动态系统建模仿真实验报告

合集下载

基于Vensim PLE啤酒游戏仿真实验报告

基于Vensim PLE啤酒游戏仿真实验报告

基于Vensim PLE啤酒游戏仿真实验报告专业班级:工业工程一班*名:***学号:***********2 基于Vensim PLE啤酒游戏仿真1.实验报告2.提交啤酒游戏的因果关系及仿真结果基于Vensim PLE啤酒游戏仿真实验报告一、实验目的与要求1.1实验目的(1)初步掌握VENSIM软件的仿真模拟过程,认识并了解VENSIM软件VENSIM是一个建模工具,可以建立动态系统的概念化的,文档化的仿真、分析和优化模型。

PLE(个人学习版)是VENSIM的缩减版,主要用来简单化学习动态系统,提供了一种简单富有弹性的方法从常规的循环或储存过程和流程图建立模型。

本实验就是运用VENSIM进行系统动力学仿真,进一步加深对系统动力学仿真的理解。

(2)以上机题目所给的啤酒游戏为案例实际操作VENSIM软件进行模拟仿真运用系统动力学的原理和VENSIM软件构建了啤酒游戏的供应链模型,以及各相关因素之间的因果反馈关系模型。

模拟仿真一个供应链流程的运行。

从而将系统动力学的知识与软件实际操作融会贯通,更加了解该软件的应用。

(3)通过模拟仿真的结果来分析牛鞭效应牛鞭效应,就是指当供应链上的各级供应商只根据来自其相邻的下级销售商的需求信息进行供应决策时,需求信息的不真实性会沿着供应链逆流而上,产生逐级放大的现象。

通过增加供应链模型节点个数并对其仿真结果进行分析,证明随着供应链长度的增加,牛鞭效应也愈加明显;对VMI 库存管理模式与传统库存管理模式的系统结构及运营绩效进行了比较,说明供应链成员间的信息共享可以有效地弱化牛鞭效应。

1.2实验要求啤酒游戏中包含零售商、批发商、供应商三个成员。

同时对游戏中的参数进行如下假设:消费者对啤酒的前4周的需求率为300箱/周,在5周时开始随机波动,波动幅度为±200,均值为0,波动次数为100次,随机因子为4个。

假设各节点初始库存和期望库存为1000箱,期望库存持续时间为3周,库存调整时间为4周,预测平滑时间为5周,生产延迟时间和运输延迟时间均为3周,且为3阶延迟;不存在订单延迟。

仿真实验报告模板

仿真实验报告模板

AGV任务分配与充电配置选择模型1、作业流程描述在集装箱码头的AGV作业流程:首先系统根据当前作业情况进行判断,若此时无运输任务,AGV进入休息区等待;若存在运输任务,则判断当前处于工作状态的AGV数量是否足够;若不足,则将非工作AGV组中的AGV分配至工作组。

当AGV完成一次运输作业后会对自身电量进行判断,若此时电量高于30%,则继续进行运输作业;若此时电量低于30%,则前往充电桩充电。

确立仿真参数的输入,确立任务数,AGV数量,自动充电桩数量,充电桩充电速度,AGV最低充电阈值(30%),AGV电量充足阈值(80%)。

2、仿真目标设置本文的仿真目标是设计和实施一个集装箱自动化码头作业流程的仿真模型,并评估其中的AGV充电任务调度策略。

具体而言,仿真目标包括以下几个方面:首先,模拟进口箱作业流程:建立一个真实的模拟环境,包括岸桥提取进出口箱、AGV小车水平运输等环节,以准确模拟进口箱的作业流程。

其次,实现AGV充电任务调度:开发一个高效的AGV充电任务调度算法,考虑到AGV的电池寿命和电量状态,以最小化充电任务的时间和成本。

该算法将基于实时的作业需求和AGV的可用状态进行智能调度,以保证作业流程的平稳运行。

再次,评估作业效率和成本:通过仿真模型,分析和比较不同的AGV充电任务调度策略对作业效率和成本的影响。

使用实际数据和性能指标,如作业时间、能源消耗和人力成本等,对各种策略进行定量评估,并找到最佳的调度策略。

最后,提出优化建议,在自动化集装箱码头作业流程中,合理的充电桩布局可以显著提升AGV充电任务的效率和整体作业流程的顺畅性。

分析作业热点区域:通过对集装箱作业流程中的瓶颈区域和高频度作业区域进行分析,确定作业热点区域。

这些区域通常是集装箱堆场附近、码头入口/出口以及岸桥与AGV交接点等位置。

准确定位热点区域可以帮助本文合理布置充电桩,以满足高负荷作业需求。

考虑AGV行驶距离和电池寿命:根据AGV的行驶距离和电池寿命特性,合理分析AGV的电池续航能力。

动态系统建模仿真

动态系统建模仿真

动态系统建模与仿真实验报告学生姓名:杨康学号:ZY1203226实验一 直流电动机建模及仿真实验一、实验目的(1)了解直流电动机的工作原理; (2)了解直流电动机的技术指标; (3)掌握直流电动机的建模及分析方法;(4)学习计算直流电动机频率特性及时域响应的方法。

