成的圆形场地的面积较大.理由如下:设正方形的边长为a,圆的半径为R,∵竹篱笆的长度为48米,∴4a=48,则a=1.即所围成的正方形的边长为1;2π×R=48,∴R=24π,即所围成的圆的半径为24π,∴正方形的面积S1=a2=144,圆的面积S2=π×(24π)2=576π,∵144<576π,∴围成的圆形场地的面积较大.故答案为:圆形.【点睛】此题主要考查实数的大小的比较在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.16.(3,1)【解析】分析:已知抛物线解析式为顶点式,可直接写出顶点坐标.详解:∵y=(x﹣3)2+1为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的顶点坐标为(3,1).故答案为(3,1).点睛:主要考查了抛物线顶点式的运用.17.2933cm 4π⎛⎫- ⎪ ⎪⎝⎭【解析】 【分析】 【详解】解:如图,作OH ⊥DK 于H ,连接OK ,∵以AD 为直径的半圆,正好与对边BC 相切,∴AD=2CD . ∴根据折叠对称的性质,A'D=2CD .∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°. ∴∠DOK=120°.∴扇形ODK 的面积为()2212033cm 360ππ⨯⨯=.∵∠ODH=∠OKH=30°,OD=3cm ,∴333OH cm,DH cm 22==.∴DK 33cm =. ∴△ODK 的面积为()2139333cm 224⨯⨯=. ∴半圆还露在外面的部分(阴影部分)的面积是:2933cm π⎛⎫- ⎪ ⎪⎝⎭. 故答案为:2933cm π⎛⎫- ⎪ ⎪⎝⎭.18.1 【解析】如图,连接AD ,根据圆周角定理可得AD ⊥BC .在Rt △ADC 中,sinC=;在Rt △ABD 中,tanB=.已知7sinC=3tanB ,所以7×=3×,又因AC =14,即可求得BD=1.点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD 为桥梁,利用锐角三角函数的定义得到tanB 和sinC 的式子是解决问题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)60,206;(2)渔政船距海岛A 的距离AB 约为24.49海里. 【解析】 【分析】(1)利用题目总结的正弦定理,将有关数据代入求解即可;(2)在△ABC 中,分别求得BC 的长和三个内角的度数,利用题目中总结的正弦定理求AC 的长即可. 【详解】(1)由正玄定理得:∠A =60°,AC =206; 故答案为60°,206; (2)如图:依题意,得BC =40×0.5=20(海里). ∵CD ∥BE ,∴∠DCB +∠CBE =180°. ∵∠DCB =30°,∴∠CBE =150°. ∵∠ABE =75°,∴∠ABC =75°, ∴∠A =45°. 在△ABC 中,sin sin AB BCACB A=∠,即00sin 60sin 45AB BC=∠,解得AB =6≈24.49(海里).答:渔政船距海岛A 的距离AB 约为24.49海里. 【点睛】本题考查了方向角的知识,更重要的是考查了同学们的阅读理解能力,通过材料总结出学生们没有接触的知识,并根据此知识点解决相关的问题,是近几年中考的高频考点.20.(1)观测点B 到航线l 的距离为3km (2)该轮船航行的速度约为40.6km/h【解析】试题分析:(1)设AB 与l 交于点O ,利用∠DAO=60°,利用∠DAO 的余弦求出OA 长,从而求得OB 长,继而求得BE 长即可;(2)先计算出DE=EF+DF=求出DE=53,再由进而由tan ∠CBE=CEBE求出EC ,即可求出CD 的长,进而求出航行速度.试题解析:(1)设AB 与l 交于点O ,在Rt △AOD 中,∵∠OAD=60°,AD=2(km ), ∴OA=cos60AD=4(km ),∵AB=10(km ), ∴OB=AB ﹣OA=6(km ),在Rt △BOE 中,∠OBE=∠OAD=60°, ∴BE=OB•cos60°=3(km ),答:观测点B 到航线l 的距离为3km ;(2)∵∠OAD=60°,AD=2(km ),∴OD=AD·tan60°3 ,∵∠BEO=90°,BO=6,BE=3,∴22OB BE -3∴3km ); CE=BE•tan ∠CBE=3tan76°,∴CD=CE ﹣DE=3tan76°﹣3(km ), ∵5(min )=112 (h),∴v=112S CDt==12CD=12×3.38≈40.6(km/h ),答:该轮船航行的速度约为40.6km/h .【点睛】本题主要考查了方向角问题以及利用锐角三角函数关系得出EC ,DE ,DO 的长是解题关键. 21.120 【解析】【分析】设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【详解】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【点睛】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.22.(1)50,18;(2)中位数落在51﹣56分数段;(3)23.【解析】【分析】(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)利用中位数的定义得出中位数的位置;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.【详解】解:(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班学生人数:50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1A1A2B1A1(A1,A2)(A1,B1)A2(A2,A1)(A2,B1)P (一男一女)==63. 【点睛】本题考查列表法与树状图法,频数(率)分布表,扇形统计图,中位数.23.(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元. 【解析】 【分析】(1)若设甲服装的成本为x 元,则乙服装的成本为(500-x )元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可. 【详解】(1)设甲服装的成本为x 元,则乙服装的成本为(500-x )元, 根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x )-500=67, 解得:x=300, 500-x=1.答:甲服装的成本为300元、乙服装的成本为1元.(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元, ∴设每件乙服装进价的平均增长率为y ,则 22001y 242()+=, 解得:1y =0.1=10%,2y =-2.1(不合题意,舍去). 答:每件乙服装进价的平均增长率为10%; (3)∵每件乙服装进价按平均增长率再次上调 ∴再次上调价格为:242×(1+10%)=266.2(元) ∵商场仍按9折出售,设定价为a 元时 0.9a-266.2>0 解得:a >2662295.89≈ 故定价至少为296元时,乙服装才可获得利润.考点:一元二次方程的应用,不等式的应用,打折销售问题24.(1)1;(2)这两次测试的平均增长率为20%;(3)55%.【解析】【分析】(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数÷参加测试的总人数×100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解.【详解】解:(1)将四次测试结果排序,得:30,40,50,60,∴测试不合格人数的中位数是(40+50)÷2=1.故答案为1;(2)∵每次测试不合格人数的平均数为(60+40+30+50)÷4=1(人),∴第四次测试合格人数为1×2﹣18=72(人).设这两次测试的平均增长率为x,根据题意得:50(1+x)2=72,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),∴这两次测试的平均增长率为20%;(3)50×(1+20%)=60(人),(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%,1﹣1%=55%.