元一次不等式知识点总结

合集下载

一元一次不等式组专题知识点与经典习题

一元一次不等式组专题知识点与经典习题

一元一次不等式(组)专题知识点与经典习题一元一次不等式(组)复习一.知识梳理1.知识结构图(二).知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc(或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c)说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0ab >,则a 、b 同号;⑥若ab <0或0a b <,则a 、b 异号。

任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。

不等式知识点详解

不等式知识点详解

不等式知识点详解不等式是数学中的一种重要的表示关系的方式,它利用不等号(大于号、小于号、大于等于号、小于等于号等)来表示数之间的大小关系。

不等式在数学中的运用广泛,特别在代数、几何、经济学等领域中起到了重要的作用。

下面将详细介绍一些有关不等式的基本知识点。

一、不等式的基本形式1. 一元一次不等式:形如ax+b>0(或<0)、ax+b≥0(或≤0)的不等式,其中a、b为已知的实数,x为未知数。

2. 一元二次不等式:形如ax^2+bx+c>0(或<0)、ax^2+bx+c≥0(或≤0)的不等式,其中a、b、c为已知的实数,x为未知数。

3.绝对值不等式:形如,f(x),>g(x)(或,f(x),<g(x),f(x),≥g(x),f(x),≤g(x))的不等式,其中f(x)和g(x)均为含有x的函数。

4.分式不等式:形如f(x)/g(x)>0(或<0、≥0、≤0)的不等式,其中f(x)和g(x)均为含有x的函数。

二、不等式的性质1.基本性质:不等式在数轴上表示一组数,一般情况下是一个区间或它的余区间。

对于不等式来说,如果它的一个解是真解,则它关于这个解的两边均成立。

2.四则运算性质:对于不等式,可以进行加减乘除等四则运算,但需要注意乘除以负数时不等号的方向要翻转。

3.取绝对值性质:对于不等式中的绝对值,可以将其加上取非的表示方式,即,a,>b等价于a>b或a<-b。

4.平方性质:对于一元不等式中的平方项,当平方项为正时,等号成立时解可能为空集;当平方项为负时,等号成立时解为全集;当平方项与常数同号时,等号成立时解由其他项决定。

三、不等式的求解方法1.绝对值不等式的求解方法:-对于,f(x),>g(x)的不等式,可以考虑f(x)>g(x)和f(x)<-g(x)两个不等式,然后求解得出解集。

-对于,f(x),<g(x)的不等式,可以考虑-f(x)<g(x)和f(x)<g(x)两个不等式,然后求解得出解集。

高考数学知识点:不等式

高考数学知识点:不等式

高考数学知识点:不等式1500字高考数学中的不等式是一个重要的知识点,几乎在每年的高考试卷中都会出现。

不等式在很多实际问题中都有重要的应用,如经济学中的利润最大化问题、几何学中的面积最大最小问题等。

下面将对高考数学中常见的不等式知识点进行详细介绍。

一、一元一次不等式一元一次不等式的形式为ax+b>0(或ax+b≥0)、ax+b<0(或ax+b≤0),其中a和b为已知实数,x为未知数。

要求解这类不等式,需要注意以下几点:1. 若a>0,则当a>0时,不等式两侧都乘以正数a;当a<0时,不等式两侧都乘以负数a,不等号方向不变。

2. 若a<0,则当a>0时,解的不等式两侧都乘以负数a,不等号方向相反;当a<0时,解的不等式两侧都乘以正数a,不等号方向不变。

3. 若a=0,则不等式只有在b>0(或b≥0)和b<0(或b≤0)时有解。

二、一元二次不等式一元二次不等式是形如ax²+bx+c>0(或ax²+bx+c≥0)、ax²+bx+c<0(或ax²+bx+c≤0)的不等式,其中a、b、c为已知实数,a≠0。

