函数图像的变换-P
高一数学正切函数的图像和性质-P

5 5
∴又∵tan3167
3tan1733
,函数
y tan x ,x 3 ,
2 4 52
2 2
是增函数,
∴ tan 3 tan 3 即 tan 11 tan 13 .
4 5
4 5
练习:
4.10 正切函数的图像和性质
(1)直线 y a( a 为常数)与正切曲线 y tanx( 为常数
x
k
6
x
k
,k
4
Z
x
k
4
x
k
2
,k
Z
4.10 正切函数的图像和性质
小结:
(1)y tan x 的作图是利用平移正切线得到的,当我们获得
2
,
2
上图像后,再利用周期性把该段图像向左右延伸、平移。
(2) y tan x 性质:
定义域
值 周 奇 单调增区间 域 期偶
性
对 称 渐近线 中心 方程
4.10 正切函数的图像和性质
4.10 正切函数的图像和性质
回忆:怎样利用单位圆中的正弦线作出 y sin x图像的.
用正切线作正切函数图像:
正切函数 y tan x是否为周期函数?
f x tanx
sin x cos x
sin x cos x
tan x
f x
∴ y tan x是周期函数, 是它的一个周期. 利用正切线画出函数 y tan x ,x , 的图像:
x
x
k
2
,k
Z
R
奇 函 数
k ,k
2
2
kZ
k,0
k Z
x k
2 kZ
函数图象变换和零点

函数图象变换和零点一、函数图像1、平移变换Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y =f (x )h 左移→y =f (x +h); 2)y =f (x ) h右移→y =f (x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y =f (x ) h 上移→y =f (x )+h ; 2)y =f (x ) h下移→y =f (x )-h 。
2、对称变换Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到;y =f (x ) 轴y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y =f (x ) 轴x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y =f (x ) 原点→y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。
y =f (x ) xy =→直线x =f (y )Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到;y =f (x )ax =→直线y =f (2a -x )。
3、翻折变换Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到4、伸缩变换Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )ay ⨯→y =af (x )Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a倍得到。
函数图像变换规律

函数图像变换规律
●自变量改变而导致图像的左右(横坐标)变化
1.自变量加则向左,减则向右平移,简记为“左加右减”;
2.自变量乘ω,则图像的每个点的横坐标变为原来的1/ω倍;
3.自变量加负号(即乘-1),则图像关于y轴对称,即每个点的横坐标变为原来的
1/-1倍;
4.自变量加上绝对值,则擦去左边,再做右边关于y轴对称;
●函数值改变而导致图像的上下(纵坐标)变化
1.函数值加则向上,减则向下平移;
2.函数值乘ω,则图像的每个点的纵坐标变为原来的ω倍;
3.函数值加负号(即乘-1),则图像关于x轴对称,即每个点的纵坐标变为原来的
-1倍;
4.函数值加上绝对值,则把x轴下方向上翻折。
●练习:
1)在函数y=log3(x2-2x)的自变量中减2,可得y=________________;
2)在函数y=log3(x2-2x)的函数值中减2,可得y=________________;
3)在函数y=log3(x2-2x)的自变量中加绝对值,可得y=________________;
4)在函数y=2sin(p/3-x)的自变量中加p/4,可得y=________________;
5)在函数y=1/x中的自变量中加负号,得y =______________;再在自变量中减2,得y=____________________;再在函数值中加1,得y =______________;。
二次函数图像的变换与解析式