补全条形统计图与扇形统计图如解图所示.【点睛】本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据.25.(1)详见解析;(2)详见解析;(3)DF=607.【解析】【分析】(1)先判断出AD⊥BC,即可得出结论;(2)先判断出OD∥AC,进而判断出∠CED=∠ODE,判断出△CDE∽△CAD,即可得出结论;(3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出DF ODEF AE=,即可得出结论.【详解】(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)连接OD,∵DE是⊙O的切线,∴∠ODE=90°,由(1)知,BD=CD,∵OA=OB,∴OD∥AC,∴∠CED=∠ODE=90°=∠ADC,∵∠C=∠C,∴△CDE∽△CAD,∴CD CE AC CD=,∴CD2=CE•AC;(3)∵AB=AC=5,由(1)知,∠ADB=90°,OA=OB,∴OD=12AB=52, 由(1)知,CD=12BC=3, 由(2)知,CD 2=CE•AC , ∵AC=5,∴CE=295CD AC =,∴AE=AC-CE=5-95=165, 在Rt △CDE 中,根据勾股定理得,125=, 由(2)知,OD ∥AC ,∴DF ODEF AE=, ∴52121655DFDF +=, ∴DF=607.【点睛】此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出△CDE ∽△CAD 是解本题的关键. 26.(1)24y x =-; 6y x=;(2)10x -<<或3x >;(3)存在,(0,4P -+或(0,4P --或(0,8)P 或10,4P ⎛⎫- ⎪⎝⎭.【解析】 【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C 坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分BP BA =、BP BA =、PA PB =三种情况讨论,即可得出结论. 【详解】(1)Q 一次函数1y ax b =+与反比例函数ky x=,相交于点(3,2)B ,(1,)C n -, ∴把(3,2)B 代入k y x=得:23k =,∴6k =, ∴反比例函数解析式为6y x =, 把(1,)C n -代入6y x =得:61n =-, ∴6n =-,∴点C 的坐标为(1,6)--, 把(3,2)B ,(1,6)C --代入y ax b =+得:23k b b k b =+⎧⎨-=-+⎩, 解得:24k b =⎧⎨=-⎩, ∴一次函数解析式为24y x =-;(2)根据函数图像可知:当10x -<<或3x >时,一次函数的图象在反比例函数图象的上方,∴当10x -<<或3x >时,12y y >;(3)存在(0,435)P -+或(0,435)P --或(0,8)P 或10,4P ⎛⎫-⎪⎝⎭时,PAB △为等腰三角形,理由如下: 过B 作BD y ⊥轴,交y 轴于D ,∵直线124y x =-与y 轴交于点A ,∴令0x =得,4y =-,∴点A 的坐标为(0,4)-,∵点B 的坐标为(3,2)B ,∴点D 的坐标为(0,2)D ,∴22(30)(24)AB =-++2236=+35=①当AP AB =时,则35AP =,(0,4)A -Q ,∴点P 的坐标为:1(0,435)P -+、2(0,435)P --; ②当BP BA =时,BAP Q △是等腰三角形,BD AP ⊥,BD ∴平分AP ,2(4)6DA DP ∴==--=,∵点D 的坐标为(0,2)D ,∴点P 的坐标为(0,26)+,即3(0,8)P ;③当PA PB =时,如图:设PA PB x ==,则6DP DA PA x =-=-,Q 在Rt BDO △中,3DB =,6DP x =-,PB x =,∴由勾股定理得:222PB DB DP =+,2223(6)x x =+-,解得:154x =, (0,4)A -Q ,∴点P 的坐标为150,44⎛⎫-+ ⎪⎝⎭,即410,4P ⎛⎫- ⎪⎝⎭,综上所述,当(0,4P -+或(0,4P --或(0,8)P 或10,4P ⎛⎫-⎪⎝⎭时,PAB △为等腰三角形. 【点睛】 本题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x 的范围,解(3)的关键是分类讨论.27.(1)抛物线l 2的函数表达式;y=x 2﹣4x ﹣1;(2)P 点坐标为(1,1);(3)在点M 自点A 运动至点E 的过程中,线段MN 长度的最大值为12.1.【解析】【分析】(1)由抛物线l 1的对称轴求出b 的值,即可得出抛物线l 1的解析式,从而得出点A 、点B 的坐标,由点B 、点E 、点D 的坐标求出抛物线l 2的解析式即可;(2)作CH ⊥PG 交直线PG 于点H ,设点P 的坐标为(1,y ),求出点C 的坐标,进而得出CH=1,PH=|3﹣y |,PG=|y |,AG=2,由PA=PC 可得PA 2=PC 2,由勾股定理分别将PA 2、PC 2用CH 、PH 、PG 、AG 表示,列方程求出y 的值即可;(3)设出点M 的坐标,求出两个抛物线交点的横坐标分别为﹣1,4,①当﹣1<x≤4时,点M 位于点N 的下方,表示出MN 的长度为关于x 的二次函数,在x 的范围内求二次函数的最值;②当4<x≤1时,点M 位于点N 的上方,同理求出此时MN 的最大值,取二者较大值,即可得出MN 的最大值.【详解】(1)∵抛物线l 1:y=﹣x 2+bx+3对称轴为x=1,∴x=﹣21b ()⨯-=1,b=2, ∴抛物线l 1的函数表达式为:y=﹣x 2+2x+3,当y=0时,﹣x 2+2x+3=0,解得:x 1=3,x 2=﹣1,∴A (﹣1,0),B (3,0),设抛物线l 2的函数表达式;y=a (x ﹣1)(x+1),把D (0,﹣1)代入得:﹣1a=﹣1,a=1,∴抛物线l 2的函数表达式;y=x 2﹣4x ﹣1;(2)作CH ⊥PG 交直线PG 于点H ,设P 点坐标为(1,y ),由(1)可得C 点坐标为(0,3),∴CH=1,PH=|3﹣y |,PG=|y |,AG=2,∴PC 2=12+(3﹣y )2=y 2﹣6y+10,PA 2= =y 2+4,∵PC=PA ,∴PA 2=PC 2,∴y2﹣6y+10=y2+4,解得y=1,∴P点坐标为(1,1);(3)由题意可设M(x,x2﹣4x﹣1),∵MN∥y轴,∴N(x,﹣x2+2x+3),令﹣x2+2x+3=x2﹣4x﹣1,可解得x=﹣1或x=4,①当﹣1<x≤4时,MN=(﹣x2+2x+3)﹣(x2﹣4x﹣1)=﹣2x2+6x+8=﹣2(x﹣32)2+252,显然﹣1<32≤4,∴当x=32时,MN有最大值12.1;②当4<x≤1时,MN=(x2﹣4x﹣1)﹣(﹣x2+2x+3)=2x2﹣6x﹣8=2(x﹣32)2﹣252,显然当x>32时,MN随x的增大而增大,∴当x=1时,MN有最大值,MN=2(1﹣32)2﹣252=12.综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1.【点睛】本题是二次函数与几何综合题,主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。

【附5套中考模拟试卷】宁夏银川市2019-2020学年中考数学模拟试题含解析

【附5套中考模拟试卷】宁夏银川市2019-2020学年中考数学模拟试题含解析

