小升初数学解题的10种方法
小升初:小升初数学常考题型及解题思路汇总

2019小升初:小升初数学常考题型及解题思路汇总小升初数学是同学们备考的重头戏,考试题型多样,很灵活,同学们在平时复习中一定要掌握各类题型的做题方法,这样才能在考场轻松应战。
以下是数学老师给大家整理的小升初数学常考题型及解题思路,很有价值,同学们赶紧一起来学习下。
1.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。
基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。
基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
2.工程问题基本公式:①工作总量=工作效率×工作时间②工作效率=工作总量÷工作时间③工作时间=工作总量÷工作效率基本思路:①假设工作总量为“1”(和总工作量无关);②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间。
关键问题:确定工作量、工作时间、工作效率间的两两对应关系。
3.几何面积基本思路:在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。
常用方法:1.连辅助线方法2.利用等底等高的两个三角形面积相等。
3.大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。
小升初常考简便运算

小学数学简便运算方法归类一、带符号搬家法(根据:加法交换律和乘法交换率)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带 符搬家”。
二、结合律法(一)加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
)2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
)c)(二)去括号法1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。
但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)三、乘法分配律法1.分配法括号里是加或减运算,与另一个数相乘,注意分配24×(1211-83-61-31)2.提取公因式注意相同因数的提取。
0.92×1.41+0.92×8.59516×137-53×1373.注意构造,让算式满足乘法分配律的条件。
257×103-257×2-257 2.6×9.9 四、借来还去法看到名字,就知道这个方法的含义。
小升初六年级数学必会的10种图形求面积解题法

三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。
面积及周长都有相应的公式直接计算,如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1:如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2:如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积。
一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米.解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。
所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。
例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。
常用的基本方法有一、相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。
例如:求下图整个图形的面积一句话:半圆的面积+正方形的面积=总面积二、相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。
小升初数学解题的10种方法

小升初数学解题的10种方法(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!小升初数学解题的10种方法(2023)小升初数学解题的10种方法小升初即将考试啦!注意,学数学要善于总结规律,掌握一些备考技巧,这样往往会有意想不到的效果。
小升初数学必学的11种解题思路

小升初数学必学的11种解题思路一、直接思路“直接思路”是解题的常规思路。
它一般是通过分析、综合、归纳等方法,直接找到解题的途径。
【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。
这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。
例1兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?分析(按顺向综合思路探索):1根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。
2根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?可以求出哥哥每分钟能追上弟弟多少米。
3通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?可以求出哥哥赶上弟弟所需的时间。
4狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?狗跑的时间与哥哥追上弟弟所用的时间是相同的。
5已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?可以求出这时狗总共跑了多少距离。
这个分析思路可以用下图(图2.1)表示:例2下面图形(图2.2)有多少条线段?分析(按顺向综合思路探索):我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。
1左端点是A的线段有哪些?有AB AC AD AE AF AG共6条。
2左端点是B的线段有哪些?有BC、BD、BE、BF、BG共5条。
小升初数学难题有什么解题技巧