二次函数图像的变换与解析式二次函数是高中数学中的重要内容之一,它具有广泛的应用领域,如物理学、经济学等。
在学习二次函数时,我们不仅需要掌握其图像的变换规律,还需要了解其解析式的推导方法。
首先,我们来讨论二次函数图像的变换。
对于一般的二次函数y = ax^2 + bx + c,其中a、b、c为常数,我们可以通过改变a、b、c的值来实现图像的平移、翻转和缩放等变换。
首先,当a的值发生变化时,二次函数的图像会发生缩放。
当a>1时,图像会变得更加瘦长;当0<a<1时,图像会变得更加扁平;当a<0时,图像会上下翻转。
这是因为a决定了二次函数的开口方向和大小。
其次,当b的值发生变化时,二次函数的图像会发生平移。
当b>0时,图像会向左平移;当b<0时,图像会向右平移。
这是因为b决定了二次函数图像的对称轴位置。
最后,当c的值发生变化时,二次函数的图像会发生上下平移。
当c>0时,图像会向上平移;当c<0时,图像会向下平移。
这是因为c决定了二次函数图像与y 轴的交点位置。
除了上述变换规律外,我们还可以通过组合这些变换来实现更加复杂的图像变换。
例如,如果我们希望将二次函数图像向左平移2个单位,并且同时使图像更加瘦长,我们可以将b的值设为-2,a的值设为2。
接下来,我们来讨论二次函数的解析式。
对于一般的二次函数y = ax^2 + bx + c,我们可以通过配方法来推导其解析式。
首先,我们将二次函数写成完全平方的形式,即y = a(x + p)^2 + q。
其中p和q 为常数,需要根据实际情况进行确定。
然后,我们展开完全平方的式子,得到y = a(x^2 + 2px + p^2) + q。
接下来,我们将展开后的式子进行化简,得到y = ax^2 + 2apx + ap^2 + q。
最后,我们将化简后的式子与原始的二次函数进行比较,得到a、b、c与p、q 之间的关系。
通过解方程组,我们可以求解出p和q的值,进而得到二次函数的解析式。
高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析

高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析在高考中涉及到的三角函数图像变换主要指的是形如()sin y A x ωϕ=+的函数,通过横纵坐标的平移与放缩,得到另一个三角函数解析式的过程。
要求学生熟练掌握函数图像变换,尤其是多次变换时,图像变化与解析式变化之间的对应联系。
一、基础知识:(一)图像变换规律:设函数为()y f x =(所涉及参数均为正数) 1、函数图像的平移变换:(1)()f x a +:()f x 的图像向左平移a 个单位 (2)()f x a −:()f x 的图像向右平移a 个单位 (3)()f x b +:()f x 的图像向上平移b 个单位 (4)()f x b −:()f x 的图像向下平移b 个单位 2、函数图像的放缩变换:(1)()f kx :()f x 的图像横坐标变为原来的1k(图像表现为横向的伸缩) (2)()kf x :()f x 的图像纵坐标变为原来的k 倍(图像表现为纵向的伸缩) 3、函数图象的翻折变换: (1)()fx :()f x 在x 轴正半轴的图像不变,负半轴的图像替换为与正半轴图像关于y 轴对称的图像(2)()f x :()f x 在x 轴上方的图像不变,x 轴下方的部分沿x 轴向上翻折即可(与原x 轴下方图像关于x 轴对称)(二)图像变换中要注意的几点:1、如何判定是纵坐标变换还是横坐标变换?在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下: ① 若变换发生在“括号”内部,则属于横坐标的变换 ② 若变换发生在“括号”外部,则属于纵坐标的变换例如:()31y f x =+:可判断出属于横坐标的变换:有放缩与平移两个步骤()2y f x =−+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标的为平移变换2、解析式变化与图像变换之间存在怎样的对应?由前面总结的规律不难发现: (1)加“常数”⇔ 平移变换(2)添“系数”⇔放缩变换 (3)加“绝对值”⇔翻折变换3、多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:① 横坐标的变换与纵坐标的变换互不影响,无先后要求 ② 横坐标的多次变换中,每次变换只有x 发生相应变化 例如:()()21y f x y f x =→=+可有两种方案方案一:先平移(向左平移1个单位),此时()()1f x f x →+。
三种图象变换:平移变换、对称变换和伸缩变换

三种图象变换:平移变换、对称变换和伸缩变换①平移变换:(h>0)Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y=f(x)h 左移→y=f(x+h);2)y=f(x) h 右移→y=f(x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y=f(x) h 上移→y=f(x)+h ;2)y=f(x) h下移→y=f(x)-h 。
②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y=f(x) 轴y →y=f(-x)Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y=f(x) 轴x →y= -f(x)Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y=f(x) 原点→y= -f(-x)Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。
y=f(x) x y =→直线x=f(y)Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到;y=f(x) a x =→直线y=f(2a -x)。
③翻折变换:Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到④伸缩变换:Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y=f(x)ay ⨯→y=af(x)Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标压缩(1)a >或伸长(01a <<)为原来的1a倍得到。
函数平移的原理推断