宁夏银川市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图直线y =mx 与双曲线y=kx交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A .1B .2C .3D .42.下列运算中,正确的是 ( ) A .x 2+5x 2=6x 4B .x 326·x x =C .236()x x =D .33()xy xy =3.△ABC 在正方形网格中的位置如图所示,则cosB 的值为( )A .5B .25C .12D .24.若一个圆锥的底面半径为3cm ,母线长为5cm ,则这个圆锥的全面积为( ) A .15πcm 2B .24πcm 2C .39πcm 2D .48πcm 25.某城2014年底已有绿化面积300公顷,经过两年绿化,到2016年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程正确的是( ). A .300(1)363x +=B .2300(1)363x +=C .300(12)363x +=D .2300(1)363x -=6.下列标志中,可以看作是轴对称图形的是( )A .B .C .D .7.下列代数运算正确的是( ) A .(x+1)2=x 2+1B .(x 3)2=x 5C .(2x )2=2x 2D .x 3•x 2=x 58.如图,已知正五边形 ABCDE 内接于O e ,连结BD ,则ABD ∠的度数是( )A.60︒B.70︒C.72︒D.144︒9.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B,如果60APB∠=o,8PA=,那么弦AB的长是()A.4B.43C.8D.8310.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多③有15的人每周使用手机支付的次数在35~42次④每周使用手机支付不超过21次的有15人其中正确的是()A.①②B.②③C.③④D.④11.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)12.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子( )A .31B .35C .40D .50二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①BE=2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PH•PC 其中正确的是_____(填序号)14.若22m n x y --与423m n x y +是同类项,则3m n -的立方根是 .15.如图,在平面直角坐标系xOy 中,点A 的坐标为A(1,0),等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC=90°,点B 在点A 的右侧,点C 在第一象限。

宁夏银川市2019-2020学年第三次中考模拟考试数学试卷含解析

宁夏银川市2019-2020学年第三次中考模拟考试数学试卷含解析

宁夏银川市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.2017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%.数据3122亿元用科学记数法表示为( ) A .3122×10 8元 B .3.122×10 3元 C .3122×10 11 元D .3.122×10 11 元2.如图所示的几何体的俯视图是( )A .B .C .D .3.如图,在△ABC 中,AC 的垂直平分线分别交AC 、BC 于E ,D 两点,EC =4,△ABC 的周长为23,则△ABD 的周长为( )A .13B .15C .17D .194.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x 名同学,则根据题意列出的方程是( ) A .x(x+1)=132B .x(x-1)=132C .x(x+1)=132×12D .x(x-1)=132×25.下列运算正确的是( )A .a 2·a 3﹦a 6B .a 3+ a 3﹦a 6C .|-a 2|﹦a 2D .(-a 2)3﹦a 66.如果实数a=11,且a 在数轴上对应点的位置如图所示,其中正确的是( ) A . B . C . D .7.二次函数2y x 的对称轴是( )A .直线y 1=B .直线x 1=C .y 轴D .x 轴8.如果关于x 的分式方程1311a x x x --=++有负数解,且关于y 的不等式组2()43412a y y y y ---⎧⎪⎨+<+⎪⎩…无解,则符合条件的所有整数a 的和为() A .﹣2B .0C .1D .39.如图,一圆弧过方格的格点A 、B 、C ,在方格中建立平面直角坐标系,使点A 的坐标为(﹣3,2),则该圆弧所在圆心坐标是( )A .(0,0)B .(﹣2,1)C .(﹣2,﹣1)D .(0,﹣1)10.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为( )A .23B .75C .77D .13911.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).x…1-12…y…1-74-2-74-…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点12.菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( ) A .3.5B .4C .7D .14二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知关于x 的方程x 2+kx ﹣3=0的一个根是x=﹣1,则另一根为_____.14.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.15.ABC ∆内接于圆O ,设A x ∠=o ,圆O 的半径为r ,则OBC ∠所对的劣弧长为_____(用含x r ,的代数式表示).16.如图,在Rt △ABC 中,∠C=90°,AB=5,BC=3,点P 、Q 分别在边BC 、AC 上,PQ ∥AB ,把△PCQ 绕点P 旋转得到△PDE (点C 、Q 分别与点D 、E 对应),点D 落在线段PQ 上,若AD 平分∠BAC ,则CP 的长为_________.17.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____. 18.若3,a ,4,5的众数是4,则这组数据的平均数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)先化简,再求值.(2x+3)(2x ﹣3)﹣4x (x ﹣1)+(x ﹣2)2,其中x=3.20.(6分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元 求甲、乙型号手机每部进价为多少元? 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m 元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m 的值21.(6分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.22.(8分)解不等式组:2(3)47{22x x x x +≤++>并写出它的所有整数解.23.(8分)如图1,在正方形ABCD 中,E 是边BC 的中点,F 是CD 上一点,已知∠AEF =90°.(1)求证:23EC DF =; (2)平行四边形ABCD 中,E 是边BC 上一点,F 是边CD 上一点,∠AFE =∠ADC ,∠AEF =90°. ①如图2,若∠AFE =45°,求ECDF的值; ②如图3,若AB =BC ,EC =3CF ,直接写出cos ∠AFE 的值.24.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.求y 与x 之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.25.(10分)已知关于 的方程mx 2+(2m-1)x+m-1=0(m≠0) . 求证:方程总有两个不相等的实数根; 若方程的两个实数根都是整数,求整数的值.26.(12分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m ,在随机抽取1张,将卡片的数字即为n .(1)请用列表或树状图的方式把(m ,n )所有的结果表示出来. (2)求选出的(m ,n )在二、四象限的概率.27.(12分)如图,在平面直角坐标系中,一次函数1(0)y ax b a =+≠的图象与y 轴相交于点A ,与反比例函数2(0)ky k x=≠的图象相交于点(3,2)B ,(1,)C n -.