差分方程的基本知识(3)

合集下载

差分方程简介

差分方程简介
2 n yxn c1 y c y ... ( 1 ) yx n x n1 n x n 2
k (1) Cn y x nk k 0 n k
,
!n ! ) k n ( !k
k n
C中 其 且规定0 yx yx f ( x)
由定义知, y f ( x)的n阶差分 是f ( x n), f ( x n 1),...f ( x 1), f ( x) 的线形组合,
(3)(ayx bzx) ayx bz x
(4)(yx zx) yx1zx zx yx yx zx zx1yx
yx z x y x y x z x (5)( ) (其中z x 0) zx z x z x1
二、差分方程
定义2 含有自变量,未知函数及未知函数差 分的方程,称为差分方程,其一般形式为
yx1 yx yx
yxn yx C yx C y ... C y yx
n
n1 n1 n x
C yx
k 0 k n k
n
由定义容易证明,差分具有以下性质
(1)(c) o(c为常数)
(2)(cyx) cyx (c为常数)
y x5 y x3 4 y x 2 y x e x 是五阶差分方程, 因为(x 5) x 5;
方程3 y x yx 1 0可转化为yx 3 3 y x 2 3 y x 1 1 0, 因而是2阶差分方程
定义4 如果某个函数代入差分方程后能使差分方程 成为恒等式,则称此函数为该差分方程的解。
反之函数y f ( x)的各个函数值也可以 用y x f ( x)和它的各阶差分式表示 。即

差分方程

差分方程

(2) yx2 yx4 yx2
解 (1) x 3 x 3,
(1)是三阶差分方程;
(2) x 2 ( x 4) 6,
(2)是六阶差分方程.
2.差分方程的解
如果函数y φ( x)代入差分方程后,方程两 边恒等,则称此函数为该差分方程的解.
差分方程的通解
含有相互独立的任意常数的个数与差分方程的 阶数相同的差分方程的解.
yxn a1yxn1 an1yx1 an yx f x 2
的一个特解, Yx 是与(2)对应的齐次方程(1)的通
解, 那么 yx Yx yx* 是 n 阶常系数非齐次线性差分
方程(2)的通解.
由此可见,要求出n阶常系数非齐次线性差分方 程(2)的通解,只需求出(1)的通解和(2) 的一个特解即可.
解 设y x 2,则
yx ( x2 ) ( x 1)2 x2 2x 1 2 yx 2( x2 ) (2x 1)
2( x 1) 1 (2x 1) 2
3 yx 3 ( x2 ) 2 2 0
例 2 求下列函数的差分
(1)y loga x;
(2)y sinax
解 (1)yx yx1 yx
一阶常系数线性差分方程的解法
一阶常系数齐次线性差分方程的一般形式
yx1 ayx 0(a 0为常数)
1
一阶常系数非齐次线性差分方程的一般形式
y x1 ayx f ( x)
2
(a 0为常数,f x 0)
注:1为2所对应的一阶常系数齐次线性差分方程.
一 、一阶常系数齐次线性差分方程的求解
例题 教材 208页 例3,例4
例1 求2 yx1 yx 0的通解.
1
解 a
2
差 分 方 程 的 通 解 为Yx

差分方程简介

差分方程简介
日期:
差分方程简介
汇报人:
contents
目录
• 差分方程的基本概念 • 差分方程的求解方法 • 差分方程的应用 • 差分方程的局限性 • 差分方程的发展历程与未来趋势 • 差分方程的实际案例分析
01
差分方程的基本概念
定义与例子
• 差分方程是描述离散序列变化的方程式。例如,考虑一个数列{an},我们可以写出一个差分方程:a{n+1} = 2a_n + 3。
应用
经济学中的差分方程模型适用于预测经济指标的未来趋势 、政策效应分析等。然而,由于现实世界中的复杂性,该 模型可能不适用于所有经济情况。
THANKS
感谢观看
公式法
公式法的原理
01
通过差分方程的解的公式直接计算出解。公式法的步骤 Nhomakorabea02
根据差分方程的特点,寻找解的公式,然后代入初值计算出解