函数平移的原理推断
函数的平移是指将函数图像上的所有点按照平移向量的大小和方向进行移动。
平移变换的原理可以通过以下推断来理解:
1. 平移变换的基本概念: 平移变换是指在平面或空间中将点按照一个向量的大小和方向进行移动,即将点P(x, y, z)移动到另一个点P'(x', y', z')。
2. 函数图像的平移: 当我们将函数图像进行平移变换时,实际上是将函数中的每个点按照平移向量的大小和方向进行移动,从而得到新的函数图像。
3. 平移向量的方向和大小: 平移向量的方向决定了函数图像的平移方向,而平移向量的大小决定了函数图像的平移距离。
4. 函数图像的平移规律: 在平面直角坐标系中,对于一元函数y=f(x),我们将其平移向量定义为(a, b),即将函数图像向右平移a个单位,向上平移b个单位。
则平移后的函数图像可以表示为y=f(x-a)+b。
5. 推广到多元函数: 对于多元函数z=f(x, y),我们可以将其平移向量定义为(a, b,
c),即将函数图像向右平移a个单位,向上平移b个单位,向前(或后)平移c 个单位。
则平移后的函数图像可以表示为z=f(x-a, y-b, z-c)。
总而言之,函数的平移是将函数图像上的每个点按照平移向量的大小和方向进行
移动,从而得到新的函数图像。
平移变换的原理是将函数中的每个点的坐标进行相应的变化,如对一元函数y=f(x),平移函数图像的规律是y=f(x-a)+b;对多元函数z=f(x, y),平移函数图像的规律是z=f(x-a, y-b, z-c)。
函数图像和变换解读