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出12y y 时,x 的取值范围;(3)在y 轴上是否存在点P ,使PAB △为等腰三角形,如果存在,请求点P 的坐标,若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】可以用排除法求解. 【详解】第一,根据科学记数法的形式可以排除A 选项和C 选项,B 选项明显不对,所以选D. 【点睛】牢记科学记数法的规则是解决这一类题的关键. 2.D 【解析】 【分析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中. 【详解】从上往下看,该几何体的俯视图与选项D 所示视图一致. 故选D . 【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图. 3.B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.4.B【解析】全组有x名同学,则每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,所以,x(x-1)=132,故选B.5.C【解析】【分析】根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【详解】a2·a3﹦a5,故A项错误;a3+ a3﹦2a3,故B项错误;a3+ a3﹦- a6,故D项错误,选C.【点睛】本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则.6.C【解析】.详解:49 911,4 <<Q由被开方数越大算术平方根越大,<<即7 3,2 <<故选C.的大小.7.C【解析】【分析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).8.B【解析】【分析】解关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩„,结合解集无解,确定a的范围,再由分式方程1311a xx x--=++有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩„,可整理得242y ay+⎧⎨<-⎩…∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵1311a xx x--=++得x=42a-而关于x的分式方程1311a xx x--=++有负数解∴a﹣4<1∴a<4于是﹣3≤a<4,且a 为整数∴a=﹣3、﹣2、﹣1、1、1、2、3则符合条件的所有整数a的和为1.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.9.C【解析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.∵点A的坐标为(﹣3,2),∴点O的坐标为(﹣2,﹣1).故选C.10.B【解析】【分析】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.【详解】∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=1.∵上边的数与左边的数的和正好等于右边的数,∴a=11+1=2.故选B.【点睛】本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.11.B【解析】【分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断. 【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与x轴有两个交点,且它们分别在y轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.12.A【解析】【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH12=AB.【详解】∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD.∵H为AD边中点,∴OH是△ABD的中位线,∴OH12=AB12=⨯7=3.1.故选A.【点睛】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】设另一根为x2,根据一元二次方程根与系数的关系得出-1•x2=-1,即可求出答案.【详解】设方程的另一个根为x2,则-1×x2=-1,解得:x2=1,故答案为1.【点睛】本题考查了一元二次方程根与系数的关系:如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么x1+x2=-ba,x1x2=ca.14.1 3【解析】试题分析:上方的正六边形涂红色的概率是,故答案为.考点:概率公式.15.9090xrπ-o oo或9090xrπ-o oo【解析】【分析】分0°<x°≤90°、90°<x°≤180°两种情况,根据圆周角定理求出∠DOC,根据弧长公式计算即可.【详解】解:当0°<x°≤90°时,如图所示:连接OC,由圆周角定理得,∠BOC=2∠A=2x°,∴∠DOC=180°-2x°,∴∠OBC所对的劣弧长=(1802)(90)18090x r xππ--=,当90°<x°≤180°时,同理可得,∠OBC所对的劣弧长=(2180)(90)18090x xππ--=.故答案为:9090xro ooπ-或9090xrπ-o oo.【点睛】本题考查了三角形的外接圆与外心、弧长的计算,掌握弧长公式、圆周角定理是解题的关键.16.1【解析】【分析】连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.【详解】连接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=23,∴CP=3x=1;故答案为:1.【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.17.4 9【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.【详解】画树状图得:∵共有9种等可能的结果,两次摸出的球都是红球的由4种情况,∴两次摸出的球都是红球的概率是49,故答案为4 9 .【点睛】本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案.18.4【解析】试题分析:先根据众数的定义求出a的值,再根据平均数的定义列出算式,再进行计算即可.试题解析:∵3,a,4,5的众数是4,∴a=4,∴这组数据的平均数是(3+4+4+5)÷4=4.考点:1.算术平均数;2.众数.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4 =x2﹣1.当x=3时,原式=3)2﹣1=3﹣1=﹣2.【解析】应用整式的混合运算法则进行化简,最后代入x值求值.20.(1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2) 共有四种方案;(3) 当m=80时,w始终等于8000,取值与a无关【解析】【分析】(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元根据题意列方程组求出x、y的值即可;(2)设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a的取值范围,根据a为整数求出a的值即可明确方案(3)利用利润=单个利润 数量,用a表示出利润W,当利润与a无关时,(2)中的方案利润相同,求出m值即可;【详解】(1) 设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,22800324600x y x y +=⎧⎨+=⎩,解得1000800x y =⎧⎨=⎩, (2) 设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部,17400≤1000a +800(20-a)≤18000,解得7≤a≤10,∵a 为自然数,∴有a 为7、8、9、10共四种方案,(3) 甲种型号手机每部利润为1000×40%=400,w =400a +(1280-800-m)(20-a)=(m -80)a +9600-20m ,当m =80时,w 始终等于8000,取值与a 无关.