公式法的优缺点
03
公式法适用于某些特定类型的差分方程,但不适用于所有类型
的差分方程,需要具体问题具体分析。
计算机方法
计算机方法的原理
利用计算机强大的计算能力,通过编程等方法求解差分方程。
人群、感染人群和免疫人群之间的转换。这些因素都可以通过差分方程来描述 。 • 数学方程:常见的传染病模型如SIR模型,其差分方程为 S(t+1) = S(t) b*S(t)*I(t)/N(t), I(t+1) = I(t) + b*S(t)*I(t)/N(t) - d*I(t), R(t+1) = R(t) + d*I(t),其中S表示易感人群,I表示感染人群,R表示免疫人群,b表示感染率 ,d表示疾病死亡率。 • 应用:传染病模型适用于预测疾病的传播趋势、评估公共卫生干预措施的效果 等。然而,由于现实世界中的复杂性,该模型可能不适用于所有疾病传播情况 。

差分方程的基本概念

差分方程的基本概念

差分方程的应用领域
01
02
03
金融领域
差分方程在金融领域中用 于描述股票价格、债券收 益率等金融变量的动态变 化。
物理学领域
在物理学中,差分方程用 于描述离散系统的动态行 为,如离散的弹簧振荡器、 离散的波动等。
生物学领域
在生态学和流行病学中, 差分方程用于描述种群数 量随时间的变化规律。
差分方程与微分方程的关系
定义
差分方程的稳定性是指当时间步 长趋于无穷大时,差分方程的解 是否收敛到原方程的解。
分类
根据稳定性性质的不同,差分方 程可以分为稳定、不稳定和临界 稳定三种类型。
稳定性判据
判据一
如果对于任意小的正数ε,存在一个正 数δ,使得当|Δt|<δ时,差分方程的 解满足|x(n+1)−x(n)|<ε,则称差分方 程是稳定的。
有限元法的基本思想是将连续的求解区域离 散化为有限个相互连接的子域(即有限元), 并在每个子域上选择合适的基函数进行近似。 通过这种方式,可以将偏微分方程转化为离 散的差分方程,从而进行数值求解。
有限体积法
总结词
有限体积法是一种将偏微分方程离散化为差 分方程的数值方法,通过在每个控制体积上 对微分进行离散近似,将微分方程转化为差 分方程。
数值解法
数值解法是一种通过数值计算方法来求解差分方程的方法。常用的数值解法包括 欧拉பைடு நூலகம்、龙格-库塔法等。
数值解法的优点是适用于各种类型的差分方程,特别是一些难以直接求解的差分 方程。数值解法的精度可以通过增加计算步数来提高。然而,数值解法的计算量 大,需要较高的计算能力。
03 差分方程的稳定性
定义与分类
详细描述
有限差分法的基本思想是将连续的空间离散化为有限个离散点,并利用泰勒级数展开式或其它近似方 法,将微分运算转化为差分运算。通过这种方式,可以将偏微分方程转化为离散的差分方程,从而进 行数值求解。