要求解一元二次不等式,需要经过以下几个步骤:1. 确定a的正负性,若a>0则为开口向上的抛物线,若a<0则为开口向下的抛物线。

2. 计算抛物线的顶点坐标,即x₀=-b/2a。

3. 根据a的正负性确定抛物线的上升段或下降段。

4. 根据a的正负性确定不等式的解集。

三、绝对值不等式绝对值不等式是形如|ax+b|>c(或|ax+b|≥c)、|ax+b<c(或|ax+b|≤c)的不等式,其中a、b、c为已知实数,a≠0且c>0。

要求解绝对值不等式,需要根据绝对值的定义和性质进行推导,具体步骤如下:1. 根据绝对值的定义,将不等式分为正数和负数两个部分。

2. 对于正数部分,去掉绝对值符号,并得到一个二次不等式。

不等式知识点大全

不等式知识点大全

不等式知识点大全一、不等式的基本概念:1.不等式的定义:不等式是一个包含不等号(>,<,≥,≤)的数学语句。

2.不等式的解集:解集是满足不等式的所有实数的集合。

3.不等式的求解方法:解不等式的方法主要有代入法、分析法、图像法和区间法等。

二、一元一次不等式:1.一元一次不等式的定义:一元一次不等式是指只含有一个未知数的一次函数与一个实数的大小关系。

2.一元一次不等式的解集:一元一次不等式的解集可以用一个开区间或闭区间表示。

三、二次不等式:1.二次不等式的定义:二次不等式是指含有一个未知数的二次函数与一个实数的大小关系。

2.二次不等式的解集:二次不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。

四、绝对值不等式:1.绝对值不等式的定义:绝对值不等式是指含有绝对值符号的不等式。

2.绝对值不等式的解集:绝对值不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。

五、分式不等式:1.分式不等式的定义:分式不等式是指含有一个未知数的分式与一个实数的大小关系。

2.分式不等式的解集:分式不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。

六、三角不等式:1.三角不等式的定义:三角不等式是指三角函数与一个实数之间的大小关系。

2.三角不等式的解集:三角不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。

七、复合不等式:1.复合不等式的定义:复合不等式是由两个或多个不等式通过与或或连接构成的不等式。

2.复合不等式的解集:复合不等式的解集是满足所有不等式的实数的交集或并集。

八、常用的不等式:1.平均不等式:包括算术平均不等式、几何平均不等式、加权平均不等式等。

2.布尔不等式:包括与或非不等式和限制条件不等式等。

3.等价不等式:等式两边取绝对值后变为不等式。

4.单调性不等式:利用函数单调性性质证明不等式。

5.导数不等式:利用函数的导数性质证明不等式。

6.积分不等式:利用积分性质及定积分的性质来推导不等式。

方程和不等式知识点总结

方程和不等式知识点总结

方程和不等式知识点总结一、一元一次方程和一元一次不等式1. 一元一次方程一元一次方程是指未知数的次数为一次的方程,一般形式为ax+b=0,其中a和b是已知数,x是未知数。

解一元一次方程的常用方法有整理法、等价变形法和代入法。

整理法是指将方程中含有未知数的项移到一个方程的一侧,不含未知数的项移到另一侧,以此来简化方程的形式;等价变形法是指通过一些等价变形,使方程的解易于得到;代入法是指将一个变量表示成另一个变量的函数,然后将它代入方程中,从而解得未知数的值。

解得一元一次方程的解后,需要进行检验,以确保解是正确的。

2. 一元一次不等式一元一次不等式是指未知数的次数为一次的不等式,一般形式为ax+b>0或ax+b<0。

解一元一次不等式的方法与解一元一次方程类似,但是要注意当不等式中含有乘法或除法时,对不等式两边的符号要进行取反。

二、一元二次方程和不等式1. 一元二次方程一元二次方程是指未知数的次数为二次的方程,一般形式为ax^2+bx+c=0,其中a、b和c是已知数,x是未知数。

解一元二次方程的常用方法有配方法、公式法和因式分解法。

配方法是指通过变形,使得方程左侧成为一个完全平方的形式,然后通过提取平方根的方法解得未知数的值;公式法是指利用求根公式x=(-b±√(b^2-4ac))/2a,解得方程的根;因式分解法是指将方程右侧化成(product-sum)型的二项式,然后再通过整理方程的形式来解得未知数的值。