【点睛】本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键. 21.(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标.【解析】试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x ,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案.试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x ,根据题意得:700(1+x )2=1183,解得:x 1=0.3=30%,x 2=﹣2.3(舍去),答:这两年该市推行绿色建筑面积的年平均增长率为30%;(2)根据题意得:1183×(1+30%)=1537.9(万平方米),∵1537.9>1500,∴2017年该市能完成计划目标.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.22.原不等式组的解集为122x -≤<,它的所有整数解为0,1. 【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后写出它的所有整数解即可.【详解】解:()2347{22x x x x +≤++>①②, 解不等式①,得1-2x ≥, 解不等式②,得x <2, ∴原不等式组的解集为122x -≤<, 它的所有整数解为0,1.【点睛】本题主要考查了一元一次不等式组解集的求法.解一元一次不等式组的简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).23.(1)见解析;(2)①23EC DF =;②cos ∠AFE =25 【解析】【分析】(1)用特殊值法,设2BE EC ==,则4AB BC ==,证ABE ECF ∆∆∽,可求出CF ,DF 的长,即可求出结论;(2)①如图2,过F 作FG FD ⊥交AD 于点G ,证FGD ∆和AEF ∆是等腰直角三角形,证FCE AGF ∆∆∽,求出:CE GF 的值,即可写出:EC DF 的值;②如图3,作FT FD =交AD 于点T ,作FH AD ⊥于H ,证FCE ATF ∆∆∽,设CF =2,则CE =6,可设AT =x ,则TF =3x ,32AD CD x +==,112DH DT x +==,分别用含x 的代数式表示出∠AFE 和∠D 的余弦值,列出方程,求出x 的值,即可求出结论.【详解】(1)设BE =EC =2,则AB =BC =4,∵90AEF ∠︒=,∴90AEB FEC ∠+∠︒=,∵90AEB EAB ∠+∠︒=,∴∠FEC =∠EAB ,又∴90B C ∠∠︒==,∴ABE ECF ∆∆∽, ∴BE AB CF EC=, 即242CF =, ∴CF =1,则3DF DC CF -==, ∴23EC DF =; (2)①如图2,过F 作FG FD ⊥交AD 于点G ,∵45AFE ADC ∠∠︒==,∴FGD ∆和AEF ∆是等腰直角三角形,∴180135AGF DGF ∠︒-∠︒==,180135C D ∠︒-∠︒==,∴∠AGF =∠C ,又∵GAF D CFE AFE ∠+∠∠+∠=, ∴∠GAF =∠CFE ,∴FCE AGF ∆∆∽,∴2=2CE FE GF AF =, 又∵GF =DF , ∴2EC DF =;②如图3,作FT FD =交AD 于点T ,作FHAD ⊥于H ,则FTD FDT ∠∠=,∴180180FTD D ︒-∠︒-∠=,∴∠ATF =∠C , 又∵TAF D AFE CFE ∠+∠∠+∠=,且∠D =∠AFE ,∴∠TAF =∠CFE ,∴FCE ATF ∆∆∽,∴FE FC CE AF AT TF==, 设CF =2,则CE =6,可设AT =x ,则TF =3x ,32AD CD x +==, ∴112DH DT x +==,且2FE FC AF AT x==, 由cos =cos AFE D ∠,得213x x x +=, 解得x =5,∴2cos 5EF AFE AF ∠==.【点睛】本题主要考查了三角形相似的判定及性质的综合应用,熟练掌握三角形相似的判定及性质是解决本题的关键.24.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=46时,w 大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x 2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x 1=55,x 2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.25.(1)证明见解析(2)m=1或m=-1【解析】试题分析:(1)由于m≠0,则计算判别式的值得到1=V ,从而可判断方程总有两个不相等的实数根; (2)先利用求根公式得到1211,1x x m=-=-,然后利用有理数的整除性确定整数m 的值. 试题解析:(1)证明:∵m≠0,∴方程为一元二次方程, Q 2(21)4(1)10m m m =---=>V ,∴此方程总有两个不相等的实数根;(2)∵(21)12m x m--±=, 1211,1x x m∴=-=-, ∵方程的两个实数根都是整数,且m 是整数,∴m=1或m=−1.26.(1)详见解析;(2)P=23. 【解析】试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.试题解析: (1)画树状图得:则(m ,n )共有12种等可能的结果:(2,-1),(2,﹣3),(2, 4),(-1,2),(-1,﹣3),(1, 4),(﹣3,2),(﹣3,-1),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3).(2)(m ,n )在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3),∴所选出的m ,n 在第二、三四象限的概率为:P=812=23点睛:(1)利用频率估算法:大量重复试验中,事件A 发生的频率会稳定在某个常数p 附近,那么这个常数P 就叫做事件A 的概率(有些时候用计算出A 发生的所有频率的平均值作为其概率).(2)定义法:如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,考察事件A 包含其中的m 中结果,那么事件A 发生的概率为P ()m A n=. (3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.(4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.27.(1)24y x =-; 6y x=;(2)10x -<<或3x >;(3)存在,(0,4P -+或(0,4P --或(0,8)P 或10,4P ⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C 坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分BP BA =、BP BA =、PA PB =三种情况讨论,即可得出结论.