2011-2012学年广东省广州市中大附中八年级(下)期中数学试卷
广东省中山大学附属中学2011-2012学年下学期初中八年级

广东省中山大学附属中学2011-2012 学年下学期初中八年级期末考试语文试卷考生注意事项:本试卷共8 页,分三部分,共22 小题,满分150 分。
考试用时120 分钟。
请用黑色钢笔、签字笔在答题卷上作答。
第一部分积累与运用( 共 35 分)一、(6 小题, 20 分)1.下列词语中,加点字的读音全.都.正.确.的一组是 ( ) (3 分)A.淳.( ch ún ) 朴招徕.( l ái ) 馈.( ku ì ) 赠炽.(chì)热藏污纳垢.(g òu)B.蜿.( w ān ) 蜒禁锢.( g ù ) 吞噬.( sh ì ) 稽.(j ī)首众目睽睽.( k úi )C.缄.(ji ān ) 默狩.( sh ǒu ) 猎发怵.(ch ù) 黝.(yó u)黑龙吟凤哕.( h ùi)D.媲.(p ǐ) 美笃.( d ú ) 信干涸.(g ù ) 湖泊.(pō)相形见绌.(zhu ó )2.下列词语中没.有.错.别.字.的一项是 ( ) (3 分)A. 矫健葱笼园满成功难以置信B.憔悴凛洌重峦叠嶂谈笑风声C.晒笑殉职杳无消息莫忠一是D.门楣执拗痛心疾首顾名思义3.下列句子中,加点词语运用不.恰.当.的一项是 ( ) (3 分)A.央视 2012 年春晚,来自山东省菏泽市的“大衣哥”朱之文的成功演出成为许多观众茶余饭后津津乐.道...的话题。
B.2011 年 11 月 22 日至 28 日,第九届广州车展在中国进出口商品交易会展馆举行。
靓车、明星、美女汇聚,场面蔚.为.壮.观.。
C.杭州司机吴斌高速公路遭遇意外,在生命的最后时刻能够沉着处置车辆,救下一车乘客。
他的事迹,一经新闻媒体报道,就被传得满城.风.雨..,感动了无数市民。
D.2012 年“31.5 ”晚会曝光了欺诈消费者的现象,令人不可思.议...的是,麦当劳、家乐福等一批国际大品牌也有如此侵犯消费者权益的虚假欺诈行为。
2019-2020学年广东省广州市中山大学附中八年级(下)期中数学试卷

2019-2020学年广东省广州市中山大学附中八年级(下)期中数学试卷一、选择题(每题3分,共30分)1.(3分)二次根式中,x的取值范围是()A.x≤3B.x=3C.x≠3D.x<32.(3分)下列二次根式中,是最简二次根式的是()A.B.C.2D.3.(3分)下列各组数据中能作为直角三角形的三边长的是()A.1,2,2B.1,1,C.4,5,6D.1,,2 4.(3分)下列命题的逆命题是假命题的是()A.两直线平行,同位角相等B.全等三角形的对应角相等C.等边三角形三个角相等D.直角三角形中,斜边的平方等于两直角边的平方和5.(3分)某学校组织学生进行速算知识竞赛,进入决赛的共有10名学生,他们的决赛成绩如表所示:决赛成绩/分95908580人数2341那么10名学生决赛成绩的众数和中位数分别是()A.85,90B.85,87.5C.90,85D.95,906.(3分)已知y=,则的值为()A.B.﹣C.D.﹣7.(3分)一次函数y=﹣mx+n的图象经过第二、三、四象限,则化简所得的结果是()A.m B.﹣m C.2m﹣n D.m﹣2n8.(3分)王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示﹣1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是()A.﹣1B.﹣+1C.D.﹣9.(3分)如图,将一个边长分别为4、8的矩形纸片ABCD折叠,使点C与点A重合(AB =4,BC=8),则折痕EF的长度为()A.B.2C.D.210.(3分)在一条笔直的公路上有A,B两地,甲骑自行车从A地到B地;乙骑自行车从B 地到A地,到达A地后立即按原路返回B地.如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象.下列说法中正确的个数为()①A,B两地距离是30千米;②甲的速度为15千米/时;③点M的坐标为(,20);④当甲、乙两人相距10千米时,他们的行驶时间是小时或小时.A.1个B.2个C.3个D.4个二、填空题(每题3分,共18分)11.(3分)把函数y=2x的图象沿着y轴向下平移3个单位,得到的直线的解析式为.12.(3分)已知a,b,c为三角形的三边,且满足a2c2﹣b2c2=a4﹣b4,那么它的形状是.13.(3分)若的整数部分为x,小数部分为y,则(x+)y的值是.14.(3分)已知直角三角形的两边a,b满足a2+=10a﹣25,则第三边长为.15.(3分)如图,四边形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,则四边形ABCD的面积为.16.(3分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2.则下列结论:①m<0,n>0;②直线y=nx+4n一定经过点(﹣4,0);③m与n满足m=2n﹣2;④当x>﹣2时,nx+4n>﹣x+m,其中正确结论的个数是个.三、解答题(共8题,72分)17.(8分)计算(1)3+﹣4;(2)9÷×(﹣).18.(8分)先化简,再求值:(﹣)÷,其中a=+,b=﹣.19.(8分)如图,在7×7网格中,每个小正方形边长都为1.建立适当的平面直角坐标系,使点A(3,4)、C(4,2).(1)判断△ABC的形状,并求图中格点△ABC的面积;(2)在x轴上有一点P,使得P A+PC最小,则P A+PC的最小值为.20.(8分)小青在本学期的数学成绩如下表所示(成绩均取整数):测验平时期中期末类别测验1测验2测验3课题考试考试练习成绩8870968685X (1)计算小青本学期的平时平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期小青的期末考试成绩x 至少为多少分才能保证达到总评成绩90分的最低目标?21.(8分)如图,折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,若AB=4,BC=3,求AG的长.22.(10分)已知O为坐标原点,过点A(1,2)的直线y=kx+b与x轴交于点B,且S△ABO =4,求k的值.23.(10分)某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70,且为整数),函数y与自变量x的部分对应值如表:x(单位:台)102030y(单位:万元/台)605550(1)求y与x之间的函数关系式;(2)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.则当该厂第一个月生产的这种机器40台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)24.(12分)如图1,直线AB:y=﹣x﹣b分别与x、y轴交于A(6,0)、B两点,过点B 的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求直线BC的解析式;(2)如图2,P为A点右侧x轴上的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K,当P点运动时,K点的位置是否发现变化?若不变,请求出它的坐标;如果变化,请说明理由.2019-2020学年广东省广州市中山大学附中八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)二次根式中,x的取值范围是()A.x≤3B.x=3C.x≠3D.x<3【解答】解:根据题意,得3﹣x≥0,解得x≤3.故选:A.2.(3分)下列二次根式中,是最简二次根式的是()A.B.C.2D.【解答】解:A、=,被开方数含分母,不是最简二次根式;B、=,被开方数含分母,不是最简二次根式;C,2,是最简二次根式;D、=|x|,含能开得尽方的因式,不是最简二次根式;故选:C.3.(3分)下列各组数据中能作为直角三角形的三边长的是()A.1,2,2B.1,1,C.4,5,6D.1,,2【解答】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选:D.4.(3分)下列命题的逆命题是假命题的是()A.两直线平行,同位角相等B.全等三角形的对应角相等C.等边三角形三个角相等D.直角三角形中,斜边的平方等于两直角边的平方和【解答】解:A、两直线平行,同位角相等的逆命题为同位角相等,两直线平行,此逆命题为真命题;B、全等三角形的对应角相等的逆命题为对应角相等的两三角形全等,此逆命题为假命题;C、等边三角形三个角相等的逆命题为三个角相等的三角形为等边三角形,此逆命题为真命题;D、直角三角形中,斜边的平方等于两直角边的平方和的逆命题为如果一个三角形的一边的平方等于另外两边的平方和,那么这个三角形为直角三角形,此逆命题为真命题.故选:B.5.(3分)某学校组织学生进行速算知识竞赛,进入决赛的共有10名学生,他们的决赛成绩如表所示:决赛成绩/分95908580人数2341那么10名学生决赛成绩的众数和中位数分别是()A.85,90B.85,87.5C.90,85D.95,90【解答】解:85分的有4人,人数最多,故众数为85分;10个数据从大到小依次排列,处于中间位置的数为第5、6两个数,分别为90分,85分,所以中位数为87.5分.故选:B.6.(3分)已知y=,则的值为()A.B.﹣C.D.﹣【解答】解:由题意得,4﹣x≥0,x﹣4≥0,解得x=4,则y=3,则=,故选:C.7.(3分)一次函数y=﹣mx+n的图象经过第二、三、四象限,则化简所得的结果是()A.m B.﹣m C.2m﹣n D.m﹣2n【解答】解:∵一次函数y=﹣mx+n的图象经过第二、三、四象限,∴﹣m<0,n<0,即m>0,n<0,∴=|m﹣n|+|n|=m﹣n﹣n=m﹣2n.故选:D.8.