二、实验设备(1)系统实验平台:建模仿真实验平台。

(2)PC 机:P4 2.4G ,内存512M ,硬盘120G 。

(3)IBM 服务器。

(4)网络交换机、集线器。

(5)工具软件:操作系统:Windows2000以上;软件工具:MATLAB 。

三、实验原理及实验要求实验原理:直流电机电枢回路的电路方程是:dt diLiRa E u a +=- (3.1)其中,a u 是加到电机两端的电压,E 是电机反电势,i 是电枢电流, Ra 是电枢回路总电阻, L 是电枢回路总电感, l LaT Ra=称为电枢回路电磁时间常数。

并且反电动势E 与电机角速度m ω成正比:me m e k k E θω == (3.2)其中e k 称为反电势系数,m θ为电机轴的转角。

对于电机而言,其转动轴上的力矩方程为:mm m m l m J J M i k θω ==- (3.3)其中m k 是电机的力矩系数, l M 是负载力矩, J 是电机电枢的转动惯量。

进行拉式变换得到:⎪⎩⎪⎨⎧=-=+=-s s J M s I k s k s E s s I T s I Ra s E s Ua m m l m m e l )()()()())()(()()(θθ(3.4)由此方程组可以得到相应的电动机数学模型的结构框图:图3.1直流电动机数学模型结构框图实验要求:(1)根据电机的工作原理(电压平衡方程、力矩平衡方程)建立从电枢电压a u 到转速m θ⋅的传递函数模型,并根据表1所给电机参数求其频率特性。

表1共给出了两个电机的参数,其中A 为大功率电机,B 为小电机。

simulink仿真实验报告

simulink仿真实验报告

simulink仿真实验报告Simulink仿真实验报告一、引言Simulink是一种基于模型的设计和仿真工具,广泛应用于各领域的工程设计和研究中。

本次实验将利用Simulink进行系统仿真实验,通过搭建模型、参数调整、仿真运行等过程,验证系统设计的正确性和有效性。

二、实验目的本实验旨在帮助学生掌握Simulink的基本使用方法,了解系统仿真的过程和注意事项。

通过本实验,学生将能够:1. 熟悉Simulink的界面和基本操作;2. 理解和掌握模型构建的基本原理和方法;3. 学会调整系统参数、运行仿真和分析仿真结果。

三、实验内容本实验分为以下几个步骤:1. 绘制系统模型:根据实验要求,利用Simulink绘制出所需的系统模型,包括输入、输出、控制器、传感器等。

2. 参数设置:针对所绘制的系统模型,根据实验要求设置系统的参数,例如增益、阻尼系数等。

3. 仿真运行:通过Simulink的仿真功能,对所构建的系统模型进行仿真运行。

4. 仿真结果分析:根据仿真结果,分析系统的动态性能、稳态性能等指标,并与理论值进行对比。

四、实验结果与分析根据实验要求,我们绘制了一个负反馈控制系统的模型,并设置了相应的参数。

通过Simulink的仿真功能,我们进行了仿真运行,并获得了仿真结果。

仿真结果显示,系统经过调整参数后,得到了较好的控制效果。

输出信号的稳态误差较小,并且在过渡过程中没有发生明显的振荡或超调现象。

通过与理论值进行对比,我们验证了系统的稳态稳定性和动态响应性能较为理想。

五、实验总结通过本次实验,我们掌握了使用Simulink进行系统仿真的基本方法和技巧。

了解了系统模型构建的基本原理,并学会了参数调整和仿真结果分析的方法。

这对于我们今后的工程设计和研究具有重要的意义。

六、参考文献1. 《Simulink使用手册》,XXX出版社,20XX年。

2. XXX,XXX,XXX等.《系统仿真与建模实践教程》. 北京:XXX出版社,20XX年。

建模仿真_球杆实验_实验报告

建模仿真_球杆实验_实验报告

《建模仿真与相似原理》課程实验报告第一章简化模型的建立和稳定性分析一、实验目的1.了解机理法建模的基本步骤;2.会用机理法建立球杆系统的简化数学模型;3.掌握控制系统稳定性分析的基本方法;二、实验要求1.采用机理法建立球杆系统的数学模型;2.分析的稳定性,并在 matlab 中仿真验证;三、实验设备1.球杆系统;2.计算机 matlab 平台;四、实验分析及思考题Simulink模型:Matlab仿真结果:思考题:1.根据建模的过程,总结机理法建模的基本步骤:1)根据系统运动的物理规律建立方程;2)化简为微分方程;3)根据小偏差线性化的理论化简为线性系统的传递函数;2.实验结果分析、讨论和建议。