【详解】(1)Q 一次函数1y ax b =+与反比例函数k y x=,相交于点(3,2)B ,(1,)C n -, ∴把(3,2)B 代入k y x=得:23k =, ∴6k =, ∴反比例函数解析式为6y x =, 把(1,)C n -代入6y x =得:61n =-, ∴6n =-,∴点C 的坐标为(1,6)--,把(3,2)B ,(1,6)C --代入y ax b =+得:23k b b k b=+⎧⎨-=-+⎩, 解得:24k b =⎧⎨=-⎩, ∴一次函数解析式为24y x =-;(2)根据函数图像可知:当10x -<<或3x >时,一次函数的图象在反比例函数图象的上方,∴当10x -<<或3x >时,12y y >;(3)存在(0,435)P -+或(0,435)P --或(0,8)P 或10,4P ⎛⎫-⎪⎝⎭时,PAB △为等腰三角形,理由如下: 过B 作BD y ⊥轴,交y 轴于D ,∵直线124y x =-与y 轴交于点A ,∴令0x =得,4y =-,∴点A 的坐标为(0,4)-,∵点B 的坐标为(3,2)B ,∴点D 的坐标为(0,2)D ,∴22(30)(24)AB =-++2236=+35=①当AP AB =时,则35AP =(0,4)A -Q ,∴点P 的坐标为:1(0,435)P -+、2(0,435)P --; ②当BP BA =时,BAP Q △是等腰三角形,BD AP ⊥,BD ∴平分AP ,2(4)6DA DP ∴==--=,∵点D 的坐标为(0,2)D ,∴点P 的坐标为(0,26)+,即3(0,8)P ;③当PA PB =时,如图:设PA PB x ==,则6DP DA PA x =-=-,Q 在Rt BDO △中,3DB =,6DP x =-,PB x =,∴由勾股定理得:222PB DB DP =+,2223(6)x x =+-, 解得:154x =, (0,4)A -Q ,∴点P 的坐标为150,44⎛⎫-+ ⎪⎝⎭,即410,4P ⎛⎫- ⎪⎝⎭, 综上所述,当(0,435)P -+或(0,435)P --或(0,8)P 或10,4P ⎛⎫-⎪⎝⎭时,PAB △为等腰三角形. 【点睛】 本题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x 的范围,解(3)的关键是分类讨论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁夏中考数学试卷一、选择题1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃2.下列计算正确的是()A. +=B.(﹣a2)2=﹣a4C.(a﹣2)2=a2﹣4 D.÷=(a≥0,b>0)3.已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.34.为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是()A.2和1 B.1.25和1 C.1和1 D.1和1.255.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B. C.6D.86.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3 B.4 C.5 D.67.某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8.9 9.5 9.5 8.9s20.92 0.92 1.01 1.03A.甲 B.乙 C.丙 D.丁8.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2二、填空题(本题共8小题,每小题3分,共24分)9.分解因式:mn2﹣m= .10.若二次函数y=x2﹣2x+m的图象与x轴有两个交点,则m的取值范围是.11.实数a在数轴上的位置如图,则|a﹣3|= .12.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为.13.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.14.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为.15.已知正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是.16.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为.三、解答题(本题共6道题,每题6分,共36分)17.解不等式组.18.化简求值:(),其中a=2+.19.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.20.为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.长跑短跑跳绳跳远200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?21.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC 的延长线于点F,求EF的长.22.某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?四、解答题(本题共4道题,其中23题、24题每题8分,25题、26题每题10分,共36分)23.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.24.如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D.(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积.25.某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.26.在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QP⊥DP?试说明理由.宁夏中考数学试卷参考答案与试题解析一、选择题1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃【考点】有理数的减法.【专题】应用题;实数.【分析】根据题意算式,计算即可得到结果.【解答】解:根据题意得:8﹣(﹣2)=8+2=10,则该地这天的温差是10℃,故选A【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.2.下列计算正确的是()A. +=B.(﹣a2)2=﹣a4C.(a﹣2)2=a2﹣4 D.÷=(a≥0,b>0)【考点】二次根式的混合运算;幂的乘方与积的乘方;完全平方公式.【分析】分别利用二次根式混合运算法则以及积的乘方运算法则以及幂的乘方运算法则、完全平方公式计算得出答案.【解答】解:A、+无法计算,故此选项错误;B、(﹣a2)2=a4,故此选项错误;C、(a﹣2)2=a2﹣4a+4,故此选项错误;D、÷=(a≥0,b>0),正确.故选:D.【点评】此题主要考查了二次根式混合运算以及积的乘方运算以及幂的乘方运算、完全平方公式等知识,正确掌握相关运算法则是解题关键.3.已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.3【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】方程组两方程相加求出x+y的值即可.【解答】解:,①+②得:4x+4y=20,则x+y=5,故选C【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是()A.2和1 B.1.25和1 C.1和1 D.1和1.25【考点】众数;条形统计图;中位数.【分析】由统计图可知阅读时间为1小数的有19人,人数最多,所以众数为1小时;总人数为40,得到中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),即可确定出中位数为1小时.【解答】解:由统计图可知众数为1小时;共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),则中位数是1小时.故选C.【点评】此题考查中位数、众数的求法:①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.如果一组数据存在众数,则众数一定是数据集里的数.5.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B. C.6D.8【考点】菱形的性质;三角形中位线定理.【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案.【解答】解:∵E,F分别是AD,CD边上的中点,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面积S=×AC×BD=×2×2=2,故选:A.【点评】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键.6.