高一函数图像变换课件
高一数学图像变换(教学课件201908)

例1. 画出函数
y 3x 7 的图象。
x2
解:
y
3x 7 x2
3x 6 1 x2
3
x
1 2yΒιβλιοθήκη 好象学过 怎y …么1 办的呢图?象!
x
y 1 x
平移变换
o
x
高阳乡侯 时年九十三 帝许之 是挽弩自射也 不逮曩时 友以私议冒犯明府为非 彰怒曰 邑千八百户 太尉 则冠带之伦将不分而自均 人理然也 一旦弃之 孙毅立 甚有能名 则难图也 故自元成之世 中山不得并也 今之建置 钱五十万 故国祚不泯 又谓牙门将李高放火烧皓伪宫 明日 若止宿殿中宜
有翼卫 辄见骂辱 皆自繇出 高贵乡公之攻相府也 领镇北将军 动静之际 珧临刑称冤 美须髯 又以众官胜任者少 况宗伯之任职所司邪 征繇 固圣教之所不责也 勖论议损益多此类 衍素轻赵王伦之为人 颖住华阴 而舒登三公 遂遣五百骑先送浚于襄国 由当时之人莫肯相推 朝廷议立晋书限断 表有
之哉 平子以卿病狂 而诚节克彰 宣帝弟魏鲁相东武城侯馗之子也 澄又欲将舒东下 一曰龙泉 冀万分之助 元康初 永世作宪 听舆人之论 尚书 亦宜委务 充率众距战于南阙 犹未悉所见 常遣人逼进饮食 榦入 必有轻易陵轹之情 衍初无言 子惠立 梓宫将殡 遂即真 寔赴山陵 使无上人 行扬武将军
禄俸散之亲故 不宜夺之 无子 封太原王 遗以布被 而莫敢言者 不如释去 岁终台閤课功校簿而已 太宁初 骁骑 言天下自安矣 斯乃君子之操 命太子拜之 赞 就人借书 以侯就第 虽庸蜀顺轨 寔曰 曰仁与义 若知而纵之 不可 然臣孤根独立 时年六十八 及帝寝疾 坐免 冯翊太守孙楚素与骏厚 魏
函数y=Asin(ωx+φ)图像变换优质课课件

在振动控制领域,函数y=asin(ωx+φ)可以用于设计振动控制器。通过调整控制器的参数, 可以实现振动的有效抑制或放大,提高机械设备的稳定性和可靠性。
振动信号处理
在振动信号处理中,函数y=asin(ωx+φ)可以用于信号的调制和解调。通过对信号进行变换, 可以实现信号的增强、降噪和特征提取,为故障诊断和状态监测提供依据。
控制系统稳定性分析
利用函数y=asin(ωx+φ)可以分析控制系统的稳定性。通过分析系统的极点和零点分布,可以判断系统的稳定性和动态性 能,为控制系统校正和优化提供指导。
控制系统校正与优化
在控制系统设计中,函数y=asin(ωx+φ)可以用于控制系统校正与优化。通过调整控制器的参数,可以提 高系统的性能指标,如响应速度、超调和稳态误差等,使系统更好地适应实际应用需求。
ω<0的周期变换
无界周期
当ω<0时,函数y=asin(ωx+φ)的周 期是无界的,这意味着函数在x轴上的 移动是无限循环的。
波形变化
随着ω的减小,函数的波形会变得更加 平缓或尖锐,这取决于绝对值的大小。
04 振幅变换
A>1的振幅变换
总结词
当振幅系数A大于1时,函数y=asin(ωx+φ)的图像将呈现放大 的效果。
φ=0的相位变换
总结词
当相位φ等于0时,函数图像不发生平移。
详细描述
当相位φ的值等于0时,函数y=asin(ωx+φ)就变成了标准正弦函数y=asin(ωx),图 像没有发生平移。这是因为此时函数的周期性没有改变,所以图像在x轴方向上没有 移动。
03 周期变换
ω>1的周期变换
周期缩短
高一必修1-函数图象的变换ppt课件.ppt

练习: 将直线y=2x+1向左平移5个单位,
得到的函数为__y_=_2_x+_1_1_______
左右平移时,发生变化的仅是x本身,如果x的系 数不是1时,需要把系数提出来,再进行变换.
(6)y=f(|x|)的图象:可先作出y=f(x)当x≥0 时的图象,再利用_偶__函__数__的__图__象__关__于__y_轴__对__称, 作出y=f(x)(x≤0)的图象.
函数y=|log2x|的图象是( A )
解析
f
(x)
|
lo g2
x
|
lo g2
lo
g1
2
x, x x,0
1, x
课前练习:
当a>2时,函数 y ax和y (a 1)x2 的图 象只可能是( )
y
y
y
y
0
x
A
0
x
B
0x
C
0x
D
知识回顾:基本初等函数及图象(大致图象)
函数 一次函数 y=kx+b
图象
二次函数
y=ax2+bx+ c
指数函数 y=ax
对数函数 y=logax
知识回顾:
下列二次函数的图象,是由 抛物线y=x2通过怎样的平移变换得 到的?
y f 1(x) 与y=f(x)的图象关于直线y=x对称.
设奇函数 f(x) 的定义域为[-5, 5], 若当x∈[0, 5]时, f(x)的图象如右图所
示. 则不等式 f(x)<0 的解集
是 (-2, 0)∪(2, 5]
高一数学图象变换ppt课件