差分方程知识点总结

差分方程知识点总结

差分方程知识点总结一、差分方程的概念差分方程是指用差分运算符号(Δ)表示的方程。

差分运算符Δ表示的是某一变量在两个连续时间点的变化量。

差分方程通常用于描述离散时间下的变化规律,比如时间序列、离散动力系统等。

二、常见的差分方程1. 一阶线性差分方程一阶线性差分方程的一般形式为:y(t+1) - y(t) = a*y(t) + b,其中a和b为常数。

一阶线性差分方程常常用于描述某一变量在不同时间点之间的线性变化规律。

2. 二阶线性差分方程二阶线性差分方程的一般形式为:y(t+2) - 2*y(t+1) + y(t) = a*y(t) + b,其中a和b为常数。

二阶线性差分方程通常用于描述某一变量在不同时间点之间的二阶线性变化规律。

3. 线性非齐次差分方程线性非齐次差分方程的一般形式为:y(t+1) - a*y(t) = b,其中a和b为常数。

线性非齐次差分方程通常用于描述某一变量在不同时间点之间的线性变化规律,并且受到外部条件的影响。

4. 滞后差分方程滞后差分方程的一般形式为:y(t+1) = f(y(t)),其中f为某一函数。

滞后差分方程通常用于描述某一变量在不同时间点之间的非线性变化规律。

5. 差分方程组差分方程组是指由多个差分方程组成的方程组。

差分方程组通常用于描述多个变量之间的变化规律,比如混合动力系统、多变量时间序列等。

三、差分方程的解法1. 特征根法特征根法是解一阶或二阶线性差分方程的一种常用方法。

通过求解特征方程,可以求得差分方程的通解。

2. 递推法递推法是解一阶或二阶非齐次差分方程的一种常用方法。

通过递推关系,可以求得差分方程的特解。

3. Z变换法Z变换法是解一阶或二阶差分方程的一种常用方法。

通过对差分方程进行Z变换,可以将其转换为等价的代数方程,然后求解其解。

4. 数值解法对于复杂的差分方程,通常采用数值解法求解。

数值解法包括Euler法、Runge-Kutta法、递推法等,通过迭代计算逼近差分方程的解。

差分方程的基本知识(3)

差分方程的基本知识(3)

差分方程模型的理论和方法1、差分方程:差分方程反映的是关于离散变量的取值与变化规律。

通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。

差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。

通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。

2、应用:差分方程模型有着广泛的应用。

实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。

差分方程模型有着非常广泛的实际背景。

在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。

可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。

3、差分方程建模:在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而建立起差分方程。

或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。

在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。

差分方程考研题库

差分方程考研题库

差分方程考研题库一、基础知识题1. 定义差分方程:给定一个函数\( y \),如果存在一个方程,使得\( y \)的第\( n \)项与前\( k \)项的函数值有关,那么这个方程被称为差分方程。

2. 差分方程的阶数:差分方程中,最高次的差分项的阶数称为该差分方程的阶。

3. 差分方程的解:满足差分方程的函数序列称为该差分方程的解。

二、计算题1. 给定一阶线性差分方程\( y_{n+1} - y_n = 2 \),求其通解。

2. 考虑二阶齐次线性差分方程\( y_{n+2} - 2y_{n+1} + y_n = 0 \),求其特征方程,并求出其通解。

3. 解下列非齐次线性差分方程\( y_{n+1} + y_n = 3n + 1 \)。

三、证明题1. 证明对于一阶线性齐次差分方程\( ay_{n+1} - by_n = 0 \),其通解为\( y_n = C \cdot b^n \),其中\( C \)为常数。

2. 证明二阶线性齐次差分方程\( y_{n+2} - 2y_{n+1} + y_n = 0 \)的特征方程为\( r^2 - 2r + 1 = 0 \)。

四、应用题1. 某公司每年的利润增长率为5%,如果第一年的利润为100万元,求第\( n \)年的利润。

2. 一个种群的增长遵循差分方程\( P_{n+1} = kP_n(1 -\frac{P_n}{K}) \),其中\( k \)是增长率,\( K \)是环境的承载能力。

求该种群的稳定状态。

五、综合题1. 考虑一个具有周期性变化的差分方程\( y_{n+1} = y_n + 2\sin(\frac{2\pi n}{T}) \),分析其解的性质。

2. 给定一个差分方程\( y_{n+1} = \alpha y_n + \beta n \),其中\( \alpha \)和\( \beta \)是常数,求其通解。

结束语差分方程的解题方法多样,包括直接法、特征方程法、迭代法等。

高考数学中的差分方程及相关概念

高考数学中的差分方程及相关概念

高考数学中的差分方程及相关概念在高中数学中,我们学习了许多数学知识,其中差分方程是一个比较重要的概念,在高考中也经常出现。

那么差分方程是什么?有什么用处呢?一、什么是差分方程差分方程,也叫离散微积分方程,是指用有限差分代替导数的微分方程,其本质是一种递推式。

差分方程的一般形式为y[n+1] = f(y[n], y[n-1], ... , y[n-k]),其中y[n]是第n个离散点的函数值,y[n-k]是第n-k个离散点的函数值。

差分方程是一种离散的动态系统,可以用来描述各种离散事件的演化。

它广泛应用于数学、物理、工程、经济等领域中各种动态系统的建模与分析。

二、差分方程的分类根据差分方程的阶数及系数对n的依赖关系,差分方程可以分为以下几类:1.一阶线性差分方程一阶线性差分方程的一般形式为y[n+1] = ay[n] + b,其中a和b 是常数。