(3分)王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示﹣1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是()A.﹣1B.﹣+1C.D.﹣【解答】解:由勾股定理得,正方形的对角线的长==,∴数轴上点A所表示的数﹣1,故选:A.9.(3分)如图,将一个边长分别为4、8的矩形纸片ABCD折叠,使点C与点A重合(AB =4,BC=8),则折痕EF的长度为()A.B.2C.D.2【解答】解:过点F作FM⊥BC于GM,∵EF是直角梯形AECD的折痕∴AE=CE,∠AEF=∠CEF.又∵AD∥BC,∴∠AFE=∠FEM,根据翻折不变性,∠AEF=∠FEM,∴∠AFE=∠AEF,∴AE=AF.在Rt△ABE中,设BE=x,AB=4,AE=CE=8﹣x.x2+42=(8﹣x)2解得x=3.在Rt△FEM中,EM=BM﹣BE=AF﹣BE=AE﹣BE=5﹣3=2,FM=4,∴EF==2.故选:D.10.(3分)在一条笔直的公路上有A,B两地,甲骑自行车从A地到B地;乙骑自行车从B 地到A地,到达A地后立即按原路返回B地.如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象.下列说法中正确的个数为()①A,B两地距离是30千米;②甲的速度为15千米/时;③点M的坐标为(,20);④当甲、乙两人相距10千米时,他们的行驶时间是小时或小时.A.1个B.2个C.3个D.4个【解答】解:根据题意可以列出甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数关系得y甲=﹣15x+30y乙=由此可知,①②正确.当﹣15x+30=30x时,解得x=则M坐标为(,20),故③正确.当两人相遇前相距10km时,30x+15x=30﹣10x=,当两人相遇后,相距10km时,30x+15x=30+10,解得x=15x﹣(30x﹣30)=10解得x=∴④错误.故选:C.二、填空题(每题3分,共18分)11.(3分)把函数y=2x的图象沿着y轴向下平移3个单位,得到的直线的解析式为y=2x﹣3.【解答】解:由“上加下减”的原则可知,将直线y=2x沿着y轴向下平移3个单位得到直线解析式为:y=2x﹣3.故答案为:y=2x﹣3.12.(3分)已知a,b,c为三角形的三边,且满足a2c2﹣b2c2=a4﹣b4,那么它的形状是等腰三角形或直角三角形.【解答】解:∵a2c2﹣b2c2=a4﹣b4,∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),∴a2﹣b2=0或c2=a2+b2,当a2﹣b2=0时,a=b;当c2=a2+b2时,∠C=90°,∴△ABC是等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.13.(3分)若的整数部分为x,小数部分为y,则(x+)y的值是4.【解答】解:∵9<13<16,∴3<<4,∴的整数部分为x=3,小数部分为y=﹣3,∴(x+)y=(3)(﹣3)=4.故答案为:4.14.(3分)已知直角三角形的两边a,b满足a2+=10a﹣25,则第三边长为4或.【解答】解:由a2+=10a﹣25,得(a﹣5)2+=0.所以a=5,b=3.①当a=5是斜边时,第三边的长度为:=4.②当a=5是直角边时,第三边的长度为:=.综上所述,第三边的长度为4或.故答案是:4或.15.(3分)如图,四边形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,则四边形ABCD的面积为16.【解答】解:延长AB和DC,两线交于O,∵∠C=90°,∠ABC=135°,∴∠OBC=45°,∠BCO=90°,∴∠O=45°,∵∠A=90°,则OB=BC,OD=OA,OA=AD,BC=OC,设BC=OC=x,则BO=x,∵CD=6,AB=2,∴6+x=(x+2),解得:x=6﹣2,∴OB=x=6﹣4,BC=OC=6﹣2,OA=AD=2+6﹣4=6﹣2,∴四边形ABCD的面积S=S△OAD﹣S△OBC=×OA×AD﹣=×(6﹣2)×﹣=16,故答案为:16.16.(3分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2.则下列结论:①m<0,n>0;②直线y=nx+4n一定经过点(﹣4,0);③m与n满足m=2n﹣2;④当x>﹣2时,nx+4n>﹣x+m,其中正确结论的个数是4个.【解答】解:①∵直线y=﹣x+m与y轴交于负半轴,∴m<0;∵y=nx+4n(n≠0)的图象从左往右逐渐上升,∴n>0,故结论①正确;②将x=﹣4代入y=nx+4n,得y=﹣4n+4n=0,∴直线y=nx+4n一定经过点(﹣4,0).故结论②正确;③∵直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,∴当x=﹣2时,y=2+m=﹣2n+4n,故结论③正确;④∵当x>﹣2时,直线y=nx+4n在直线y=﹣x+m的上方,∴当x>﹣2时,nx+4n>﹣x+m,故结论④正确.故正确结论的个数是4个,故答案为4.三、解答题(共8题,72分)17.(8分)计算(1)3+﹣4;(2)9÷×(﹣).【解答】解:(1)原式=9+﹣2=8;(2)原式=9××(﹣)×=﹣.18.(8分)先化简,再求值:(﹣)÷,其中a=+,b=﹣.【解答】解:(﹣)÷====,当a=+,b=﹣时,原式===.19.(8分)如图,在7×7网格中,每个小正方形边长都为1.建立适当的平面直角坐标系,使点A(3,4)、C(4,2).(1)判断△ABC的形状,并求图中格点△ABC的面积;(2)在x轴上有一点P,使得P A+PC最小,则P A+PC 的最小值为.【解答】解:(1)△ABC是直角三角形,理由:∵AC2+BC2=25,AB2=25,∴AC2+BC2=AB2,∴△ABC 是直角三角形;△ABC的面积=××=5;(2)如图所示,作点C关于x轴的对称点C',连接AC'交x轴于P,连接CP,则CP=C'P,∴P A+PC 的最小值为AC '的长,∵AC'==,∴P A+PC的最小值为,故答案为:.20.(8分)小青在本学期的数学成绩如下表所示(成绩均取整数):测验类别平时期中考试期末考试测验1测验2测验3课题练习成绩8870968685X (1)计算小青本学期的平时平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期小青的期末考试成绩x至少为多少分才能保证达到总评成绩90分的最低目标?【解答】解:(1)小青该学期的平时平均成绩为:(88+70+96+86)÷4=85;(2)按照如图所示的权重,小青该学期的总评成绩为:85×10%+85×30%+60%x,依题意得:85×10%+85×30%+60%x=90解得:x=93.33.答:小青期末考试成绩至少需要94分.21.(8分)如图,折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,若AB=4,BC=3,求AG的长.【解答】解:过点G作GE⊥BD于E,根据题意可得:∠GDA=∠GDB,AD=ED,∵四边形ABCD是矩形,∴∠A=90°,AD=BC=3,∴AG=EG,ED=3,∵AB=4,BC=3,∠A=90°,∴BD=5,设AG=x,则GE=x,BE=BD﹣DE=5﹣3=2,BG=AB﹣AG=4﹣x,在Rt△BEG中,EG2+BE2=BG2,即:x2+4=(4﹣x)2,解得:x=,故AG=.22.(10分)已知O为坐标原点,过点A(1,2)的直线y=kx+b与x轴交于点B,且S△ABO =4,求k的值.【解答】解:∵S△ABO=4,∴OB•y A=4,即×2OB=4,∴OB=4,∴点B的坐标为(4,0)或(﹣4,0).当点B的坐标为(4,0)时,将A(1,2),B(4,0)代入y=kx+b,得:,解得:;当点B的坐标为(﹣4,0)时,将A(1,2),B(﹣4,0)代入y=kx+b,得:,解得:.∴k的值为﹣或.23.(10分)某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70,且为整数),函数y与自变量x的部分对应值如表:x(单位:台)102030y(单位:万元/台)605550(1)求y与x之间的函数关系式;(2)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.则当该厂第一个月生产的这种机器40台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)【解答】解:(1)设每台机器成本y(万元)与生产数量x(台)之间函数关系为y=kx+b,,解得,,即y与x之间的函数关系式为y=﹣0.5x+65;(2)当x=40时,y=﹣0.5×40+65=45,设z与a之间的函数关系式为z=ma+n,,解得,,即z与a之间的函数关系式为z=﹣a+90,当z=40时,40=﹣a+90,解得,a=50,(50﹣45)×40=5×40=200(万元),答:该厂第一个月销售这种机器的总利润是200万元.24.(12分)如图1,直线AB:y=﹣x﹣b分别与x、y轴交于A(6,0)、B两点,过点B 的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求直线BC的解析式;(2)如图2,P为A点右侧x轴上的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K,当P点运动时,K点的位置是否发现变化?若不变,请求出它的坐标;如果变化,请说明理由.【解答】解:(1)直线AB:y=﹣x﹣b分别与x,y轴交于A(6,0)、B两点,∴0=﹣6﹣b,∴b=﹣6,∴直线AB的解析式为:y=﹣x+6,∴B(0,6),∴OB=6,∵OB:OC=3:1,∴OC=OB=2,∴C(﹣2,0),设BC的解析式是y=ax+c,∴,∴,∴直线BC的解析式是:y=3x+6;(2)K点的位置不发生变化,K(0,﹣6).理由如下:如图2,过Q作QH⊥x轴于H,∵△BPQ是等腰直角三角形,∴∠BPQ=90°,PB=PQ,∵∠BOA=∠QHA=90°,∴∠BPO=∠PQH,在△BOP与△PHQ中,,∴△BOP≌△PHQ(AAS),∴PH=BO,OP=QH,∴PH+PO=BO+QH,即OA+AH=BO+QH,又∵OA=OB,∴AH=QH,∴△AHQ是等腰直角三角形,∴∠QAH=45°,∴∠OAK=45°,∴△AOK为等腰直角三角形,∴OK=OA=6,∴K(0,﹣6).。