小升初数学难题有什么解题技巧一、必需理解题目未知量是什么?已知数据是什么?条件是什么?条件有可能满意吗?条件是否足以确定未知量?或者它不够充分?或者多余?或者冲突?画一张图,引入适当的符号。
将条件的不同部分分开。
你能把它们写出来吗?二、找出已知数据与未知量之间的联系假如找不到直接的联系,你或许不得不去考虑帮助题目。
最终你应当得到一个解题方案。
拟订方案。
以前见过它吗?或者你见过同样的题目以一种稍不同的形式消失吗?你知道一道与它有关的题目吗?你知道一条可能有用的定理吗?观看未知量!并尽量想出一道你所熟识的具有相同或相像未知量的题目。
这里有一道题目和你的题目有关而且以前解过。
你能利用它吗?你能利用它的.结果吗?你能利用它的方法吗?为了有可能应用它,你是否应当引入某个帮助元素?你能重新表达这道题目吗?你还能以不同的方式表达它吗?回到定义上去。
假如你不能解所提的题目,先尝试去解某道有关的题目。
你能否想到一道?更简单着手的相关题目?一道更为普遍化的题目?一道更为特别化的题目?一道类似的题目?你能解出这道题目的一部分吗?只保存条件的一部分,而丢掉其他部分,那么未知量可以确定到什么程度,它能怎样改变?你能从已知数据中得出一些有用的东西吗?你能想到其他合适的已知数据来确定该未知量吗?你能转变未知量或已知数据,或者有必要的话,把两者都转变,从而使新的未知量和新的已知数据彼此更接近吗?你用到全部的已知数据了吗?你用到全部的条件了吗?你把题目中全部关键的概念都考虑到了吗?三、执行你的方案执行你的解题方案,检查每一个步骤。
你能清晰地看出这个步骤是正确的吗?你能否证明它是正确的?四、检查已经得到的解答对于自己已经解答出来的题目,假如有时间肯定要检查验算一遍计算结果正不正确五、回顾你能检查这个结果吗?你能检验这个论证吗?你能以不同的方式推导这个结果吗?你能一眼就看出它来吗?你能在别的什么题目中利用这个结果或这种方法吗?最终,预祝沈阳小升初的同学们都能取得优异的成果,进入抱负的中学!。
小升初常考简便运算

顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
3.2×12.5×25 1.25×88 3.6×0.252. 巧变除为乘也就是说,把除法变成乘法,例如:除以41可以变成乘4。
7.6÷0.25 3.5÷0.125七、裂项法分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
分数裂项的最基本的公式这一种方法在一般的小升初考试中不常见,属于小学奥数方面的知识。
有余力的孩子可以学一下。
简便运算(一)专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
例题1。
计算4.75-9.63+(8.25-1.37)原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1计算下面各题。
1. 6.73-2 817 +(3.27-1 917 ) 2. 759 -(3.8+1 59 )-115小学生小升初数学常见简便计算总结要想提高计算能力,首先要学好各种运算的法则、运算定律及性质,这是计算的基础。
小学数学奥数举一反三解题技巧——小升初数学突破篇 教师教案