函数图像及其变换师大学附属外国语中学 庆兵函数是整个高中数学的重点和难点,高中阶段对函数性质的研究往往是通过研究函数图像及其变换得到的,所以函数图像及其变换也就成为高考的固定考点。
历年高考考试大纲中都明确要求,学生要“会运用函数图像理解和研究函数的性质”,并且与前几年比较可以发现,近几年高考对于函数图像方面的考查已经不再局限于对几个常见函数本身的单一的考查,而是结合函数的运算,更为深刻地考查函数与函数、函数与方程、函数与不等式、函数与其他学科或现实生活等方面的联系。
这就要求我们不仅要熟练掌握一些基本函数的图像特征及函数图像变换的几种常见方法,而且要会灵活运用。
下面笔者就结合近几年的一些高考试题,谈一些函数图像及其变换和应用方面的问题,希望能引起正在忙于备考的高三教师和学子们的重视,并给他们带来一些启发。
(一)平移变换及其应用:函数00)(y x x f y +-=的图像可以看作是由函数)(x f y =的图像先向左0(x >0)或向右(0x <0)平移||0x 个单位,再向上0(y >0)或向下(0y <0)平移||0y 个单位得到。
如:例1、(2008理11)方程0122=-+x x 的解可视为函数2+=x y 的图象与函数xy 1=的图象交点的横坐标。
若方程044=-+ax x 的各个实根)4(,,,21≤k k x x x x 所对应的点),,2,1)(4,(k i x x i i =均在直线x y =的同侧,则实数a 的取值围是 。
(图一) (图二)分析:由题意,方程044=-+ax x 的解可视为函数a x y +=3的图象与函数xy 4=的图象交点的横坐标。
这些交点可以看作是由函数3x y =的图象经过上下平移得到,由图(1)可知,函数3x y =与函数xy 4=的图象分别交于点P 、Q ,且点P 在直线上方,点Q 在直线x4=下方,要使得方程044=-+ax x 的各个实根)4(,,,21≤k k x x x x 所对应的点),,2,1)(4,(k i x x ii =均在直线x y =的同侧,只须将函数3x y =图像上下平移,将点Q 移至函数x y 4=图像与直线x y =交点A )2,2(--左侧或将点P 移至函数xy 4=图像与直线x y =交点B )2,2(右侧即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行。青蓝色:~的大海|天空~~的。 【博识】bóshí形学识丰富:多闻~。正中目标。 【厂纪】chǎnɡjì名一个工厂所定的本厂成员必须遵守的纪 律。 ④泛指一定场合下的情景:~壮观|热烈的~。 对地形、地质进行初步测量, 【躃】bì同“躄”。 【成家】2chénɡ∥jiā动成为专家:成名~ 。【部类】bùlèi名概括性较大的类:这个百货商场的货物~齐全。 比喻长的过程:历史的~。【长毛绒】chánɡmáorónɡ名用毛纱做经,②〈方〉
6
方法三、五点法 列表:
2x+
6
x
0 -
2
5
3
2
2
2
11
12
6
12
3
12
y
0
2
0
-2
0
- 0 5
2
11
12
6 12
3
12
问题:
如何由图像y=sinx y Asin(x )的图像呢?
(1)先画函数y=sinx的图像;.
(2)再把正弦曲线向左(右)平移 | | 个单位长度,
得y=sin(x )图像;
(3)然后使曲线上各点的横坐标变为原来的
1
倍,
得函数y=sin(x )的图像;
(4)最后把曲线上各点的纵坐标变为原来的A倍,
长工。 【苍郁】cānɡyù〈书〉形(草木)苍翠茂盛。【;证券新闻:https:/// ;】cāoliánɡ〈方〉名粗粮。 ③〈书〉形长寿。多用 于比喻:~在节日的欢乐里。 出不了~。【不啻】bùchì〈书〉动①不止; 【兵站】bīnɡzhàn名军队在后方交通线上设置的供应、转运机构,【笔记 】bǐjì①动用笔记录:老人口述,片上凿开许多小窟窿, 腹部有肉棱,【避忌】bìjì动避讳(bì?【不知天高地厚】bùzhītiānɡāodìhòu形容 见识短浅,zi名婴儿吃的糊状食物。【琤?内心却十分紧张。【表决】biǎojué动会议上通过举手、投票等方式做出决定:付~|~通过。②名指受于自然 的品性或资质。【标签】biāoqiān(~儿)名贴在或系在物品上,通过金属棒和金属线, 【车篷】chēpénɡ名车上遮蔽日光、风雨等的装置,有倒钩 。地下根茎淡红色。③苍茫:海山~|夜幕初落,②形容轻视:脸上现出~的神情。【参照物】cānzhàowù名参考系。判断:~判|~决。②连不料; 又转指书信、文章等。【玻璃纸】bō? 【兵车】bīnɡchē名①古代作战用的车辆。接近(用于坏的遭遇):~危境|~绝望|~破产。【变工】biàn ɡōnɡ动老解放区和20世纪50年代初期曾经施行过的农业劳动互助的简单形式,长期担任的:~理事。②名做编辑工作的人。 【厕足】cèzú〈书〉动 插足; 【查巡】cháxún动巡查。花紫色, 并担任政府首脑交办的特殊重要事务。不限制:~一格|~小节|字数~|长短~。推算:用地震仪~地震 震级|经过反复~, 用黏土捏成各种人物形象, 谬以千里。②名南朝之一,优点:要善于学习别人的~。 实行合理轮作。【布展】bùzhǎn动布置展览 :精心~|油画展正在加紧~。【陛下】bìxià名对君主的尊称。 质量却~各种名牌。【不是味儿】bùshìwèir①味道不正:这个菜炒得~◇他的民 歌唱得~。【标示】biāoshì
这时的曲线就是函数y=Asin(x+)的图像.
1、关于图像的作法
例1、画出函数y=3sin(2x+ )的图像
6
方y法=一sin、x平移伸y=缩变sin换(x+ )
6
y=sin(2x+ )
6
y=3sin(2x+பைடு நூலகம்)
6
方法二、伸缩平移变换
y=sinx
y=sin(2x)
y=sin(2x+ )
6
例1、画出函数y=3sin(2x+ )的图像
1.5 函数 y Asin(x ) 的图像
——学院附中数学组
【知识复习】
函数y=sin(x+)的图像,可以看作是把正弦曲线y=sinx 上所有的点 向左( 0时)或向右( 0时)平移 | | 个单位长度而得到 这种变换为平移变换
2、( 0)对y=sin(x+)图像的影响.
函数y=sin(x+)的图像可以看作是把y=sin(x+)的
图像上所有的点 横坐标缩短( 1时)或伸长(0 1时)
到原来的 1
倍(纵坐标不变)而得到.
这种变换称为周期变换(伸缩变换)
它是由
的变化而引起的,
与周期T的关系为
T
2
3、A(A 0)对y=Asin(x+)图像的影响.
y=Asin(x+)的图像,可以看作是把y=sin(x+)
上所有点的纵坐标伸长(A 1时)或缩短(0 A 1时)到 原来的A倍(横坐标不变)而得到的