广东省中大附中、三水实验学校2011-2012学年八年级上学期期中考试数学试题(无答案)

中大附中三水实验学校2011-2012学年上学期期中考试八年级数学试卷(命题人:潘火军审核人:刘佛新)说明:本次考试时间100分钟,满分120分。
[来源:学*科*网]一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.化简16的值为 ( )A.4B. 4C. -4D. 162.下列运动属于平移的是()A.冷水加热过程中小气泡上升成大气泡B.打开教室门,门的移动C.上升的电梯D.随风飘动的风筝在空中运动3.如图,在平行四边形ABCD 中,若∠B=100°,那么∠A 、∠D 的度数分别是()度A.80、100B.100、80C.80、80D.100、1004.已知平行四边形ABCD ,下列判断正确的是()A.若∠A=90°,则四边形ABCD 是矩形B.AC=BDC.AB=CD ,则ABCD 是菱形D.若AC 丄BD ,则四边形ABCD 为正方形5.四个角都相等,且邻边相等的四边形是()A. 平行四边形B.菱形C. 矩形D. 正方形6.在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7B.1,4,9C.5,12,13D.5,11,127. 下列各式中,正确的是( ).A.3355-=-B.6.06.3-=- C.13)13(2-=- D.636=8.下列说法中正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形;B.对角线相等的四边形是矩形;C.对角线相等的菱形是正方形;D.对角线互相垂直的四边形是菱形9.已知正方形的边长为4cm, 则其对角线长( )A. 8cmB. 16cmC. 32cm D 42cm.10. 若a a =-2)3(-3,则a 的取值范围是( ).A. a >3B. a ≥3C. a<3D. a≤3第Ⅱ卷(非选择题共90分)二、填空题(本大题共5小题,每小题3分,共15分.)11.请你任意写出一组勾股数 .12.若x的立方根是—1,则x=___________.13.平方根等于它本身的数是.14.在ABCD中,若满足,则四边形ABCD为矩形.15.已知菱形的两条对角线长为6cm和8cm,则菱形的周长是.三、解答题(写出必要的解题步骤.16~20题每小题6分,21~23题每小题8分,24题10分,25题11分,共75分).16.化简: 31217.化简861221.如图,在平行四边形ABCD中,E、F是对角线AC上的点,且AE=CF,则四边形EBFD是平行四边形吗?说说你的理由.[来源:学.科.网Z.X.X.K]B22.工人师傅做铝合金窗框分下面三个步骤进行:先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;(2)摆放成如图②的四边形,则这时窗框的形状是形,根据数学道理是: 。
广州八年级下期中数学试卷(有答案)

广东省广州八年级(下)期中数学试卷、选择题(共10小题,每小题3分,共30 分)对角线互相平分的四边形(3分)已知三角形的三边长之比为 1:1:二,则此三角形一定是((3分)如图,把矩形ABCD 沿EF 对折后使两部分重合,若/ 仁50°则/ AEF=()£A. 4cmB. 6cmC. 8cmD. 10cm1. (3分)下列根式中,不是最简二次根式的是( A . 二 B . 一 C .2. (3分)下列各组数中,以a, b , c 为边的三角形不是直角三角形的是( A . a=1.5, b=2, c=3 B . a=7, b=24, c=25 C. a=6, b=8, c=10 D. a=3, b=4, c=53. (3分)根据下列条件,不能判定四边形是平行四边形的是( A . 一组对边平行且相等的四边形 B. 两组对边分别相等的四边形 C. 对角线相等的四边形D . 4. A . 锐角三角形B .钝角三角形 C. 等边三角形D .等腰直角三角形A . 110°. 115°C . 120°D. 130° 6 . (3分)实数a 、b在数轴上对应的位置如图,则“hr 讥•「」‘=()A . b - a B. 2— a - b C. a - b D . 2+a — b20cm 的?ABCD 中,AB M AD ,对角线AC BD 相交于点O , OE 丄BD5. C7. (3分)如图,在周长为一条到达底部的直吸管在罐内部分 a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是A .①③④B.①②⑤C .③④⑤D .①③⑤、填空题(共6小题,每小题3分,共18 分) 11. (3分)计算V 的结果是 _________5<a < 12D . 5<a < 139. (3分)如图,在直角坐标系中, 将矩形OABC 沿OB 对折,使点A 落在A i 处,已知OA= _,■1yAiCJ> %/JBOAXA . ([•匚)B .(』:)C.(-D.(-10. (3分)已知:如图,在正方形 交DE 于点P.若AE=AP=1 PBVE .下列结论: ABCD 外取一点 E,连接 AE 、BE 、DE A 作AE 的垂线① 厶 APH A AEB② 点B 到直线AE 的距离为 二; ③ E B 丄ED; ④ S A APD +S A APE F 1+ ";⑤ S其中正确结论的序号是( )B . 12< a < 15 C. AB=1,13. _______________________________________________________________ (3分)直角二角形两直角边长分别为5和12,则它斜边上的咼为 _________________________ .14. (3 分)如图,在?ABCD中,AB=7, AD=11, DE平分/ ADC,贝U BE ____15. (3分)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件______ ,使ABCD成为菱形(只需添加一个即可)16. (3分)如图,在直角坐标系中,已知点A (- 3, 0)、B (0, 4),对厶OAB连续作旋转变换,依次得到△?、△ 3、厶4…,则厶2013的直角顶点的坐标为______ .、计算题(共9小题,共20 分)17. (20分)(1)计算「+|「- 1| - n+ (.:)18. (8分)如图,在边长为1的小正方形组成的网格中,△ ABC的三个顶点均在格点上,请按要求完成下列各题:(1)画线段AD// BC且使AD=BC连接CD;(2)线段AC的长为_____ , CD的长为_______ , AD的长为_______ ;(3)△ ACD为___ 三角形,四边形ABCD的面积为________ .12. (3分)要使式子有意义,则a的取值范围为19. (8 分)如图,在△ ABC中,/ A=30°, / ACB=105, CD丄AB 于D, BC=2cm 求AC和AB的长.(结果保留二次根式)20. (8分)有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m远的一棵大树上,大树高14m,且巢离树顶部1m,当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?(画出符合题意的几何图形,并求解)O是对角线AC和BD的交点,OE± AD于E, OF丄BC于F.求22. (12分)如图,在四边形ABCD中,AB=BC对角线BD平分/ABC, P是BD上一点,过点P作PM丄AD,PN丄CD,垂足分别为M, N.(1 )求证:/ ADB=Z CDB;(2)若/ ADC=90,求证:四边形MPND是正方形.证:OE=OF23. (12 分)如图,在△ ABC中,/ ACB=90,/ B>Z A,点D 为边AB的中点,DE// BC交AC團1 图2于点E, CF// AB 交DE 的延长线于点F. (1) 求证:DE=EF(2) 连结CD,过点D 作DC 的垂线交CF 的延长线于点 G,求证:/ B= / A+Z DGC24. ( 12分)先观察下列等式,再回答下列问题:(1) 请你根据上面三个等式提供的信息,猜想• .'[—‘—J 的结果,并验证; (2) 请你按照上面各等式反映的规律,试写出用含 n 的式子表示的等式(n 为正整数). 25. (14分)如图1,在厶ABC 中,AB=BC P 为AB 边上一点,连接 CP,以PA PC 为邻边作 ?APCD AC 与 PD 相交于点 E ,已知Z ABC=Z AEP a (0°v a 90°. (1) 求证:Z EAP=/ EPA(2) ?APCD 是否为矩形?请说明理由;(3) 如图2, F 为BC 中点,连接FP,将Z AEP 绕点E 顺时针旋转适当的角度,得到Z MEN (点 M 、N 分别是Z MEN 的两边与BA 、FP 延长线的交点).猜想线段EM 与EN 之间的数量关系, 并证明你的结论.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分) 1. (3分)下列根式中,不是最简二次根式的是( )A •匚B .二C . 【解答】解:C 、: •••它不是最简二次根式. 故选:C.2.(3分)下列各组数中,以a, b , c 为边的三角形不是直角三角形的是( )A. a=1.5, b=2, c=3 B . a=7, b=24,c=25 C. a=6, b=8, c=10 D. a=3, b=4, c=5【解答】解:A 、T 1.52+22工32,A 该三角形不是直角三角形,“故A 选项符合题意;B 、 t 72+242=252,A 该三角形是直角三角形,故 B 选项不符合题意; C. v 62+82=10",^该三角形是直角三角形,故C 选项不符合题意;D 、 t 32+42=52,A 该三角形不是直角三角形,故 D 选项不符合题意. 