答:影响系统稳定的因素是闭环系统的极点位置,闭环极点为[i,-i],在虚轴上,所以其阻尼为0,则系统震荡。

测量系统稳定性的方法之一是加入大小合适的阶跃信号,根据其输出的阶跃响应分析系统的稳定性和其他性能。

第二章仿真及实物模拟仿真实验2.1 PID仿真及实物模拟仿真实验一、实验目的1.会用 PID 法设计球杆系统控制器;2.设计并验证校正环节;二、实验要求1.根据给定的性能指标,采用凑试法设计 PID 校正环节,校正球杆系统,并验证之。

2.设球杆系统的开环传递函数为:设计 PID 校正环节,使系统的性能指标达到: St ≤10s,δ≤30%。

三、实验设备1.球杆系统;2.计算机 matlab 平台;四、实验过程1.未校正系统仿真Simulink模型及仿真结果如第一章所示;2.PID校正法仿真Simulink模型:Matlab仿真结果:参数设定:Kp=10 Ki=0 Kd=103.PID实时控制Simulink模型:实时控制结果:Step参数设定:Step time=1 Final value=0.25PID参数设定:P=3 I=1 D=1.54.实验记录五、实验分析1.怎样确定PID 控制器的参数?答:由于ID 控制器各校正环节的作用如下:比例环节:成比例地反映控制系统的偏差信号e(t),偏差一旦产生,控制器立即产生作用,以减少偏差;积分环节:主要用于消除稳态误差,提高系统的型别。

动态系统建模实验报告

动态系统建模实验报告

动态系统建模实验报告
一、实验目的
本次实验旨在通过动态系统建模,探究系统内部的运行规律及其变化关系,从而对系统进行深入分析和优化。

二、实验过程
1. 系统建模:根据实际系统的情况,确定系统的输入、输出、内部因素及其关系,建立相应的数学模型。

2. 数据采集:利用实验仪器对系统输入、输出数据进行采集,获取系统在不同时间点的状态值。

3. 模型求解:根据建立的数学模型,利用适当的计算方法对系统进行求解,得到系统运行的动态过程和规律。

4. 结果分析:对求解结果进行分析,比较模型预测值与实际数据的差异,进一步优化建模过程。

三、实验结果
通过对系统建模与求解的过程,我们得到了系统的动态过程图和规律性变化曲线,进一步揭示了系统内部的运行机制:
1. 系统动态响应:系统在受到外部激励后,出现一定的时间延迟和振荡现象,逐渐趋于稳定状态。