这种差分方程的解可以用递推公式y[n] = ay[n-1] + b求得。

2.二阶线性差分方程二阶线性差分方程的一般形式为y[n+2] + ay[n+1] + by[n] = f[n],其中a、b是常数,f[n]是已知函数。

这种差分方程的解可以用特征根法或借助于已知解求得通解。

3.非线性差分方程非线性差分方程的一般形式为y[n+1] = f(y[n]),其中f(y[n])是非线性函数。

这种差分方程的解一般需要运用迭代法或数值解法求解。

三、差分方程的应用差分方程是一种用来描述具有离散状态的系统演化的工具,它在许多领域中都有着广泛的应用,例如:1.物理学差分方程在物理学中应用广泛,例如:在天体物理学中,用差分方程描述行星运动的轨迹、研究宇宙星系的演化等;在量子力学中,用差分方程描述粒子的运动状态等。

2.经济学差分方程在经济学中也有着广泛的应用,例如:在货币政策分析中,用差分方程描述货币供应量、利率与物价水平等的变化;在经济增长模型中,用差分方程描述经济增长的变化趋势等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

差分方程模型的理论和方法1、差分方程:差分方程反映的是关于离散变量的取值与变化规律。

通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。

差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。

通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。

2、应用:差分方程模型有着广泛的应用。

实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。

差分方程模型有着非常广泛的实际背景。

在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。

可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。

3、差分方程建模:在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而建立起差分方程。

或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。

在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。

在后面我们所举的实际例子中,这方面的内容应当重点体会。

差分方程模型作为一种重要的数学模型,对它的应用也应当遵从一般的数学建模的理论与方法原则。

同时注意与其它数学模型方法结合起来使用,因为一方面建立差分方程模型所用的数量、等式关系的建立都需要其他的数学分析方式来进行;另一方面,由差分方程获得的结果有可以进一步进行优化分析、满意度分析、分类分析、相关分析等等。

第一节 差分一、 基本概念1、差分算子设数列{}n x ,定义差分算子n n n x x x -=∆∆+1:为n x 在n 处的向前差分。

而1--=∆n n n x x x 为n x 在n 处的向后差分。

以后我们都是指向前差分。

可见n x ∆是n 的函数。

从而可以进一步定义n x ∆的差分:n n x x 2)(∆=∆∆称之为在n 处的二阶差分,它反映的是的增量的增量。

类似可定义在n 处的k 阶差分为:))((1n k n k x x -∆∆=∆2、差分算子 、不变算子、平移算子记n n n n x Ix x Ex ==+,1,称E 为平移算子,I 为不变算子 。

则有:n n n n x I E Ix Ex x )(-=-=∆I E -=∆∴由上述关系可得:i n ki i k i k n ik i i k i k n k n k x C x E C x I E x +=-=-∑∑-=-=-=∆00)1()1()( (1) 这表明n x 在n 处的k 阶差分由n x 在k n n n ++....1,,处的取值所线性决定。

反之,由 n n n x x x -=∆+1 得 n n n x x x ∆+=+1:n n n n x x x x +-=∆++1222,得:n n n n x x x x 2122∆++-=++,这个关系表明:第n+2项可以用前两项以及相邻三项增量的增量来表现和计算。

即一个数列的任意一项都可以用其前面的k 项和包括这项在内的k+1 项增量的增量的增量……..第k 层增量所构成。

……..,)1(10k n i n k i i k i k n kx x C x ++-=-+-=∆∑得: n k i n k i i k i k k n x x C x ∆+--=+-=-+∑10)1( (2)可以看出:k n x +可以由n k n n x x x ∆∆,...,,的线性组合表示出来3、差分方程由n x 以及它的差分所构成的方程),...,,,(1n k n n n k x x x n f x -∆∆=∆ (3)称之为k 阶差分方程。

由(1)式可知(3)式可化为),...,,,(11-+++=k n n n k n x x x n F x (4)故(4)也称为k 阶差分方程(反映的是未知数列n x 任意一项与其前,前面k 项之间的关系)。

由(1)和(2)可知,(3)和(4)是等价的。

我们经常用的差分方程的形式是(4)式。

4、差分方程的解与有关概念(1) 如果n x 使k 阶差分方程(4)对所有的n 成立,则称n x 为方程(4)的解。

(2) 如果-=x x n (-x 为常数)是(4)的解,即),...,,(---=x x n F x则称-=x x n 为(4)的平衡解或叫平衡点。

平衡解可能 不只一个。

平衡解的基本意义是:设n x 是(4)的解,考虑n x 的变化性态,其中之一是极限状况,如果x x n n =∞→lim ,则方程(4)两边取极限(x 就存在在这里面),应当有),...,,(---=x x n F x (3) 如果(4)的解n x 使得--x x n 既不是最终正的,也不是最终负的,则称n x 为关于平衡点-x 是振动解。