2. 一元二次不等式一元二次不等式是指未知数的次数为二次的不等式,一般形式为ax^2+bx+c>0或ax^2+bx+c<0。

解一元二次不等式的方法和解一元二次方程类似,但是要注意当不等式中含有乘法或除法时,对不等式两边的符号要进行取反。

三、二元一次方程和不等式1. 二元一次方程二元一次方程是指含有两个未知数的方程,一般形式为ax+by=c。

解二元一次方程的方法有代入消元法、加减消元法和等价变形法。

初二不等式基本知识点总结

初二不等式基本知识点总结

初二不等式基本知识点总结一、一元一次不等式1. 不等式的定义不等式是使用大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)等符号来表示两个数量的大小关系。

例如:a < b、c > d。

2. 不等式的解法对于一元一次不等式ax + b > c,其中a、b、c为已知数,x为未知数,解不等式的步骤如下:(1) 将不等式化为等价不等式,即去掉绝对值号,并根据a的正负情况变号;(2) 通过化简和移项找出不等式的解集。

3. 不等式组的解法对于一元一次不等式组{ax + b > c, dx + e < f},其中a、b、c、d、e、f为已知数,x为未知数,解不等式组的步骤如下:(1) 分别解出每个不等式的解集;(2) 将每个不等式解集进行交并运算,得到不等式组的解集。

4. 不等式的图像表示使用数轴可以方便地表示一元一次不等式的解集。

对于不等式ax + b > c,首先画出表示常数c的点,然后根据a的正负情况,确定画出的区域是大于还是小于c的区域。

二、一元二次不等式1. 不等式的定义一元二次不等式是形如ax² + bx + c > 0的不等式,其中a、b、c为已知数,x为未知数。

2. 不等式的解法对于一元二次不等式ax² + bx + c > 0,其中a、b、c为已知数,x为未知数,解不等式的步骤如下:(1) 求出二次函数的零点,即ax² + bx + c = 0的解;(2) 根据二次函数的图像,确定不等式的解集。

3. 不等式的图像表示一元二次不等式和二次函数的图像表示是相互联系的。

通过画出二次函数的图像,并确定大于0的区域,可以得到不等式的解集。

三、一元一次不等式组1. 不等式组的定义一元一次不等式组是多个一元一次不等式的组合,其中每个不等式都是以相同的未知数为变量。

2. 不等式组的解法对于一元一次不等式组{ax + b > c, dx + e < f},其中a、b、c、d、e、f为已知数,x为未知数,解不等式组的步骤如下:(1) 分别解出每个不等式的解集;(2) 将每个不等式解集进行交并运算,得到不等式组的解集。

高中基本不等式知识点归纳总结

高中基本不等式知识点归纳总结

高中基本不等式知识点归纳总结一、基本概念:不等式是数学中的一种关系,表示两个数之间的大小关系。

高中基本不等式主要包括一元一次不等式、一元二次不等式和简单的多元不等式。

二、一元一次不等式:一元一次不等式是指只有一个未知数,并且未知数的最高次数为1的不等式。

解一元一次不等式的关键是确定未知数的取值范围。

常用的解法有图像法、代入法和分段讨论法。

三、一元二次不等式:一元二次不等式是指只有一个未知数,并且未知数的最高次数为2的不等式。

解一元二次不等式的关键是找到不等式的根,并确定根的取值范围。

常用的解法有图像法、配方法和开口方向法。

四、基本性质:1. 对称性:如果a>b,则-b>-a。

2. 传递性:如果a>b,并且b>c,则a>c。

3. 加减性:如果a>b,则a+c>b+c,a-c>b-c。

4. 倍数性:如果a>b,并且c>0,则ac>bc;如果a>b,并且c<0,则ac<bc。

五、常用不等式:1. 平均值不等式:对于任意非负实数a和b,有(a+b)/2 >= √(ab)。

2. 柯西-施瓦茨不等式:对于任意实数a1、a2、...、an和b1、b2、...、bn,有|(a1b1+a2b2+...+anbn)| <= √(a1^2+a2^2+...+an^2)√(b1^2+b2^2+...+bn^2)。