2. 系统稳定性:分析系统的稳定性,得到系统在不同条件下的临界点和稳定区域。

3. 系统优化:根据模型分析结果,对系统进行优化调整,提高系统的运行效率和稳定性。

四、实验总结
通过本次动态系统建模实验,我们深入了解了系统内部的运行规律和变化关系,掌握了系统建模与分析的方法和技巧。

通过实验过程的探究和实践,我们不仅提高了对系统运行的认识,也为今后的工程实践和科研工作积累了宝贵的经验。

希望通过不断的学习和实践,能够进一步完善自己的动态系统建模能力,为未来的科学研究和工程应用做出更大的贡献。

南京理工大学“系统的数学建模与辨识”实验报告及作业

南京理工大学“系统的数学建模与辨识”实验报告及作业

A(q ) y(k ) B(q )u(k ) C (q ) (k )
需要估计的参数:
1
1
1
[c]T
已知数据构成的向量:
(k ) [ y(k 1) ... y(k na) u(k d ) ... u(k nb d ) (k 1) ... (k nc)] 其中, (k 1) ... (k nc) 为噪声项。
2.2 数据处理
为了提高辨识精度,实验者必须对原始数据进行剔除坏数据、零均值化、工 频滤波等处理。
2.3 离线辨识
利用处理过的数据,选择某种辨识方法;如 RLS、RELS、RIV 或 RML 等 参数估计算法,以及 F 检验法或 AIC 定阶法。离散估计出来模型参数和阶次, 并计算相应的模型静态增益,同时比较利用不同方法所得到的辨识结果。
三、实验步骤
3.1 设置硬件
在实验之前根据实验手册,要做好基本的准备工作。连上实验室无线以后, 设置好服务器(嵌入式温度控制器)和客户端(PC 机)的 IP 地址以及系统参数设置。
3.2 电炉升温
关好电炉的门,打开实验端软件。根据操作界面上设置好“预加热电压”和
2015 级硕研“系统的数学建模与辨识”实验报告和作业
A(q 1 ) y(k ) B(q 1 )q d u(k ) C (q 1 ) (k ) 系统模型的结构。利用 RELS 辨识方法和
程序,依次确定系统的阶次,延时和参数,分析辨识结果得出结论。
四、离散辨识
离线辨识确定系统模型的阶次,延时和参数。可采用残差平方总和 J 和 F 校 验法确定系统的阶次和延时,这里采用 RELS 算法进行辨识参数。 增广矩阵法是一种用于实时过程控制中系统参数估计的较好方法, 可同时获 得系统参数和噪声模型参数。 改写 LS 模型为

动态系统建模(四旋翼飞行器仿真)实验报告-

动态系统建模(四旋翼飞行器仿真)实验报告-

动态系统建模(四旋翼飞行器仿真)实验报告:动态系统建模(四旋翼飞行器仿真)实验报告院(系)名称大飞机班学号学生姓名任课教师2021年 _月四旋翼飞行器的建模与仿真一、实验原理 I.四旋翼飞行器简介四旋翼飞行器通过四个螺旋桨产生的升力实现飞行,原理与直升机类似。

四个旋翼位于一个几何对称的十字支架前、后、左、右四端,如图1-1所示。

旋翼由电机控制;整个飞行器依靠改变每个电机的转速来实现飞行姿态控制。

在图1-1中,前端旋翼1 和后端旋翼3 逆时针旋转,而左端旋翼2 和右端的旋翼4 顺时针旋转,以平衡旋翼旋转所产生的反扭转矩。

由此可知,悬停时,四只旋翼的转速应该相等,以相互抵消反扭力矩;同时等量地增大或减小四只旋翼的转速,会引起上升或下降运动;增大某一只旋翼的转速,同时等量地减小同组另一只旋翼的转速,则产生俯仰、横滚运动;增大某一组旋翼的转速,同时等量减小另一组旋翼的转速,将产生偏航运动。

图1-1 四旋翼飞行器旋翼旋转方向示意图从动力学角度分析,四旋翼飞行器系统本身是不稳定的,因此,使系统稳定的控制算法的设计显得尤为关键。

由于四旋翼飞行器为六自由度的系统(三个角位移量,三个线位移量),而其控制量只有四个(4 个旋翼的转速),这就意味着被控量之间存在耦合关系。

因此,控制算法应能够对这种欠驱动(under-actuated)系统足够有效,用四个控制量对三个角位移量和三个线位移量进行稳态控制。

本实验针对四旋翼飞行器的悬浮飞行状态进行建模。

II.飞行器受力分析及运动模型(1)整体分析如图1-2所示,四旋翼飞行器所受外力和力矩为:Ø重力mg,机体受到重力沿-Zw方向Ø四个旋翼旋转所产生的升力Fi(i=1,2,3,4),旋翼升力沿ZB方向Ø旋翼旋转会产生扭转力矩Mi (i=1,2,3,4), Mi垂直于叶片的旋翼平面,与旋转矢量相反。

图1-2 四旋翼飞行器受力分析(2)电机模型Ø力模型(1.1)旋翼通过螺旋桨产生升力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态系统建模仿真-实验报告
————————————————————————————————作者: ————————————————————————————————日期:
1实验目的
(1)了解位置伺服系统的组成及工作原理; (2)了解不同控制策略对系统性能的影响。

2实验设备
(1)硬件:PC 机。

(2)工具软件:操作系统:W indows 7;软件工具:MATL AB R2014a 及s imu link 。

3工作原理及实验要求
3.1实验原理
图3.1是一个以直流电机为驱动元件的位置伺服系统的方块图,Gc (s)为控制器,u f 为与作用于转动轴上的摩擦力矩相对应的电压值。