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3 B.4 C.5 D.6【考点】由三视图判断几何体.【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数.【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故选:C.【点评】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键.7.某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8.9 9.5 9.5 8.9 s 20.920.921.011.03A .甲B .乙C .丙D .丁 【考点】方差.【分析】从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定, 因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙; 故选B .【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.正比例函数y 1=k 1x 的图象与反比例函数y 2=的图象相交于A ,B 两点,其中点B 的横坐标为﹣2,当y 1<y 2时,x 的取值范围是( )A .x <﹣2或x >2B .x <﹣2或0<x <2C .﹣2<x <0或0<x <2D .﹣2<x <0或x >2 【考点】反比例函数与一次函数的交点问题.【分析】由正、反比例函数的对称性结合点B 的横坐标,即可得出点A 的横坐标,再根据两函数图象的上下关系结合交点的横坐标,即可得出结论.【解答】解:∵正比例和反比例均关于原点O 对称,且点B 的横坐标为﹣2, ∴点A 的横坐标为2. 观察函数图象,发现:当x <﹣2或0<x <2时,一次函数图象在反比例函数图象的下方, ∴当y 1<y 2时,x 的取值范围是x <﹣2或0<x <2. 故选B .【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数的性质以及正比例函数的性质,解题的关键是求出点A的横坐标.本题属于基础题,难度不大,根据正、反比例的对称性求出点A的横坐标,再根据两函数的上下位置关系结合交点坐标即可求出不等式的解集.二、填空题(本题共8小题,每小题3分,共24分)9.分解因式:mn2﹣m= m(n+1)(n﹣1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式m,再利用平方差公式进行二次分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:mn2﹣m,=m(n2﹣1),=m(n+1)(n﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后再利用平方差公式进行二次分解因式,也是难点所在.10.若二次函数y=x2﹣2x+m的图象与x轴有两个交点,则m的取值范围是m<1 .【考点】抛物线与x轴的交点.【分析】根据△>0⇔抛物线与x轴有两个交点,列出不等式即可解决问题.【解答】解:∵二次函数y=x2﹣2x+m的图象与x轴有两个交点,∴△>0,∴4﹣4m>0,∴m<1.故答案为m<1【点评】本题考查抛物线与x轴的交点,解题的关键是记住△=0⇔抛物线与x轴只有一个交点,△>0⇔抛物线与x轴有两个交点,△<0⇔抛物线与x轴没有交点,属于中考常考题型.11.实数a在数轴上的位置如图,则|a﹣3|= 3﹣a .【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,可得a与3的关系,根据差的绝对值是大数减小数,可得答案.【解答】解:由数轴上点的位置关系,得a<3.|a﹣3|=3﹣a,故答案为:3﹣a.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a与3的关系是解题关键,注意差的绝对值是大数减小数.12.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为 2 .【考点】圆锥的计算.【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题【解答】解:设这个圆锥的底面圆的半径为R,由题意:2πR=,解得R=2.故答案为2.【点评】本题考查圆锥的计算、扇形的弧长公式、圆的周长公式等知识,解题的关键是理解扇形的弧长等于这个圆锥的底面圆的周长,学会用方程的思想解决问题,属于中考常考题型.13.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于 2 .【考点】平行四边形的性质.【分析】由平行四边形的性质和已知条件证出∠BAE=∠BEA,证出AB=BE=3;求出AB+BC=8,得出BC=5,即可得出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.【点评】此题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AB=BE是解决问题的关键.14.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为(,)..【考点】翻折变换(折叠问题);坐标与图形性质.【分析】作O′C⊥y轴于点C,首先根据点A,B的坐标分别为(,0),(0,1)得到∠BAO=30°,从而得出∠OBA=60°,然后根据Rt△AOB沿着AB对折得到Rt△AO′B,得到∠CBO′=60°,最后设BC=x,则OC′=x,利用勾股定理求得x的值即可求解.【解答】解:如图,作O′C⊥y轴于点C,∵点A,B的坐标分别为(,0),(0,1),∴OB=1,OA=,∴tan∠BAO==,∴∠BAO=30°,∴∠OBA=60°,∵Rt△AOB沿着AB对折得到Rt△AO′B,∴∠CBO′=60°,∴设BC=x,则OC′=x,∴x2+(x)2=1,解得:x=(负值舍去),∴OC=OB+BC=1+=,∴点O′的坐标为(,).故答案为:(,).【点评】本题考查了翻折变换及坐标与图形的性质的知识,解题的关键是根据点A和点B的坐标确定三角形为特殊三角形,难度不大.15.已知正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是2.【考点】三角形的外接圆与外心;等边三角形的性质.【分析】能够完全覆盖这个正△ABC的最小圆的半径是△ABC外接圆的半径,求出△ABC外接圆的半径即可解决问题.【解答】解:如图,那么能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接圆的半径,设⊙O是△ABC的外接圆,连接OB,OC,作OE⊥BC于E,∵△ABC是等边三角形,∴∠A=60°,∠BOC=2∠A=120°,∵OB=OC,OE⊥BC,∴∠BOE=60°,BE=EC=3,∴sin60°=,∴OB=2,故答案为2.【点评】本题考查等边三角形的性质、三角形外接圆的性质、锐角三角函数等知识,解题的关键是理解题意,学会转化的思想解决问题,属于中考常考题型.16.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为(1,﹣1).【考点】坐标与图形变化-旋转.【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y=x+,∵直线EF⊥CC′,经过CC′中点(,),∴直线EF为y=﹣3x+2,由得,∴P(1,﹣1).故答案为(1,﹣1).【点评】本题考查旋转的性质,掌握对应点连线段的垂直平分线的交点就是旋转中心,是解题的关键.三、解答题(本题共6道题,每题6分,共36分)17.解不等式组.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<3,由②得,x≥2,故不等式组的解集为:2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.化简求值:(),其中a=2+.【考点】实数的运算.【专题】计算题;分式.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A 、B 、C 关于原点对称的点A 1、B 1、C 1的位置,然后顺次连接即可; (2)根据网格结构找出点A 1、B 1、C 1关于y 轴对称的点A 2、B 2、C 2的位置,然后顺次连接即可. 