3. 三角不等式:对于任意实数a和b,有|a+b| <= |a|+|b|。

六、应用:1. 解实际问题:不等式在解决实际问题中起着重要作用,例如在优化问题、最值问题和约束问题中常常会用到不等式。

2. 推导其他不等式:基本不等式可以推导出其他不等式,例如根据平均值不等式可以推导出均值不等式和加权均值不等式。

七、注意事项:1. 在解不等式时,需要注意不等号的方向,切勿将不等号颠倒。

2. 在使用不等式进行推导时,需要保持不等式的严格性,即不等号不能变为等号,否则可能导致错误的结论。

高一数学不等式知识点

高一数学不等式知识点

高一数学不等式知识点在高一数学的学习中,不等式是一个重要的内容。

不等式不仅在数学中有着广泛的应用,也为我们解决实际问题提供了有力的工具。

接下来,让我们一起深入了解一下高一数学中不等式的相关知识点。

一、不等式的基本性质1、对称性:若 a > b,则 b < a 。

比如说,5 > 3 ,那么 3 < 5 。

2、传递性:若 a > b 且 b > c ,则 a > c 。

例如 7 > 5 ,5 > 3 ,所以 7 > 3 。

3、加法性质:若 a > b ,则 a + c > b + c 。

比如 8 > 6 ,那么 8 + 2 > 6 + 2 。

4、乘法性质:若 a > b 且 c > 0 ,则 ac > bc ;若 a > b 且 c <0 ,则 ac < bc 。

举个例子,若 4 > 2 ,当 c = 3 时,4×3 > 2×3;当 c =-3 时,4×(-3) < 2×(-3) 。

二、一元一次不等式形如 ax + b > 0 或 ax + b < 0 (其中a ≠ 0 )的不等式叫做一元一次不等式。

解一元一次不等式的一般步骤:1、去分母(若有分母):根据不等式的性质,在不等式两边同时乘以分母的最小公倍数,去掉分母。

但要注意,当乘以或除以一个负数时,不等号的方向要改变。

2、去括号:运用乘法分配律去掉括号。

3、移项:将含未知数的项移到不等式的一边,常数项移到另一边。

4、合并同类项:将同类项合并,化简不等式。

5、系数化为 1 :在不等式两边同时除以未知数的系数,得到不等式的解集。

例如,解不等式 2(2x 1) 3(x + 1) < 5 ,首先去括号得 4x 2 3x 3 < 5 ,然后移项得 4x 3x < 5 + 2 + 3 ,合并同类项得 x < 10 。

三、一元二次不等式形如 ax²+ bx + c > 0 或 ax²+ bx + c < 0 (其中a ≠ 0 )的不等式叫做一元二次不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、列一元一次方程解应用题的步骤有:
1审清题意:应认真审题,分析题中的数量关系,找出问题所在。

2、设未知数:用字母表示题目中的未知数时一般采用直接设法,当直接设法使列方程有困难可采用间接设法,注意未知数的单位不要漏写。

3、找等量关系:可借助图表分析题中的已知量和未知量之间关系,列出等式两边的代数式,注意它们的量要一致,使它们都表示一个相等或相同的量。

4、列方程:根据等量关系列出方程。

列出的方程应满足三个条件:各类是同类量,单位一致,两边是等量。

5、解方程:求出方程的解•方程的变形应根据等式性质和运算法则。

6、检验解的合理性:不但要检查方程的解是否为原方程的解,还要检查是否符合应用题的实际意义,进行取舍,并注意单位。

7、作答:正确回答题中的问题。

五、常见的一元一次方程应用题:
1和差倍分问题:
(1)增长量=原有量X增长率;(2)现在量=原有量+增长量
2、等积变形问题:
常见几何图形的面积、体积、周长计算公式,依据形虽变,但面积不变。