对于位置伺服控制系统,控制器的输出并不是直接驱动电机,而是经过D/A 转换及功率放大后驱动电机带动负载运动。

控制的目标,是使由位置传感器及测量装置给出位置反馈信号跟踪指令信号。

实际的控制对象中包含D/A 、功率放大器、电机、负载、位置传感器及测量装置等环节,在本实验项目中,将各环节的模型适当简化,得到广义被控对象为如下形式:
Bs
Js G P +=
21
(1.1)
其中J 为等效转动惯量,B 为等效阻尼系数。

1
Js +Bs
2
Gc(s)
r
y
e
u f
-
u
电机-负载模型
图3.1位置伺服系统方块图
3.2实验要求
(1)采用PID 控制器对系统进行仿真,求出负载转角的响应曲线。

要求考虑摩擦
力矩、控制器输出饱和等非线性因素的影响。

(2)采用模糊控制算法对系统进行仿真,求出求出负载转角的响应曲线,并与
PID 控制的响应曲线进行比较。

仿真时要求考虑摩擦力矩、控制器输出饱和等非线性因素的影响。

4实验内容及步骤
4.1PD 控制位置伺服系统仿真 (1)定义参数:
系统仿真图为图4.1,信号发生器选择幅值为5频率1的正弦信号,在本次实验中Bs
Js G P +=
2
1
,参数J 取0.05,参数B 取0.5。

摩擦力
矩•
-=θJ u u f ,u 为控制输出,J 为等效转动惯量,•
θ转速。

非线性饱和器上下限非别为10~-10。

图4.1 PD 控制位置伺服系统
(2)PD 参数整定
本次仿真采用试凑法确定PID 控制器参数,试凑法就是根据控制器
各参数对系统性能的影响程度,边观察系统的运行,边修改参数,直到满意为止。

一般情况下,增大比例系数KP 会加快系统的响应速度,有利于减少静差。

但过大的比例系数会使系统有较大的超调,并产生振荡使稳定性变差。

减小积分系数KI将减少积分作用,有利于减少超调使系统稳定,但系
统消除静差的速度慢。

增加微分系数KD 有利于加快系统的响应,是超调减少,稳定性增加,但对干扰的抑制能力会减弱。

在试凑时,一般可根据以上参数对控制过程的影响趋势,对参数实行先比例、后积分、再微分的步骤进行整定。

本次实验中比例系数Kp 取35,Kv 取9. (3)仿真结果
Sim ul ink 仿真结果如图4.2,将仿真图导入matlab 工作空间,在命令
窗口作出仿真结果图,如图4.3。

通过仿真图可以看出P D控制器控制效果比较明显,实际转速能较好的的跟踪输入曲线,但是跟踪时间有滞后。

图4.3 PD 控制转速响应曲线
图4.4 P D控制转速响应曲线跟踪
2
4
6
8101214
16
18
20-5-4-3-2-1012345仿真时间(s )
PD 控制转速跟踪曲线
实际转速曲线期望转速曲线
4.2模糊控制位置伺服系统仿真
(1)模糊控制器设计
根据系统需要确定模糊控制器输入变量为偏差E和偏差变量EC,输出变量为U。

E和U的论域为[-10,10],EC的论域为[-1,1],隶属度函数均为高斯函数,设计分别如图4.5,4.6,4.7。

图4.5输入变量E
图4.6 输入变量EC
图4.7 输出变量U
通过模糊规则编辑器设计模糊规则,如图4.8.利用面积质心法去模糊
化编辑好模糊控制器(FUZZY.fis)导入MATLAB工作空间。

图4.8模糊规则编辑器
(2)模糊控制位置伺服系统
该节对象参数与上节参数一致,利用simulink画出仿真图,如图4.9,通过试凑法得出量化因子为60,0.1,2。

图4.9模糊控制位置伺服系统
(3)仿真结果
Simulink仿真结果如图4.10,matlab仿真结果如图4.11,从图4.11中可看出模糊控制转速曲线几乎与输入曲线一致,拟合效果非常好。

图4.10simu lin 仿真结果图
图4.11模糊控制转速跟踪曲线
5.实验结果分析
本实验主要实现对位置控制问题,首先使用常规的P D控制,PD
控制算法
2
4
6
8101214
16
18
20-5-4-3-2-1012345仿真时间(s )
模糊控制转速跟踪曲线
模糊控制转速曲线输入曲线
简单,可靠性高,容易实现,有效的解决由于负载等外部干扰带来的扰动误差。

由于PD控制的精度有时不能满足实际要求,因此采用更加先进的控制算法,本次实验采用模糊控制算法,模糊算法不但简单,而且易用于实际工程。

从实验仿真结果可以看出,误差跟随精度相比PD控制大大减小。

相关文档
最新文档