故选:A .3. (3分)根据下列条件,不能判定四边形是平行四边形的是( )A. —组对边平行且相等的四边形B. 两组对边分别相等的四边形C. 对角线相等的四边形D. 对角线互相平分的四边形 【解答】解: A 、t AD=BC AD// BC,•四边形ABCD 是平行四边形,故本选项正确;B 、T AD =BC AB =CD•四边形ABCD 是平行四边形,故本选项正确;C 由AC=BD 不能推出四边形ABCD 是平行四边形,故本选项错误;.V2DD、t OA=OC OD=OB,•四边形ABCD是平行四边形,故本选项正确;故选:c.4. (3分)已知三角形的三边长之比为1:1:坏;,贝U此三角形一定是(A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形【解答】解:由题意设三边长分别为:x, x, ;xx2+x2= (「x)2,二三角形一定为直角三角形,并且是等腰三角形.故选:D.5. (3分)如图,把矩形ABCD沿EF对折后使两部分重合,若/ 1=50°A. 110°B. 115°C. 120°D. 130°【解答】解:根据题意得:/ 2=7 3,vZ 1+72+7 3=180°,•••7 2= (180°- 50° - 2=65°,v四边形ABCD是矩形,•AD// BC,•7 AEF+Z 2=180°,•7 AEF=180 - 65°=1150.故选:B.6 . (3分)实数a、b在数轴上对应的位置如图,则:|.-j ---------------- ■——-——*--------- ・a nb iA. b- aB. 2- a- bC. a- bD. 2+a- bB则7AEF=( )则「..-=|b - 1| - |a- 1|=1 - b - 1+a =a- b故选:C.7. (3分)如图,在周长为20cm的?ABCD中,AB M AD,对角线AC BD相交于点O, 0E丄BD 交AD于匕则厶ABE的周长为()A. 4cmB. 6cmC. 8cmD. 10cm【解答】解:根据平行四边形的性质得:OB=OD••• EO丄BD,••• EO为BD的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE•••△ ABE 的周长=ABAE+DE=AB+AD= X 20=10cm.故选:D.8. (3分)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A. 12< a< 13B. 12< a< 15C. 5< a< 12D. 5< a< 13【解答】解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:「:=13.即a的取值范围是12<a< 13.故选:A.9. (3分)如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA= 一 ,而 Rt A AOB ^ Rt A A 1OB ,•••/ A i OB=Z AOB=30.作A i D 丄OA,垂足为D ,如图所示.在 Rt A A i OD 中,OA i =OA= 一,/ A i OD=60 , A,D••• sin / A i OD= ,0 Aj • A i D=OA?sin / A i OD=/^ OD又 cos / A i OD=「一,• OD=OA?cos / A i OD pX 寻專.£ £ •••点A i 的坐标是 i0. (3分)已知:如调,在正方形ABCD 外取一点E,连接AE 、BE 、DE 过点A 作AE 的垂 线交DE 于点P.若AE=AP=I PBVE .下列结论: ① 厶 APD ^A AEB ; ② 点B 到直线AE 的距离为-;1 C1yAi / J ’JBO AX【解答】解:在Rt A AOB 中,C (一 J D.(-tan / AOB=-二 -, OA V33 'Cy才t *BA TXAB=1,则点A i 的坐标是(A . (一)B .A. 故选:③EB丄ED;④S A APD+S A APB=1+ I:;⑤S 正方形ABCD=4+VE .其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤【解答】解:①•••/ EAB^Z BAP=90 , / PAD F Z BAP=90,•••/ EAB=Z PAD,又••• AE=AP, AB二AD,•••△ APD^A AEB(故①正确);③•••△ APD^A AEB,•••Z APD=Z AEB,又VZ AEB=/ AEP^Z BEP Z APD=Z AEF+Z PAE•Z BEP=/ PAE=90 ,•EB丄ED (故③正确);②过B作BF丄AE,交AE的延长线于F ,V AE=AP Z EAP=90 ,•Z AEP=/ APE=45 ,又V③中EB丄ED, BF丄AF,•Z FEB=/ FBE=45 ,又V BE=「「. =71;二■,•BF=EF=(故②不正确);④如图,连接BD,在Rt A AEP中,V AE=AP=I•EP=「,又V PB= 7 ,•BE=-,13•••△ APHA AEB ••• PD=BE= =,S ^ABP +Sx ADF =S\ABD — S\BDF = S 正方形 ABCD~ X DP X 22④ 不正确).⑤ ••• EF=BF= , AE=1,2•••在 Rt X ABF 中,AB 2= (AE+EF ) 2+BF 2=4+ 7, --S 正方形ABCt = A^=4+ -(故⑤正确);二、填空题(共6小题,每小题3分,共18 分) ii. (3分)计算心-心的结果是3【解答】解:原式=(5 -— 2 ")- T =3. 故答案为:3.12. (3分)要使式子有意义,则a 的取值范围为 a 》-2且a ^ 0a【解答】解:根据题意得:a+2> 0且a M 0, 解得:a > — 2且a M 0. 故答案为:a > — 2且a M 0.13. (3分)直角二角形两直角边长分别为 5和12,则它斜边上的咼为【解答】解:由勾股定理可得:斜边长2=52+122, 则斜边长=13, 直角,三角形面积S= X 5X 12= X 13 X 斜边的高, 可得:斜边的高< . 6014. (3 分)如图,在?ABCD 中,AB=7, AD=11, DE 平分/ ADC,贝U BE= 460故答案为:故选:D .A D【解答】解::DE平分/ ADC,•••/ ADE=Z CDE••• ?ABCD中AD// BC,•••/ ADE=Z CED•••/ CDE=/ CED,来源••• CE=CD•••在?ABCD中, AB=7, AD=11 ,••• CD=AB=7 , BC=AD=11••• BE=BC- CE=11- 7=4.故答案为:4.15. (3分)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件OA=OC ,使ABCD成为菱形(只需添加一个即可)【解答】解:OA=OC•••OB=OD, OA=OC•••四边形ABCD是平行四边形,••• AC丄BD,•••平行四边形ABCD是菱形,故答案为:OA=OC16. (3分)如图,在直角坐标系中,已知点A (- 3 , 0)、B (0 , 4),对厶OAB连续作旋转变换,依次得到厶?、△ 3、厶4…,则厶2013的直角顶点的坐标为(8052, 0).二AB= | i =5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:••• 2013-3=671,•••△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点,••• 671 X 12=8052,2013的直角顶点的坐标为(8052, 0).故答案为:(8052, 0).三、计算题(共9小题,共20 分)17. (20分)(1)计算「+| 7- 1| -⑶先化简,后计算:,+;+_:,其中a「, b=「【解答】解:(1)原式=2二+二-1 - 1+2=3二3 ? a 2a(3)当a=「,b=「时,1 1=.+ I4+5+3=12,0 -1n+c.);(2) J-::」J (a> 0);(2)原式=3 . +】=718. (8分)如图,在边长为1的小正方形组成的网格中,△ ABC的三个顶点均在格点上,请按要求完成下列各题:(1)画线段AD// BC且使AD=BC连接CD;(2)线段AC的长为2「, CD的长为「,AD的长为5(3)△ ACD为直角三角形,四边形ABCD的面积为10 .【解答】解:(1)如图所示:(2) AC= :=2 匚;CD=U+T=!;AD= ; . , =5;(3):( 2 三)2+ (三)2=52,•••△ ACD是直角三角形,S四边形ABCD=4X 6 —2X 1 —= X 4X 3 —= X 2X 1 - —X 3X 4=10.故答案为:2 ",",5;直角,10.19. (8 分)如图,在△ ABC中,/ A=30°,/ ACB=105,CD丄AB 于D,BC=2cm 求AC和AB的长.(结果保留二次根式)【解答】 解:•••在△ ABC 中,/ A=30°, / ACB=105, CD 丄AB 于 D ,ADC 中,/ ADC=90,/ ACD=60••• AC=2CD在厶 BDC 中,/ BDC=90,Z BCD=Z DBC=45••• CD=BD由勾股定理可得,BD 2+CD 2=4 二 CD=BD=三, --AC=2*,/ cm ; 在厶ADC 中,AD=AC?si n60° =2?萼=乙 AB=AD+BD= (-;;) cm .20. (8分)有一只喜鹊在一棵3m 高的小树上觅食,它的巢筑在距离该树 24m 远的一棵大树 上,大树高14m ,且巢离树顶部1m ,当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的 速度为5m/s ,那它至少需要多少时间才能赶回巢中?