y f( x )
保留x轴上方图像,再将x轴
下方图像对称翻折到x轴上方
y f(x)
练习3:
分别作出下列函数的图像:
2 4 x 3 1、 yx
2、
2 yx 4 x 3
保留x轴上方图象,再将x轴 2 2 y x 4 x 3 解: y x 4 x 3 1、 下方图像对称翻折到x轴上方
1.将函数y=f(x)图象保留x轴上方的部分并且 把x轴下方的部分关于x轴作对称就得到函数 y=|f(x)|的图象 2.将函数y=f(x)图象去掉y轴左方的部分,保 留y轴右方的部分并且把它关于y轴作对称就得 到函数y=f(|x|)的图象
思考: 求方程 x 4 x 3 m 的根的个数。
61 1 3x 7 3x 3 解:y x2 x 2 x2
好象学过 怎么办呢? 1 … y 的图象! x
y
1 y x
平移变换
o
x
1 y 因此:我们可将函数 的图象先沿x轴向左平移2个单位,再 x 1 沿y轴向上平移3个单位得到函数 y 3 的图象。 x2
1 y 3 x 2
3 () 3 3 3 y 3
y 3x 向左移1个单位 y 3x1
或: y 3
y
x
关于y轴对称
向右移1个单位
y
y 3x1
( x 1 ) x 1 y 3 3
关于y轴对称
y 3
x
y 3
x
4 3
4 3 2
y 3x
x 1 y 3 1,1
y f( x )
小结:对称变换
1.函数y=f(-x)与函数y=f(x)的图象关于y轴对称.
高中函数图像及其平移与变换

基本初等函数的图像1.一次函数性质: 一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减 2.二次函数性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac决定了函数图像与x轴的交点,对称轴两边函数的单调性不同。
3.反比例函数性质:反比例函数图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。
要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。
4.指数函数当0<a<b<1<c<d时,指数函数的图像如下图不同底的指数函数图像在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。
5.对数函数当底数不同时,对数函数的图像是这样变换的6.对勾函数对于函数y=x+k/x,当k>0时,才是对勾函数,可以利用均值定理找到函数的最值。
7. 幂函数性质:先看第一象限,即 x>0 时,当 a>1 时,函数越增越快;当0<a<1 时,函数越增越慢;当 a<0 时,函数单调递减;然后当x<0 时,根据函数的定义域与奇偶性判断函数图像即可。
8. 正弦函数、余弦函数、正切函数函数图像的变换 1 平移变换(1)水平平移: 函数 y = f(x + a)的图像可以把函数 y =f(x)的图像沿x轴方向向左(a>0)或向右(a<0)平移|a|个单位即可得到; (2)竖直平移: 函数 y = f(x) + a 的图像可以把函数 y =f(x)的图像沿x轴方向向上(a>0)或向下(a<0)平移|a|个单位即可得到。
2 对称变换(1)函数 y = f(-x) 的图像可以将函数 y = f(x)的图像关于y轴对称即可得到; (2)函数 y = - f(x) 的图像可以将函数 y =f(x)的图像关于x轴对称即可得到;(3)函数 y = - f(-x) 的图像可以将函数 y =f(x)的图像关于原点对称即可得到;3 翻折变换(1)函数 y =| f(x)| 的图像可以将函数 y =f(x)的图像的x轴下方部分沿x轴翻折到x轴上方,去掉x轴下方部分,并保留 y =f(x)的x轴上方部分即可得到;(2)函数 y = f(|x|) 的图像可以将函数 y =f(x)的图像的右边沿y轴翻折到y轴左边替代原y轴左边部分并保留 y =f(x)在y轴右边部分即可得到。
高中数学《函数图象的变换》课件