解题方法1--分 类 法
有长度分别为1、2、3、4、5、6、7、8、9、10、11(单位:厘 米)的木棒足够多,选其中三根作为三条边围成三角形。如果所 围成的三角形的一条边长为11厘米,那么,共可围成多少个不同 的三角形?
提示:要围成的三角形已经有一条边长度确定了,只需确定另外两条边的长 度。设这两条边长度分别为a,b, 那么a,b的取值必须受到两条限制: ①a、b只能取1~11的自然数; ②三角形任意两边之和大于第三边。
解题方法1--分 类 法
1、11 1 、11 一种 2、11 2、10 二种 3、11 3、10 3、9 三种 4、11 4、10 4、9 4、8 四种 5、11 5、10 5、9 5、8 5、7 五种 6、11 6、10 6、9 6、8 6、7 6、6 六种 7、11 7、10 7、9 7、8 7、7 五种 8、11 8、10 8、9 8、8 四种 9、11 9、10 9、9 三种 10、11 10、10 二种 11、11 11、11 一种 1+2+3+4+5+6+5+4+3+2+1=36种
同步教材视频
小升初数学复习
解题方法10-- 假 设
高分数学走起来
解题方法10-- 假 设
【例题】小华解答数学判断题,答对一题给4分,答错一题扣4分 ,她答了20道判断题,结果只得 56分。小华答对了几题?
【思路导航】
假设小华全部答对:该得4×20=80(分), 现在实际只得了56分,相差80-56=24(分), 因为答对一题得4分,答错一题扣4分,这样,一对一错相比,一题就差8 分(4+4=8), 根据总共相差的分数以及做错一题相差的分数,就可以求出做错的题数 :24÷8=3(题), • 一共做20题,答错3题,答对的应该是: 20-3=17(题) 4×17=68(分)(答对的应得分) 4×3=12(分)(答错的应扣分) 68-12=56(分)(实际得分)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学解题的10种方法
小升初数学解题的10种方法
一、对照法
如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。
根据数学题意,对照概念、性质、定律、法则、公式、名词、
术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、
迁移来解题的方法叫做对照法。
例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?
对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。
二、公式法
运用定律、公式、规则、法则来解决问题的方法。
它体现的是由一般到特殊的演绎思维。
公式法简便、有效,也是小学生学习数学
必须学会和掌握的一种方法。
但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
例2:计算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1)…………运用乘法分配律
=59×50…………运用加法计算法则
=(60-1)×50…………运用数的组成规则
=60×50-1×50…………运用乘法分配律
=3000-50…………运用乘法计算法则
=2950…………运用减法计算法则
三、比较法
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法
例3:填空:0.75的最高位是(),这个数小数部分的最高位是();十分位的数4与十位上的数4相比,它们的()相同,()不同,前者
比后者小了()。
这道题的意图就是要对“一个数的最高位和小数部分的最高位的区别”,还有“数位和数值”的区别等。
四、分类法
根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。
分类是以比较为基础的。
依据事物之间的共同点将它们合
为较大的类,又依据差异点将较大的类再分为较小的类。
分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。
例4:自然数按约数的个数来分,可分成几类?
答:可分为三类。
(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约
数的,也叫合数,也有无数个。
五、分析法
把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的一种思维方法叫做分析法。
例5:玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。
问平均每天超过计划多少件?
思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。
计划每天生产多少件已知,实际每
天生产多少件,题中没有告诉,还得求出来。
要求实际每天生产多
少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两
个条件题中都已知。
六、综合法
把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。
例6:两个质数,它们的差是小于30的合数,它们的和即是11
的倍数又是小于50的偶数。
写出适合上面条件的各组数。
思路:11的倍数同时小于50的偶数有22和44。
两个数都是质数,而和是偶数,显然这两个质数中没有2。
和是22的两个质数有:3和19,5和17。
它们的差都是小于30
的合数吗?
和是44的两个质数有:3和41,7和37,13和31。
它们的差是小于30的合数吗?
这就是综合法的思路。
七、方程法
用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。
列方程是一个抽象概括的'过程,解方程是一个演绎推导的过程。
方程法最大的特点是把未知数等同于已知数看待,参与列式、
运算,克服了算术法必须避开求知数来列式的不足。
有利于由已知
向未知的转化,从而提高了解题的效率和正确率。
例7:一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50。
求这个数。
八、参数法
用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的一种方法叫做参数法。
参数又叫辅助未知数,
也称中间变量。
参数法是方程法延伸、拓展的产物。
例8:汽车爬山,上山时平均每小时行15千米,下山时平均每
小时行驶10千米,问汽车的平均速度是每小时多少千米?
上下山的平均速度不能用上下山的速度和除以2。
而应该用上下
山的路程÷2。
九、排除法
排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。
这种方法也叫淘汰法、筛选法或反证法。
这是一种不可缺少的
形式思维方法。
例9:为什么说除2外,所有质数都是奇数?
这就要用反证法:比2大的所有自然数不是质数就是合数。
假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说
它一定有约数2。
一个数的约数除了1和它本身外,还有别的约数(约数2),这个数一定是合数而不是质数。
这和原来假定是质数对
立(矛盾)。
所以,原来假设错误。
十、特例法
对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。
特例法的逻辑原理是:事物
的一般性存在于特殊性之中。
例10:大圆半径是小圆半径的2倍,大圆周长是小圆周长的()倍,大圆面积是小圆面积的()倍。
可以取小圆半径为1,那么大圆半径就是2。
计算一下,就能得
出正确结果。