(画出符合题意的几何图形,并求解)【解答】 解:如图,由题意知 AB=3m, CD=14-仁13 (m ),BD=24m 过 A 作 AE 丄 CD 于 E .贝U CE=13- 3=10 (m ),AE=24m, 在 Rt A AEC 中, AC 2=CE 2+AE ?=102+242. 故 AC=26m , 则 26- 5=5.2 (s ),n B21. (8分)如图,在?ABCD中,O是对角线AC和BD的交点,OE±AD于E, OF丄BC于F.求证:OE=OF【解答】证明:•••四边形ABCD是平行四边形,•••OA=OC AD// BC,:丄 EAO=Z FCQ•••OE丄AD, OF丄BC,•••/ AEO=/ CFO=90,在厶AEO和△ CFO中,'ZEA0=ZFC0Z 期gZCFO,PARC•••△ AEO^A CFO( AAS,•••OE=OF22. (12分)如图,在四边形ABCD中,AB=BC对角线BD平•:分/ABC, P是BD上一点,过点P 作PM丄AD, PN丄CD,垂足分别为M, N.(1 )求证:/ ADB=/ CDB;(2)若/ ADC=90,求证:四边形MPND是正方形.【解答】证明:(1 )•对角线BD平分/ ABC,•••/ ABD=/ CBD,在厶ABD和厶CBD中,f AB=CB■ ZABD^ZCBD,SD=BD•••△ ABD^A CBD( SAS, •••/ ADB=/ CDB(2 PM 丄AD, PN丄CD,•••/ PMD=Z PND=90 ,vZ ADC=90,•••四边形MPND是矩形,vZ ADB=Z CDB•••Z ADB=45••• PM=MD,23. (12 分)如图,在△ ABC中,Z ACB=90, Z B>Z A,点D 为边AB的中点,DE/ BC交AC于占-J八、、连结CD,过点D作DC的垂线,交CF的延长线于点G,求证:Z B=Z A+Z DGC• DF=BCv D为边AB的中点,DE/ BC,• DE= BC,• EF=D R DE=BO -CB= CBE, CF// AB交DE的延长线于点F.(1) 求证:DE=EF(2)•四边形MPND是正方形.•四边形DBCF为平行四边形:,CF/AB,••• DE=EF(2 ):DB// CF,•••/ ADG=Z G,vZ ACB=90, D为边AB的中点,••• CD=DB=AD•••Z B=Z DCB Z A=Z DCAv DG丄DC,•Z DCA+Z 1= 90°°vZ DCB^Z DCA=90 ,•Z 1 = Z DCB=/ B ,vZ A+Z ADG=Z 1,•Z A+Z G=Z B.24. (12分)先观察下列等式,再回答下列问题:(1)请你根据上面三个等式提供的信息,猜想.i 的结果,并验证;(2)请你按照上面各等式反映的规律,试写出用含n的式子表示的等式(n为正整数). 【解答】解:(1)25. (14分)如图1,在厶ABC中,AB=BC P为AB边上一点,连接CP,以PA PC为邻边作?APCD AC与PD相交于点E,已知/ ABC=Z AEP a (0°v a 90°.(1 )求证:/ EAP=/ EPA(2)?APCD是否为矩形?请说明理由;(3)如图2, F为BC中点,连接FP,将/ AEP绕点E顺时针旋■转适当的角度,得到/ MEN (点M、N分别是/ MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.【解答】(1)证明:在厶ABC和厶AEP中,•••/ ABC=/ AEP, / BACK EAP,•••/ ACB=/ APE 在厶ABC中, AB=BC•••/ ACB=/ BAC,•••/ EPA=/ EAR(2)解:?APCD是矩形.理由如下:•••四边形APCD是平行四边形,••• AC=2EA PD=2EP•••由(1)知/ EPA/ EAF,••• EA=EP贝U AC=PD••• ?APCD是矩形.(2) !:匚「二(n为正整数).(3)解:EM=EN证明:••• EA=EP•— EPA=「「呵=_ - =90°- ' a,2 2 2•••/ EAM=180 -Z EPA=180-( 90°-寺a) =90召a,由(2)知/ CPB=90, F是BC的中点,••• FP=FB•••Z FPB=Z ABC=a,•••Z EPN=/ EPA+Z APN=Z EPA+Z FPB=90 -寺a+ a =90° a,•Z EAM=Z EPN,•••Z AEP绕点E顺时针旋转适当的角度,得到Z MEN,•Z AEP=Z MEN,•Z AEP-Z AEN=Z MEN -Z AEN,即Z MEA=Z NEP,在厶EAM和A EPN中,'Z EAM-Z EPN(EArEP,ZMEA-ZNEP•••△EAM^A EPN (ASA , • EM=EN.。
2012年八年级(下)期中考试数学试卷(含答案)

xyO图1xO yP 4题图八 年 级 (下) 期 中 数 学 试 题(友情提醒:全卷满分120分,答卷时间100分钟,请你掌握好时间.)题号 一 二 三 四 总 分得分一、选择题(每小题3分,共30分)(请将正确答案序号填入以下表格相应的题号下,否则不得分)题号 1 2 3 4 5 6 7 8 9 10 答案1.代数式42,1,3,31nm b a b a ,x -++π中,分式有( ☆ ) A .1个; B .2个; C .3个; D .4个。
2.若分式方程33x x -++1=m 有增根,则这个增根的值为( ☆ )A .1B .3C .-3D .3或-33.(2011广西来宾)计算11x x y--的结果是( ☆ ) A.()y x x y -- B.2()x y x x y -+ C.2()x y x x y -- D.()yx x y -4.如图,点P (3a ,a )是反比例函y =kx(k >0)与⊙O 的一个交点,图中 阴影部分的面积为10π,则反比例函数的解析式为 ( ☆ ) A .y =3x B .y =5x C .y =10x D .y =12x5.反比例函数1y x=(x >0)的图象如图1所示,随着x 值的增大,y 值( ☆ ). A .减小 B .增大 C .不变 D .先减小后不变 6.已知反比例函数1y x-=,下列结论不正确...的是( ☆ ) A .图象经过点(-1,1) B .图象在第二、四象限C .当1x >时,10y -<<D .当0x <时,y 随着x 的增大而减小 7.若反比例函数ky x=的图象经过点(-3,2),则k 的值为( ☆ ). A .-6 B .6 C .-5 D .5 8.在△ABC 中,AB =6,AC =8,BC =10,则该三角形为( ☆ )图4S 2S 3S 1C BA12-3-210-13A 9.如图所示:数轴上点A 所表示的数为a ,则a 的值是 ( ☆ ) A .5+1B .-5+1C .5-1D .510.如图2是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm , 现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( ☆ ) A .4 cm B .5 cm C .6 cm D .10 cm 二、填空题(每小题3分,共30分)11.若方程0414=----xxx m 有增根,则m 的值是 . 12.计算:x 2x y - xy =_______13.当x= 时,分式31x x +-的值等于2 14.已知反比例函数1m y x-=的图象如图3,则m 的取值范围是 .15.观察下面一列有规律的数:31,82,153,244,355,486,……,根据其规律可知第n 个数应是 (n 为整数).16.若点(-2,-1)在反比例函数xky =的图象上,则该函数的图象位于第 象限. 17.有两块面积相同的果园,分别收获苹果900kg 和1500kg .已知第一块试验田每亩收获苹果比第二块少300kg ,求第一块试验田每亩收获苹果多少千克.设第一块试验田每亩收获苹果x kg ,根据题意,可得方程 。
广东省中大附中2012-2013学年八年级上学期期中考试数学试题

注意事项:1.本试卷共三大题26小题,满分150分,考试时间120分钟.2.所有题目的答案必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域,不准使用涂改液. 3.本卷不允许使用计算器.一、选择题:(每小题3分,共30分) 1.如图,△ABC 中,AB = AC ,∠BAC = 100°,AD 是BC 边上的中线,且BD = BE ,则∠ADE 的大小为( * )。
A .10°B .20°C .40°D .70°2.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有( * )。
A .1个 B .2个 C .3个D .4个3.如图,小强拿一张正方形的纸,沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线剪去一个角,再打开后的形状是( * )。
A B C D4.如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处.若1129∠=︒,则2∠的度数为( * )。
(A )49° (B )50° (C )51° (D )52°D EC B A5.估算24+3的值 ( * )。
A .在5和6之间B .在6和7之间C .在7和8之间D .在8和9之间6.下列可使两个直角三角形全等的条件是 ( * )。
A .一条边对应相等B .斜边和一直角边对应相等C .一个锐角对应相等D .两个锐角对应相等 7.如图,△ABC 的三边AB 、BC 、AC 的长分别为20、 30、40,其三条角平分线将△ABC 分成三个三角形, 则=∆∆∆OAC OBC OAB S S S ::( * )。
A .1:1:1B. 6:4:3C. 2:3:4D. 4:3:28.如图所示,一位同学书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( * )。