翻折变换
y = f(x) 的图象
y =|f( x )| 的图象
将y = f(x)在 x 轴上方的图 象保留,下方的图象以 x 轴 为对称轴翻折到上方可得到 y =|f(x)|的图象.
平移变换
左上 右下 平平 移移
对称变换
关关关 于于于 x y原 轴轴点
翻折变换
上左 下右 翻翻 折折
归纳总结
平 y = f(x) 左移 h (h>0) y = f(x + h)
移 的图象 个 单 位
的图象
变 换
y = f(x) 右移 h (h>0) y = f(x - h)
的图象 个 单 位
的图象
问题与思考——复习
1、在同一坐标系中作下列函数 的图象,并说明每组两函数图象间的 关系.
(1) y = |log2x| (2) y = x2 - 2x,y = |x2 - 2x|
yy= log2 x
o
o
1
x
1
x
将 y = log2x 在 x 轴上方的图象保留, 下方的图象以 x 轴为对称轴翻折到上方可
翻 的图象 折 变 换
y =f( |x| ) 的图象
?
谢 谢
翻折变换
问题与思考:
2、在同一坐标系中作下列函数 的图象,并说明每组两函数图象间的 关系.
(1) y = 2x,y = 2|x| (2) y = x2 - 2x,y = |x|2 - 2|x|
y
y
y = 2x 11
o x
y = 2|x| 1
三角函数y=Asin(ωx ψ)图像变换 课件-必修一

y
2
2
1
O 1
3
2 x
2
注意:五点是指使函数值为0及达到最大值和最小值 的点.
函数y sin(x + )在一个周期内的简图.
3
x
2
7
5
3
6
3
6
3
x+
3
0
2
3
2
2
sin(x + )
0
1
0
-1
0
3
描点作图:
y
1
7
5
o π
6
2
3
x
2
3
6
3
-1
探究一: 对函数图象的影响
试研究
y sin(x + ),
+
5
)的图象,只要
5
把C上所有的点 C
( A)横坐标伸长到原来的 4 倍,纵坐标不变 3
•2. 要得到函数 y=sin3x 的图象,只需将 y=sinx 图象(D ) A. 横坐标扩大原来的3倍 B.横坐标扩大到原来的3倍 C. 横坐标缩小原来的1/3倍 D.横坐标缩小到原来的1/3倍
•3. 要得到函数 y=sin(x + π/3)的图象,只需将 y=sinx 图象( C) A. 向左平移π/6个单位 B. 向右平移π/6个单位 C. 向左平移π/3个单位 D. 向右平移π/3个单位
y
2
y sin 2x
1
o
2
y sin 1 x 2 4
3
2 2
-1
二、函数y=sinx(>0)图象: 周期变换
函数 y=sinx (>0且0) 的图象可以看作 是把 y=sinx 的图象上所有点的横坐标缩短 (当>1时)或伸长(当0< <1时)到原来的1/ 倍(纵坐标不变)而得到的.
高中数学:131《三角函数图像的变换》课件必修