(4) 如果令:--=x x y n n ,则方程(4)会变成),...,,(1-++=k n n k n y y n G y (5)则 0=y 成为(5)的平衡点。

(5) 如果(5)的所有解是关于0=y 振动的,则称k 阶差分方程 (5)是振动方程。

如果(5)的所有解是关于0=y 非振动的,则称k 阶差分方程(5)是非振动方程。

(6) 如果(5)有解n y ,使得对任意大的y N 有 0>≥n N n ySup y则称n y 为正则解。

(即不会从某项后全为零)(7) 如果方程(4)的解n x 使得-∞→=x x Lim n n ,则称n x 为稳定解。

5、差分算子的若干性质(1)n n n n y x y x ∆+∆=+∆βαβα)(.)((2))(1)(1n n n n n n n ny x x y y y y x ∆-∆=∆+(3)n n n n n n y x x y y x ∆+∆=∆+1)((4)∑∑==+++∆+-=∆bak k k a b a k a b b k k y x y x y x x y 111 (5)∑=∆=+∆==ni i in n nn x C x I x E x 0000)(第二节 差分方程常用解法与性质分析1、常系数线性差分方程的解方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8)其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。

又称方程0...110=+++-++n k k n k n x a x a x a (9)为方程(8)对应的齐次方程。

如果(9)有形如nn x λ=的解,带入方程中可得:0 (11)10=++++--k k k k a a a a λλλ (10)称方程(10)为方程(8)、(9)的特征方程。

显然,如果能求出(10)的根,则可以得到(9)的解。

基本结果如下:(1) 若(10)有k 个不同的实根,则(9)有通解:n k k n n n c c c x λλλ+++=...2211,(2) 若(10)有m 重根λ,则通解中有构成项:n m m n c n c c λ)...(121----+++(3)若(10)有一对单复根 βαλi ±=,令:ϕρλi e ±=,αβϕβαρarctan,22=+=,则(9)的通解中有构成项: n c n c n n ϕρϕρsin cos 21--+(4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(9)的通项中有构成项:n n c n c c n n c n c c n m m m m n m m ϕρϕρsin )...(cos )...(1221121---++---+++++++综上所述,由于方程(10)恰有k 个根,从而构成方程(9)的通解中必有k 个独立的任意常数。

通解可记为:-n x 如果能得到方程(8)的一个特解:*n x ,则(8)必有通解:=n x -n x +*n x (11)(8) 的特解可通过待定系数法来确定。

例如:如果)(),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为m 次多项式;如果b 是r 重根时,可设特解:r n n b )(n q m ,将其代入(8)中确定出系数即可。

例1 设差分方程1,0,0231012===++++x x x x x n n n ,求n x解:特征方程为0232=++λλ,有根:2,121-=-=λλ故:n n n c c x )2()1(21-+-=为方程的解。

由条件1,010==x x 得:n n n x )2()1(---=2、二阶线性差分方程组设=)(n z )(n y x n ,)(dc b a A =,形成向量方程组 )()1(n Az n z =+ (12)则 )1()1(z A n z n =+ (13)(13)即为(12)的解。

为了具体求出解(13),需要求出n A ,这可以用高等代数的方法计算。

常用的方法有:(1)如果A 为正规矩阵,则A 必可相似于对角矩阵,对角线上的元素就是A 的特征值,相似变换矩阵由A 的特征向量构成:)1()()1(,,111z p p n z p p A p p A n n n Λ=+∴Λ=Λ=---。

(2)将A 分解成ηξξη,,/,=A 为列A A n n n .)(.......).(1//.//-===ηξηξηξηξηξ从而,)1(.)()1()1(1/Az z A n z n n -==+ηξ(3) 或者将A 相似于约旦标准形的形式,通过讨论A 的特征值的性态,找出n A 的内在构造规律,进而分析解)(n z 的变化规律,获得它的基本性质。

相关文档
最新文档