广东省广州市各地八年级下学期期中数学试卷精选汇编

广东省广州市各地八年级下学期期中数学试卷精选汇编(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 若一个正方形的对角线长为10cm,则其面积为多少平方厘米?A. 50B. 100C. 200D. 50√22. 下列哪个数是9的平方根?A. 3B. 3C. 9D. 93. 已知函数y=2x+3,当x=4时,y的值为多少?A. 11B. 12C. 13D. 144. 若|a|=5,则a的值为多少?A. 5B. 5C. 25D. 255. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标为多少?A. (2,3)B. (2,3)C. (2,3)D. (2,3)二、判断题(每题1分,共20分)6. 两个负数相乘,其结果为正数。
()7. 任何数的平方都是非负数。
()8. 两个正数相除,其结果为负数。
()9. 一次函数的图像是一条直线。
()10. 互为相反数的两个数绝对值相等。
()三、填空题(每空1分,共10分)11. 若一个数的平方为9,则这个数为______。
12. 已知一组数据2,3,5,7,10,则这组数据的平均数为______。
13. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长为______cm。
14. 若一个圆的半径为5cm,则这个圆的直径为______cm。
15. 若|a|=3,则a的值为______。
四、简答题(每题10分,共10分)16. 简述勾股定理及其应用。
17. 简述一次函数的性质及其图像。
五、综合题(1和2两题7分,3和4两题8分,共30分)18. 已知一个等差数列的前三项分别为2,5,8,求该数列的通项公式及第10项的值。
19. 解方程组:\[\begin{cases}2x+3y=12 \\x2y=5\end{cases}\]20. 已知一个正方形的对角线长为10cm,求该正方形的面积。
21. 已知函数y=2x+3,求当x=4时,y的值。
广州八年级下期中数学试卷(有答案)

广东省广州八年级(下)期中数学试卷、选择题(共10小题,每小题3分,共30 分)对角线互相平分的四边形(3分)已知三角形的三边长之比为 1:1:二,则此三角形一定是((3分)如图,把矩形ABCD 沿EF 对折后使两部分重合,若/ 仁50°则/ AEF=()£A. 4cmB. 6cmC. 8cmD. 10cm1. (3分)下列根式中,不是最简二次根式的是( A . 二 B . 一 C .2. (3分)下列各组数中,以a, b , c 为边的三角形不是直角三角形的是( A . a=1.5, b=2, c=3 B . a=7, b=24, c=25 C. a=6, b=8, c=10 D. a=3, b=4, c=53. (3分)根据下列条件,不能判定四边形是平行四边形的是( A . 一组对边平行且相等的四边形 B. 两组对边分别相等的四边形 C. 对角线相等的四边形D . 4. A . 锐角三角形B .钝角三角形 C. 等边三角形D .等腰直角三角形A . 110°. 115°C . 120°D. 130° 6 . (3分)实数a 、b在数轴上对应的位置如图,则“hr 讥•「」‘=()A . b - a B. 2— a - b C. a - b D . 2+a — b20cm 的?ABCD 中,AB M AD ,对角线AC BD 相交于点O , OE 丄BD5. C7. (3分)如图,在周长为一条到达底部的直吸管在罐内部分 a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是A .①③④B.①②⑤C .③④⑤D .①③⑤、填空题(共6小题,每小题3分,共18 分) 11. (3分)计算V 的结果是 _________5<a < 12D . 5<a < 139. (3分)如图,在直角坐标系中, 将矩形OABC 沿OB 对折,使点A 落在A i 处,已知OA= _,■1yAiCJ> %/JBOAXA . ([•匚)B .(』:)C.(-D.(-10. (3分)已知:如图,在正方形 交DE 于点P.若AE=AP=1 PBVE .下列结论: ABCD 外取一点 E,连接 AE 、BE 、DE A 作AE 的垂线① 厶 APH A AEB② 点B 到直线AE 的距离为 二; ③ E B 丄ED; ④ S A APD +S A APE F 1+ ";⑤ S其中正确结论的序号是( )B . 12< a < 15 C. AB=1,13. _______________________________________________________________ (3分)直角二角形两直角边长分别为5和12,则它斜边上的咼为 _________________________ .14. (3 分)如图,在?ABCD中,AB=7, AD=11, DE平分/ ADC,贝U BE ____15. (3分)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件______ ,使ABCD成为菱形(只需添加一个即可)16. (3分)如图,在直角坐标系中,已知点A (- 3, 0)、B (0, 4),对厶OAB连续作旋转变换,依次得到△?、△ 3、厶4…,则厶2013的直角顶点的坐标为______ .、计算题(共9小题,共20 分)17. (20分)(1)计算「+|「- 1| - n+ (.:)18. (8分)如图,在边长为1的小正方形组成的网格中,△ ABC的三个顶点均在格点上,请按要求完成下列各题:(1)画线段AD// BC且使AD=BC连接CD;(2)线段AC的长为_____ , CD的长为_______ , AD的长为_______ ;(3)△ ACD为___ 三角形,四边形ABCD的面积为________ .12. (3分)要使式子有意义,则a的取值范围为19. (8 分)如图,在△ ABC中,/ A=30°, / ACB=105, CD丄AB 于D, BC=2cm 求AC和AB的长.(结果保留二次根式)20. (8分)有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m远的一棵大树上,大树高14m,且巢离树顶部1m,当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?(画出符合题意的几何图形,并求解)O是对角线AC和BD的交点,OE± AD于E, OF丄BC于F.求22. (12分)如图,在四边形ABCD中,AB=BC对角线BD平分/ABC, P是BD上一点,过点P作PM丄AD,PN丄CD,垂足分别为M, N.(1 )求证:/ ADB=Z CDB;(2)若/ ADC=90,求证:四边形MPND是正方形.证:OE=OF23. (12 分)如图,在△ ABC中,/ ACB=90,/ B>Z A,点D 为边AB的中点,DE// BC交AC團1 图2于点E, CF// AB 交DE 的延长线于点F. (1) 求证:DE=EF(2) 连结CD,过点D 作DC 的垂线交CF 的延长线于点 G,求证:/ B= / A+Z DGC24. ( 12分)先观察下列等式,再回答下列问题:(1) 请你根据上面三个等式提供的信息,猜想• .'[—‘—J 的结果,并验证; (2) 请你按照上面各等式反映的规律,试写出用含 n 的式子表示的等式(n 为正整数). 25. (14分)如图1,在厶ABC 中,AB=BC P 为AB 边上一点,连接 CP,以PA PC 为邻边作 ?APCD AC 与 PD 相交于点 E ,已知Z ABC=Z AEP a (0°v a 90°. (1) 求证:Z EAP=/ EPA(2) ?APCD 是否为矩形?请说明理由;(3) 如图2, F 为BC 中点,连接FP,将Z AEP 绕点E 顺时针旋转适当的角度,得到Z MEN (点 M 、N 分别是Z MEN 的两边与BA 、FP 延长线的交点).猜想线段EM 与EN 之间的数量关系, 并证明你的结论.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分) 1. (3分)下列根式中,不是最简二次根式的是( )A •匚B .二C . 【解答】解:C 、: •••它不是最简二次根式. 故选:C.2.(3分)下列各组数中,以a, b , c 为边的三角形不是直角三角形的是( )A. a=1.5, b=2, c=3 B . a=7, b=24,c=25 C. a=6, b=8, c=10 D. a=3, b=4, c=5【解答】解:A 、T 1.52+22工32,A 该三角形不是直角三角形,“故A 选项符合题意;B 、 t 72+242=252,A 该三角形是直角三角形,故 B 选项不符合题意; C. v 62+82=10",^该三角形是直角三角形,故C 选项不符合题意;D 、 t 32+42=52,A 该三角形不是直角三角形,故 D 选项不符合题意. 故选:A .3. (3分)根据下列条件,不能判定四边形是平行四边形的是( )A. —组对边平行且相等的四边形B. 两组对边分别相等的四边形C. 对角线相等的四边形D. 对角线互相平分的四边形 【解答】解: A 、t AD=BC AD// BC,•四边形ABCD 是平行四边形,故本选项正确;B 、T AD =BC AB =CD•四边形ABCD 是平行四边形,故本选项正确;C 由AC=BD 不能推出四边形ABCD 是平行四边形,故本选项错误;.V2DD、t OA=OC OD=OB,•四边形ABCD是平行四边形,故本选项正确;故选:c.4. (3分)已知三角形的三边长之比为1:1:坏;,贝U此三角形一定是(A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形【解答】解:由题意设三边长分别为:x, x, ;xx2+x2= (「x)2,二三角形一定为直角三角形,并且是等腰三角形.