.. 2
(1)圆柱体的体积公式V= 底面积乂高=S- h= r h
(2)长方开的面积周长=2 X(长+宽) S= 长X宽
3、数字问题:
一般可设个位数字为a,十位数字为b,百位数字为c。

十位数可表示为10b+a, 百位数可表示为100c+10b+a 。

然后抓住数字间或新数、原数之间的关系找等量关系列方程。

4、市场经济问题:(以下“成本价”在不考虑其它因素的情况下指“进价”)
(1)商品利润=商品售价一商品成本价
商品利润
(2)商品利润率= X 100% (3)售价=成本价X (1+利润率)
商品成本价
(4)商品销售额=商品销售价X商品销售量
(5)商品的销售利润=(销售价—成本价)X销售量
(6)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售。

或者用标价打x折:折后价(售价)=标价X上计算。

10
5、行程问题:路程=速度X时间;时间=路程*速度;速度=路程*时间。

(1)相遇问题:快行距+慢行距=原距
(2)追及问题:快行距—慢行距=原距
(3 )航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)
速度=静水(风)速度—水流(风)速度
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
6工程问题:
(1)工作总量=工作效率X工作时间;工作效率=工作总量十工作时间
(2)完成某项任务的各工作总量的和=总工作量= 1
(3)各组合作工作效率=各组工作效率之和
(4)全部工作总量之和=各组工作总量之和
7、储蓄利息问题:
禾利息=本金x利率x期数
利息税=利息X税率(目前,规定为20%注:教育储蓄不收利息税)实得本利和=本金+利息-利息税
实得利息(税后利息)=利息-利息税=利息x (1-税率)
第五章:一元一次不等式复习
一、不等式的性质
1、不等式的概念:用不等号连接的式子。

2、不等式的基本性质:(对比等式基本性质)
不等式的基本性质1:若a>b,贝U a+c>b+c,且a-c >b-c ;
不等式的基本性质2:若a> b, c>0,贝U ac>be,且a> b;
c c
不等式的基本性质3:若a> b, c v 0,则ac v bc,且空< b。

c c
二、基本概念:
1、不等式的解:满足一个不等式的未知数的每一个值称为这个不等式的一个解。

2、不等式的解集:一个不等式的解的全体称为这个不等式的解集。

(注意以上两个概念的区别)
3、解不等式:求一个不等式的解集的过程称为解不等式。

三、解一元一次不等式的方法:
去分母、去括号、移项、化简、化系数为一(对比一元一次方程的解法)。

四、在数轴上表示不等式的解集。

例:x > 2
(1)先画出一条数轴;
(2)在数轴上标上表示2的点A;(把点A画成空心圆圈,表示解集不包括2)
(3)点A右边的所有的点表示的数都大于2,而点A左边的所有的点表示的数都小于2; (4 )用一条方向向右的折线,来表示x > 2.
★注意两点:
(1)折线的方向;
(2)何时用空心圆点?(不包括该点时);何时用实心圆点?(包括该点时)。

五、求不等式的特殊解:(常见为正整数解)
先求出不等式的解集,然后在解集中筛选出符合题意的特殊解
六、一元一次不等式的应用:
利用不等式解决实际问题类似于利用方程解决实际问题,步骤大致相同,需要区别的是:利用方程解实际问题时,问题中存在的是等量关系;而利用不等式解决实际问题,问题中是
不等关系.可以通过诸如“不小于”“超过”等字眼来判断是不等式问题还是方程问题.找
出题中的不等关系,是利用不等式解决实际问题的关键.
★主要步骤有:审、设、找、列、解、验、答。

相关文档
最新文档