【解答】解:(1)△A 1B 1C 1如图所示; (2)△A 2B 2C 2如图所示.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.长跑 短跑 跳绳 跳远 200 √ × √ √ 300 × √ × √ 150 √ √ √ × 200 √ × √ × 150√×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大? 【考点】利用频率估计概率;列表法与树状图法. 【分析】(1)根据求概率的公式即可得到结论; (2)根据求概率的公式即可得到结论;(3)根据求概率的公式求得各项概率进行比较即可得到结论. 【解答】解:(1)同时喜欢短跑和跳绳的概率==;(2)同时喜欢三个项目的概率==;(3)同时喜欢短跑的概率==,同时喜欢跳绳的概率==,同时喜欢跳远的概率==,∵,∴同时喜欢跳绳的可能性大.【点评】本题考查了利用频率估计概率,求概率,正确的理解题意是解题的关键.21.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC 的延长线于点F,求EF的长.【考点】等边三角形的性质.【分析】先证明△DEC是等边三角形,再在RT△DEC中求出EF即可解决问题.【解答】解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEC中,∵∠DEC=90°,DE=2,∴DF=2DE=4,∴EF===2.【点评】不同考查等边三角形的性质、直角三角形中30度角所对的直角边等于斜边的一半,勾股定理等知识,解题的关键是利用特殊三角形解决问题,属于中考常考题型.22.某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?【考点】分式方程的应用;一元一次不等式的应用.【专题】方程与不等式.【分析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【解答】解:(1)设每行驶1千米纯用电的费用为x元,=解得,x=0.26经检验,x=0.26是原分式方程的解,即每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,0.26y+(﹣y)×(0.26+0.50)≤39解得,y≥74,即至少用电行驶74千米.【点评】本题考查分式方程的应用、一元一次不等式的应用,解题的关键是明确题意,列出相应的分式方程与不等式,注意分式方程在最后要检验.四、解答题(本题共4道题,其中23题、24题每题8分,25题、26题每题10分,共36分)23.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.【考点】圆周角定理;等腰三角形的判定与性质;勾股定理.【分析】(1)由等腰三角形的性质得到∠EDC=∠C,由圆外接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,由“三线合一”定理得到BE=CE=BC=,由割线定理可证得结论.【解答】(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;(2)解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.【点评】本题考查了圆周角定理,等腰三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.24.如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D.(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积.【考点】待定系数法求反比例函数解析式;反比例函数系数k的几何意义.【分析】(1)解直角三角形求得AB,作CE⊥OB于E,根据平行线分线段成比例定理和三角形中位线的性质求得C的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)求得D的坐标,进而求得AD的长,得出△ACD的面积,然后根据S四边形CDBO =S△AOB﹣S△ACD即可求得.【解答】解:(1)∵∠ABO=90°,∠AOB=30°,OB=2,∴AB=OB=2,作CE⊥OB 于E ,∵∠ABO=90°,∴CE∥AB,∴OC=AC,∴OE=BE=OB=,CE=AB=1, ∴C(,1),∵反比例函数y=(x >0)的图象经过OA 的中点C ,∴1=, ∴k=,∴反比例函数的关系式为y=; (2)∵OB=2,∴D 的横坐标为2, 代入y=得,y=, ∴D(2,),∴BD=,∵AB=2,∴AD=,∴S △ACD =AD•BE=××=,∴S 四边形CDBO =S △AOB ﹣S △ACD =OB•AB﹣=×2×2﹣=.【点评】本题考查待定系数法求反比例函数的解析式,解决本题的关键是明确反比例函数图象上点的坐标特征.25.某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.【考点】一次函数的应用;频数与频率;条形统计图.【分析】(1)根据题意列出函数关系式;(2)由条形统计图得到需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,即可.(3)分两种情况计算【解答】解:(1)当n=9时,y==;(2)根据题意,“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,则“更换笔芯的个数不大于同时购买笔芯的个数”的频数大于30×0.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购买笔芯的个数”的频数=4+6+8=18>15.因此n的最小值为9.(3)若每支笔同时购买9个笔芯,则所需费用总和=(4+6+8)×3×9+7×(3×9+5×1)+5×(3×9+5×2)=895,若每支笔同时购买10个笔芯,则所需费用总和=(4+6+8+7)×3×10+5×(3×10+5×1)=925,因此应购买9个笔芯.【点评】此题是一次函数的应用,主要考查了一次函数的性质,统计图,解本题的关键是统计图的分析.26.在矩形ABCD 中,AB=3,AD=4,动点Q 从点A 出发,以每秒1个单位的速度,沿AB 向点B 移动;同时点P 从点B 出发,仍以每秒1个单位的速度,沿BC 向点C 移动,连接QP ,QD ,PD .若两个点同时运动的时间为x 秒(0<x≤3),解答下列问题:(1)设△QPD 的面积为S ,用含x 的函数关系式表示S ;当x 为何值时,S 有最大值?并求出最小值;(2)是否存在x 的值,使得QP⊥DP?试说明理由.【考点】四边形综合题.【分析】(1)可用x 表示出AQ 、BQ 、BP 、CP ,从而可表示出S △ADQ 、S △BPQ 、S △P CD 的面积,则可表示出S ,再利用二次函数的增减性可求得是否有最大值,并能求得其最小值;(2)用x 表示出BQ 、BP 、PC ,当QP⊥DP 时,可证明△BPQ∽△CDP,利用相似三角形的性质可得到关于x 的方程,可求得x 的值.【解答】解:(1)∵四边形ABCD 为矩形,∴BC=AD=4,CD=AB=3,当运动x 秒时,则AQ=x ,BP=x ,∴BQ=AB﹣AQ=3﹣x ,CP=BC ﹣BP=4﹣x ,∴S △ADQ =AD•AQ=×4x=2x,S △BPQ =BQ•BP=(3﹣x )x=x ﹣x 2,S △PCD =PC•CD=•(4﹣x )•3=6﹣x , 又S 矩形ABCD =AB•BC=3×4=12,∴S=S 矩形ABCD ﹣S △ADQ ﹣S △BPQ ﹣S △PCD =12﹣2x ﹣(x ﹣x 2)﹣(6﹣x )=x 2﹣2x+6=(x ﹣2)2+4, 即S=(x ﹣2)2+4,∴S 为开口向上的二次函数,且对称轴为x=2,∴当0<x <2时,S 随x 的增大而减小,当2<x≤3时,S 随x 的增大而增大,又当x=0时,S=5,当S=3时,S=,但x 的范围内取不到x=0,∴S 不存在最大值,当x=2时,S 有最小值,最小值为4;(2)存在,理由如下:由(1)可知BQ=3﹣x ,BP=x ,CP=4﹣x ,当QP⊥DP 时,则∠BPQ+∠DPC=∠DPC+∠PDC,∴∠BPQ=∠PDC,且∠B=∠C,∴△BPQ∽△PCD,。

相关文档
最新文档