故选:D.5. (3分)如图,把矩形ABCD沿EF对折后使两部分重合,若/ 1=50°A. 110°B. 115°C. 120°D. 130°【解答】解:根据题意得:/ 2=7 3,vZ 1+72+7 3=180°,•••7 2= (180°- 50° - 2=65°,v四边形ABCD是矩形,•AD// BC,•7 AEF+Z 2=180°,•7 AEF=180 - 65°=1150.故选:B.6 . (3分)实数a、b在数轴上对应的位置如图,则:|.-j ---------------- ■——-——*--------- ・a nb iA. b- aB. 2- a- bC. a- bD. 2+a- bB则7AEF=( )则「..-=|b - 1| - |a- 1|=1 - b - 1+a =a- b故选:C.7. (3分)如图,在周长为20cm的?ABCD中,AB M AD,对角线AC BD相交于点O, 0E丄BD 交AD于匕则厶ABE的周长为()A. 4cmB. 6cmC. 8cmD. 10cm【解答】解:根据平行四边形的性质得:OB=OD••• EO丄BD,••• EO为BD的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE•••△ ABE 的周长=ABAE+DE=AB+AD= X 20=10cm.故选:D.8. (3分)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A. 12< a< 13B. 12< a< 15C. 5< a< 12D. 5< a< 13【解答】解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:「:=13.即a的取值范围是12<a< 13.故选:A.9. (3分)如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA= 一 ,而 Rt A AOB ^ Rt A A 1OB ,•••/ A i OB=Z AOB=30.作A i D 丄OA,垂足为D ,如图所示.在 Rt A A i OD 中,OA i =OA= 一,/ A i OD=60 , A,D••• sin / A i OD= ,0 Aj • A i D=OA?sin / A i OD=/^ OD又 cos / A i OD=「一,• OD=OA?cos / A i OD pX 寻專.£ £ •••点A i 的坐标是 i0. (3分)已知:如调,在正方形ABCD 外取一点E,连接AE 、BE 、DE 过点A 作AE 的垂 线交DE 于点P.若AE=AP=I PBVE .下列结论: ① 厶 APD ^A AEB ; ② 点B 到直线AE 的距离为-;1 C1yAi / J ’JBO AX【解答】解:在Rt A AOB 中,C (一 J D.(-tan / AOB=-二 -, OA V33 'Cy才t *BA TXAB=1,则点A i 的坐标是(A . (一)B .A. 故选:③EB丄ED;④S A APD+S A APB=1+ I:;⑤S 正方形ABCD=4+VE .其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤【解答】解:①•••/ EAB^Z BAP=90 , / PAD F Z BAP=90,•••/ EAB=Z PAD,又••• AE=AP, AB二AD,•••△ APD^A AEB(故①正确);③•••△ APD^A AEB,•••Z APD=Z AEB,又VZ AEB=/ AEP^Z BEP Z APD=Z AEF+Z PAE•Z BEP=/ PAE=90 ,•EB丄ED (故③正确);②过B作BF丄AE,交AE的延长线于F ,V AE=AP Z EAP=90 ,•Z AEP=/ APE=45 ,又V③中EB丄ED, BF丄AF,•Z FEB=/ FBE=45 ,又V BE=「「. =71;二■,•BF=EF=(故②不正确);④如图,连接BD,在Rt A AEP中,V AE=AP=I•EP=「,又V PB= 7 ,•BE=-,13•••△ APHA AEB ••• PD=BE= =,S ^ABP +Sx ADF =S\ABD — S\BDF = S 正方形 ABCD~ X DP X 22④ 不正确).⑤ ••• EF=BF= , AE=1,2•••在 Rt X ABF 中,AB 2= (AE+EF ) 2+BF 2=4+ 7, --S 正方形ABCt = A^=4+ -(故⑤正确);二、填空题(共6小题,每小题3分,共18 分) ii. (3分)计算心-心的结果是3【解答】解:原式=(5 -— 2 ")- T =3. 故答案为:3.12. (3分)要使式子有意义,则a 的取值范围为 a 》-2且a ^ 0a【解答】解:根据题意得:a+2> 0且a M 0, 解得:a > — 2且a M 0. 故答案为:a > — 2且a M 0.13. (3分)直角二角形两直角边长分别为 5和12,则它斜边上的咼为【解答】解:由勾股定理可得:斜边长2=52+122, 则斜边长=13, 直角,三角形面积S= X 5X 12= X 13 X 斜边的高, 可得:斜边的高< . 6014. (3 分)如图,在?ABCD 中,AB=7, AD=11, DE 平分/ ADC,贝U BE= 460故答案为:故选:D .A D【解答】解::DE平分/ ADC,•••/ ADE=Z CDE••• ?ABCD中AD// BC,•••/ ADE=Z CED•••/ CDE=/ CED,来源••• CE=CD•••在?ABCD中, AB=7, AD=11 ,••• CD=AB=7 , BC=AD=11••• BE=BC- CE=11- 7=4.故答案为:4.15. (3分)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件OA=OC ,使ABCD成为菱形(只需添加一个即可)【解答】解:OA=OC•••OB=OD, OA=OC•••四边形ABCD是平行四边形,••• AC丄BD,•••平行四边形ABCD是菱形,故答案为:OA=OC16. (3分)如图,在直角坐标系中,已知点A (- 3 , 0)、B (0 , 4),对厶OAB连续作旋转变换,依次得到厶?、△ 3、厶4…,则厶2013的直角顶点的坐标为(8052, 0).二AB= | i =5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:••• 2013-3=671,•••△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点,••• 671 X 12=8052,2013的直角顶点的坐标为(8052, 0).故答案为:(8052, 0).三、计算题(共9小题,共20 分)17. (20分)(1)计算「+| 7- 1| -⑶先化简,后计算:,+;+_:,其中a「, b=「【解答】解:(1)原式=2二+二-1 - 1+2=3二3 ? a 2a(3)当a=「,b=「时,1 1=.+ I4+5+3=12,0 -1n+c.);(2) J-::」J (a> 0);(2)原式=3 . +】=718. (8分)如图,在边长为1的小正方形组成的网格中,△ ABC的三个顶点均在格点上,请按要求完成下列各题:(1)画线段AD// BC且使AD=BC连接CD;(2)线段AC的长为2「, CD的长为「,AD的长为5(3)△ ACD为直角三角形,四边形ABCD的面积为10 .【解答】解:(1)如图所示:(2) AC= :=2 匚;CD=U+T=!;AD= ; . , =5;(3):( 2 三)2+ (三)2=52,•••△ ACD是直角三角形,S四边形ABCD=4X 6 —2X 1 —= X 4X 3 —= X 2X 1 - —X 3X 4=10.故答案为:2 ",",5;直角,10.19. (8 分)如图,在△ ABC中,/ A=30°,/ ACB=105,CD丄AB 于D,BC=2cm 求AC和AB的长.(结果保留二次根式)【解答】 解:•••在△ ABC 中,/ A=30°, / ACB=105, CD 丄AB 于 D ,ADC 中,/ ADC=90,/ ACD=60••• AC=2CD在厶 BDC 中,/ BDC=90,Z BCD=Z DBC=45••• CD=BD由勾股定理可得,BD 2+CD 2=4 二 CD=BD=三, --AC=2*,/ cm ; 在厶ADC 中,AD=AC?si n60° =2?萼=乙 AB=AD+BD= (-;;) cm .20. (8分)有一只喜鹊在一棵3m 高的小树上觅食,它的巢筑在距离该树 24m 远的一棵大树 上,大树高14m ,且巢离树顶部1m ,当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的 速度为5m/s ,那它至少需要多少时间才能赶回巢中?(画出符合题意的几何图形,并求解)【解答】 解:如图,由题意知 AB=3m, CD=14-仁13 (m ),BD=24m 过 A 作 AE 丄 CD 于 E .贝U CE=13- 3=10 (m ),AE=24m, 在 Rt A AEC 中, AC 2=CE 2+AE ?=102+242. 故 AC=26m , 则 26- 5=5.2 (s ),n B21. (8分)如图,在?ABCD中,O是对角线AC和BD的交点,OE±AD于E, OF丄BC于F.求证:OE=OF【解答】证明:•••四边形ABCD是平行四边形,•••OA=OC AD// BC,:丄 EAO=Z FCQ•••OE丄AD, OF丄BC,•••/ AEO=/ CFO=90,在厶AEO和△ CFO中,'ZEA0=ZFC0Z 期gZCFO,PARC•••△ AEO^A CFO( AAS,•••OE=OF22. (12分)如图,在四边形ABCD中,AB=BC对角线BD平•:分/ABC, P是BD上一点,过点P 作PM丄AD, PN丄CD,垂足分别为M, N.