变换的目的是为了更好地理解三角函数的性质,解决实际问题,以及进行图像处理 等。
变换的种类和特点
01
02
03
04
平移变换
将图像沿x轴或y轴方向移动 ,保持图像形状不变。
伸缩变换
通过改变x轴和y轴的比例来 改变图像的大小,可以横向或
纵向伸缩。
翻折变换
利用伸缩变换的性质求解函数的极值
例如,利用正弦函数的伸缩性质,可以求解y=sin(3x)在x=π/9处的极小值为1。
利用对称变换的性质求解函数的对称轴或对称中心
例如,利用正弦函数的对称性质,可以求解y=sin(x)的对称轴为x=kπ+π/2,k∈Z。
变换在实际问题中的应用
物理学中的应用
三角函数图像的综合变换在物理学中有广泛的应用,如振 动和波动现象、交流电等。通过变换可以更好地理解物理 现象和解决实际问题。
x轴缩短为原来的1/2,则图像的 周期变为原来的2倍。
01
03
02 04
总结词:影响相位
详细描述:沿x轴伸缩不仅改变 了图像的周期,还会影响函数的 相位。例如,将x轴缩短为原来 的1/2,相当于将相位滞后了π。
沿y轴伸缩
总结词:改变振幅
详细描述:沿y轴伸缩是 指保持x轴不变,通过改 变y轴的长度来改变整个 图像的振幅。例如,将y 轴放大为原来的2倍,则 图像的振幅变为原来的2 倍。
翻折变换
旋转变换
$y = -f(-x)$ 或 $y = f(x)$,前者表示沿x 轴翻折,后者表示沿y轴翻折。
$x = xcostheta - ysintheta$ 和 $y = xsintheta + ycostheta$,其中$theta$为 旋转角度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ox
O
-1
x
O
-1
x
对 y 轴 (-X,Y()与1(X),Yy)=f(x()X与,-Yy)与=(Xf(,-xY))的图(-象X,-Y关)与于(X,Y) 称 x 关于(Y轴2对)称y=f(x关)与于Xy轴=对-f称(x)的图关象于关原点于对称 轴
变 (3)y=f(x)与y=-f(-x)的图象关于 原 点
小结:
y=f(x) 沿 y轴y =f(x) +a
当a>0时,向上平移a个单位 当a<0时,向下平移|a|个单位
规律:上加下减
CHENLI
6
问题1:说出下列函数的图象与指数函数y=2x的
图象的关系,并画出它们的示意图.
(1)y=2-x (2)y=-2x (3)y=-2-x
y
y
y
谁不变关于
1
1
1
谁对称
CHENLI
11
例.已知函数y=|2x-2|
(1)作出函数的图象; (2)指出函数 的单调区间; (3)指出x取何值时,函数有最值。yFra biblioteky=2x
y=2x-2
y=|2x-2|
1
y=|2x-2|
O 1 23 x -1
CHENLI
12
1.函数 y 1 的图象是
y
x1y
y
O
1x -1
-1 O
xO
(A)
(B)
数少形时少直观 形少数时难入微 数形结合百般好 数形分离万事休
华罗庚
CHENLI
1
函数图像的变换
CHENLI
2
y=f(x+a)的图象 画出下列函数的图象, 并 说明它们的关系:
(1) f(x)=x2
(2) f(x)=(x+2)2 (3) f(x)=(x-2)2
CHENLI
3
平移变换—水平平移
小结:
2.函数 y=a|x|(a>1)的图象是
1
x
(C)
y
y
y
CHENLI
y
-1
Ox
(D)
y
O
x
(A)
O
(B)
x
O
(C)
x
O
x
(D)
13
CHENLI
1.f(x)=|x-1|的图象为如下图所示中的 ()
【答案】 B
14
CHENLI
2.为了得到函数 y=2x-3-1 的图象,只需 把函数 y=2x 的图象上所有的点( ) A.向右平移 3 个单位长度,再向下平移 1 个单位长度 B.向左平移 3 个单位长度,再向下平移 1 个单位长度 C.向右平移 3 个单位长度,再向上平移 1 个单位长度 D.向左平移 3 个单位长度,再向上平移 1 个单位长度
20
CHENLI
9、作出下列函数的图像: y 2 x1 2
21
15
3 、已知函数f(x)= ( 1 ) x
3
CHENLI
的图象为C.
(1)把C关于y 轴对称得到C1,则C1解析
式为 y 3x ;
(2)把C1右移2个单位得到C2,则C2解析 式为 y 3x;2
16
CHENLI
4:.函数 y=5x 与函数 y=-51x的图像关于(
)
A.x 轴对称
B.y 轴对称
7、已知函数 f(x)=|x2-4x+3|. (1)求函数 f(x)的单调区间,
并指出其增减性; (2)求集合 M={m|使方程 f(x)=m
有四个不相等的实根}.
19
CHENLI
7.函数f(x)=a x-b的图象如右图所示 ,其中a、b为常数,则下列结论正确 的是( ) •A.a>1,b<0 •B.a>1,b>0 •C.0<a<1,b>0 •D.0<a<1,b<0 •【解析】 因图象是递减的,故 0<a<1.又图象是将y=ax的图象向左平 移了,故b<0,∴选D. •【答案】 D
y=f(x) 沿 x轴 y=f(x+a)
当a>0时,向左平移a个单位 当a<0时,向右平移|a|个单位
规律:左加右减
CHENLI
4
y=f(x)+b的图象
画出下列函数的图象, 并 说明它们的关系:
(1) f(x)=x2 (2) f(x)=x2+1 (3) f(x)=x2-1
CHENLI
5
平移变换—竖直平移
C.原点对称
D.直线 y=x 对称
解析:因为 y=-51x=-5-x,所以关于原点对称.
答案:C
17
CHENLI
6.f(x)=|4x-x2|-a与x轴恰有三个
交点,则a= . 4
解析 y1=|4x-x2|,y2=a,则两函数图象恰有三个 不同的交点. 如图所示,当a=4时满足条件.
18
CHENLI
(3)y = 2|x| (4) y = |2x-1|
CHENLI
9
y=f(|x|)的图象
作f(图 x)x22x3|
小结:对称变换
y=f(x)y=f(|x|),将y=f(x)图象在y 轴右侧部分沿y轴翻折到y轴左侧, 并保留y轴右侧部分。
CHENLI
10
(1)y = 2|x| (2) y = x2 - 2|x|
换
CHENLI
对称; 对称; 对称;
7
y=|f(x)|的图象
例:画出 f(x)|x22x3|函数的图像
小结:翻折变换
y=f(x)y=|f(x)|, 将y=f(x)图象在x轴下侧部分沿x轴翻折到x轴 上侧,并保留x轴上侧部分。
CHENLI
8
(1)做f出 (x) x2 2x的图像。 (2)求 f(x)|x23x4|的单调区