(1 )求证:/ ADB=/ CDB;(2)若/ ADC=90,求证:四边形MPND是正方形.【解答】证明:(1 )•对角线BD平分/ ABC,•••/ ABD=/ CBD,在厶ABD和厶CBD中,f AB=CB■ ZABD^ZCBD,SD=BD•••△ ABD^A CBD( SAS, •••/ ADB=/ CDB(2 PM 丄AD, PN丄CD,•••/ PMD=Z PND=90 ,vZ ADC=90,•••四边形MPND是矩形,vZ ADB=Z CDB•••Z ADB=45••• PM=MD,23. (12 分)如图,在△ ABC中,Z ACB=90, Z B>Z A,点D 为边AB的中点,DE/ BC交AC于占-J八、、连结CD,过点D作DC的垂线,交CF的延长线于点G,求证:Z B=Z A+Z DGC• DF=BCv D为边AB的中点,DE/ BC,• DE= BC,• EF=D R DE=BO -CB= CBE, CF// AB交DE的延长线于点F.(1) 求证:DE=EF(2)•四边形MPND是正方形.•四边形DBCF为平行四边形:,CF/AB,••• DE=EF(2 ):DB// CF,•••/ ADG=Z G,vZ ACB=90, D为边AB的中点,••• CD=DB=AD•••Z B=Z DCB Z A=Z DCAv DG丄DC,•Z DCA+Z 1= 90°°vZ DCB^Z DCA=90 ,•Z 1 = Z DCB=/ B ,vZ A+Z ADG=Z 1,•Z A+Z G=Z B.24. (12分)先观察下列等式,再回答下列问题:(1)请你根据上面三个等式提供的信息,猜想.i 的结果,并验证;(2)请你按照上面各等式反映的规律,试写出用含n的式子表示的等式(n为正整数). 【解答】解:(1)25. (14分)如图1,在厶ABC中,AB=BC P为AB边上一点,连接CP,以PA PC为邻边作?APCD AC与PD相交于点E,已知/ ABC=Z AEP a (0°v a 90°.(1 )求证:/ EAP=/ EPA(2)?APCD是否为矩形?请说明理由;(3)如图2, F为BC中点,连接FP,将/ AEP绕点E顺时针旋■转适当的角度,得到/ MEN (点M、N分别是/ MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.【解答】(1)证明:在厶ABC和厶AEP中,•••/ ABC=/ AEP, / BACK EAP,•••/ ACB=/ APE 在厶ABC中, AB=BC•••/ ACB=/ BAC,•••/ EPA=/ EAR(2)解:?APCD是矩形.理由如下:•••四边形APCD是平行四边形,••• AC=2EA PD=2EP•••由(1)知/ EPA/ EAF,••• EA=EP贝U AC=PD••• ?APCD是矩形.(2) !:匚「二(n为正整数).(3)解:EM=EN证明:••• EA=EP•— EPA=「「呵=_ - =90°- ' a,2 2 2•••/ EAM=180 -Z EPA=180-( 90°-寺a) =90召a,由(2)知/ CPB=90, F是BC的中点,••• FP=FB•••Z FPB=Z ABC=a,•••Z EPN=/ EPA+Z APN=Z EPA+Z FPB=90 -寺a+ a =90° a,•Z EAM=Z EPN,•••Z AEP绕点E顺时针旋转适当的角度,得到Z MEN,•Z AEP=Z MEN,•Z AEP-Z AEN=Z MEN -Z AEN,即Z MEA=Z NEP,在厶EAM和A EPN中,'Z EAM-Z EPN(EArEP,ZMEA-ZNEP•••△EAM^A EPN (ASA , • EM=EN.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-2012学年广东省广州市中大附中八年级(下)期中数学试
卷
一、选择题:本大题共10小题,每小题3分,共30分.
1.(3分)(2013春•硚口区期末)医学研究发现一种新病毒的直径约为0.000043毫米,则这个数用科学记数法表示为()
A.0.43×10﹣4B.0.43×104C.4.3×10﹣5D.0.43×105
2.(3分)(2012春•花都区校级期中)在式子、、、、、中,
分式的个数有()
A.2个B.3个C.4个D.5个
3.(3分)(2013春•武昌区校级期中)下列各式中正确的是()
A.=1 B.C.a2÷a﹣3=a﹣1D.
4.(3分)(2013春•赵县期末)在y=的图象中,阴影部分面积不为1的是()A.B.C.
D.
5.(3分)(2012春•望江县期中)直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()
A.121 B.120 C.90 D.不能确定
6.(3分)(2013春•工业园区期末)一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是()
A.①B.②C.③D.④
7.(3分)(2010•绍兴)已知P1(x1,y1),P2(x2,y2),P3(x3,y3)是反比例函数y=的
图象上的三点,且x1<x2<0<x3,则y1、y2、y3的大小关系是()
A.y3<y2<y1B.y1<y2<y3C.y2<y1<y3D.y2<y3<y1
8.(3分)(2008•安徽)如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC 于点N,则MN等于()
A.B.C.D.
9.(3分)(2012春•花都区校级期中)有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B 处,则需要爬行的最短路径长为()
A.5cm B.cm C.4cm D.3cm
10.(3分)(2010•攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y
轴,若双曲线y=(k≠0)与△ABC有交点,则k的取值范围是()
A.1<k<2 B.1≤k≤3 C.1≤k≤4 D.1≤k<4
二、填空题(共6小题,每小题3分,满分18分)
11.(3分)(2013秋•监利县期末)当x时,分式有意义.
12.(3分)(2004•乌鲁木齐)如图,已知OA=OB,那么数轴上点A所表示的数
是.
13.(3分)(2012春•花都区校级期中)已知,则=.
14.(3分)(2011秋•晋安区期中)点P是等边三角形ABC内一点,且PA=6,PB=8,PC=10,则∠APB=.
15.(3分)(2015春•沭阳县期中)若▱ABCD的一个角的平分线把一条边分成长是4cm和5cm的两条线段,则▱ABCD的周长是.
16.(3分)(2012春•花都区校级期中)如图由4个等腰直角三角形组成,其中第1个直角三角形腰长为1cm,第4个直角三角形斜边长度为.
三、耐心做一做(本大题共9题,共112分.解答应写出必要的文字说明、证明过程或演算步骤)
17.(6分)(2009•平谷区二模)计算:.
18.(6分)(2005•上海)解方程:.
19.(6分)(2012春•花都区校级期中)已知:a2+a﹣1=0,求分式的值.
20.(6分)(2012春•花都区校级期中)已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.
求证:四边形ABOE是平行四边形.
21.(6分)(2012春•花都区校级期中)A、B两地相距80km,甲、乙从A地出发到B地,甲出发1小时后,乙以相当于甲1.5倍的速度追赶,当乙追到B地时,结果甲比乙先到20分钟,求甲、乙两人的速度各是多少?
22.(8分)(2012秋•祁阳县校级期中)如图,某游泳池长48米,小方和小杨进行游泳比赛,从同一处(A点)出发,小方平均速度为3米/秒,小杨为3.1米/秒.但小杨一心想快,不看方向沿斜线(AC方向)游,而小方直游(AB方向),两人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点,为什么?
23.(8分)(2012秋•黄州区校级期末)一张边长为16cm正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E”图案如图1所示.小矩形的长x(cm)与宽y(cm)之间的函数关系如图2所示:
(1)求y与x之间的函数关系式;
(2)“E”图案的面积是多少?
(3)如果小矩形的长是6≤x≤12cm,求小矩形宽的范围.
24.(7分)(2012•长沙校级自主招生)如图,直线y=kx+2k(k≠0)与x轴交于点B,与双曲线y=(m+5)x2m+1交于点A、C,其中点A在第一象限,点C在第三象限.
(1)求双曲线的解析式;
(2)求B点的坐标;
(3)若S△AOB=2,求A点的坐标;
(4)在(3)的条件下,在x轴上是否存在点P,使△AOP是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.
25.(9分)(2005•镇江)用大、小两种货车运送360台机械设备,有三种运输方案.
方案1:设备的用大货车运送,其余用小货车运送,需要货车27辆;
方案2:设备的用大货车运送,其余用小货车运送,需要货车28辆;
方案3:设备的用大货车运送,其余用小货车运送,需要货车26辆;
(1)每辆大、小货车各可运送多少台机械设备?
(2)如果每辆大货车的运费比每辆小货车的运费高m%(m>0),请你从中选择一种方案,使得运费最低,并说明理由.
2011-2012学年广东省广州市中大附中八年级(下)期中
数学试卷
参考答案
一、选择题:本大题共10小题,每小题3分,共30分.
1.C;2.B;3.D;4.B;5.C;6.C;7.C;8.C;9.B;10.C;
二、填空题(共6小题,每小题3分,满分18分)
11.≠2;12.-;13.1;14.150°;15.26cm或28cm;16.4;
三、耐心做一做(本大题共9题,共112分.解答应写出必要的文字说明、证明过程或演算步骤)
17.;18.;19.;20.;21.;
22.;23.;24.;25.;。