概率论—样本空间及其随机事件
概率论第一章

下面我们讨论事件之间的关系与运算
1、包含关系
⑶ 两个特殊事件
必然事件U ★ 必然事件U ★ 不可能事φ 不可能事φ
3、随机试验
如果一个试验可能的结果不止一个, 如果一个试验可能的结果不止一个,且事先不能肯定 会出现哪一个结果,这样的试验称为随机试验。 会出现哪一个结果,这样的试验称为随机试验。
例如, 掷硬币试验 例如, 寿命试验 测试在同一工艺条件下生产 掷骰子试验 掷一枚硬币,观察出正还是反. 掷一枚硬币,观察出正还是反 出的灯泡的寿命. 出的灯泡的寿命 掷一颗骰子, 掷一颗骰子,观察出现的点数
第一章 随机事件及其概率
随机事件及样本空间 频率与概率 条件概率及贝努利概型
§1 随机事件及样本空间
一、随机事件及其有关概念
1、随机事件的定义
试验中可能出现或可能不出现的情况叫“随机事件” 试验中可能出现或可能不出现的情况叫“随机事件”, 简称“事件” 记作A 简称“事件”。记作A、B、C等任何事件均可表示为样本空 间的某个子集。称事件A发生当且仅当试验的结果是子集A 间的某个子集。称事件A发生当且仅当试验的结果是子集A中 的元素。 的元素。
例如,一个袋子中装有10个大小、形状完全相同的球。 例如,一个袋子中装有10个大小、形状完全相同的球。 10个大小 将球编号为1 10。把球搅匀,蒙上眼睛,从中任取一球。 将球编号为1-10。把球搅匀,蒙上眼睛,从中任取一球。
因为抽取时这些球是完全平等的, 因为抽取时这些球是完全平等的, 我们没有理由认为10个球中的某一个会 我们没有理由认为10个球中的某一个会 10 比另一个更容易取得。也就是说,10个 比另一个更容易取得。也就是说,10个 球中的任一个被取出的机会是相等的, 球中的任一个被取出的机会是相等的, 均为1/10 1/10。 均为1/10。
随机试验与样本空间PPT

概率的概念形成于16世纪,与用投掷骰子的方法进行赌博有密切的关系.
1
1654年,一个名叫德梅尔(De Mere,法)的赌徒就“两个赌徒约定赌若干局,且谁先赢c局便算赢家,若在一赌徒胜a局(a<c),另一赌徒胜b局(b<c)时便终止赌博,问应如何分赌本”为题求教于数学家帕斯卡(Pascal,法,1623-1662),帕斯卡与费玛(Fermat,法,1601-1665)通信讨论了这一问题,并用组合的方法给出了正确的解答.
概率论与数理统计
点击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。
第1章 概率论基础
1.2 随机事件及其概率
1.1 随机试验与样本空间
1.3 古典概型与几何概型
1.4 条件概率与乘法公式
1.5 全概率公式和贝叶斯公式
独立性
貳
壹
叁
肆
伍
陆
第1章 概率论基础
概率论是从数量化的角度来研究现实世界中一类不确定现象(随机现象)规律性的一门数学学科,20世纪以来,广泛应用于工业、国防、国民经济及工程技术等各个领域.本章介绍随机事件与概率、古典概型与几何概型、条件概率与乘法公式等概率论中最基本、最重要的概念和概率计算方法.
随机试验通常用大写字母E表示.
1.1.1 随机试验
随机试验
说明 随机试验简称为试验, 是一个广泛的术语.它包括各种各样的科学实验, 也包括对客观事物进行的 “调查”、“观察”或 “测量” 等.
“抛一枚硬币观察哪一面朝上”:
定义1.1 随机试验的一切可能基本结果组成的集合称为样本空间,记为 = { },其中 表示基本结果,又称为样本点.
【例1.1】下面给出几个随机试验的样本空间.
研究随机现象首先要了解它的样本空间.
概率与统计中的随机事件与样本空间

概率与统计中的随机事件与样本空间随机事件与样本空间是概率与统计中重要的概念,它们在统计推断、随机模型建立以及实际应用中起着关键的作用。
本文将从理论与实践的角度,探讨随机事件与样本空间的定义、属性及应用。
一、随机事件的定义与性质随机事件是指可以在一次试验中出现,但不能预先确定具体结果的事件。
在概率论中,一般将随机事件用事件的形式表示,如A、B等。
随机事件可以是单个结果,也可以是多个结果的组合。
在概率论的框架下,随机事件具有以下性质:1. 包含性:对于样本空间Ω中的每个结果ω,如果事件A发生,则该结果必定属于事件A,即A⊆Ω。
2. 互斥性:如果事件A与事件B的结果不能同时发生,则事件A与事件B是互斥事件,即A∩B=∅。
3. 全面性:样本空间Ω中的所有结果都属于某个事件,即Ω是必然发生的事件。
二、样本空间的定义与性质样本空间是指一次试验中可能出现的所有结果的集合,通常用Ω表示。
样本空间的定义与试验的性质密切相关,不同试验可能具有不同的样本空间。
例如,投掷一枚硬币的样本空间为{正面, 反面},抛掷一个骰子的样本空间为{1, 2, 3, 4, 5, 6}。
样本空间具有以下性质:1. 互不相容性:样本空间中的每个结果都是不同的,即样本空间中的每个元素都是互不相同的。
2. 穷尽性:样本空间包含了一次试验中所有可能出现的结果,即样本空间涵盖了整个试验范围。
三、随机事件与样本空间的应用随机事件与样本空间在概率论与统计中有着广泛的应用,以下介绍其中几个重要的应用场景。
1. 概率计算:通过对随机事件与样本空间的分析,可以计算事件发生的概率。
通常使用频率或古典概率来估算事件发生的可能性。
2. 统计推断:基于样本空间中获取的一部分数据,可以通过统计推断来对总体进行估计。
例如,通过对样本数据的分析,可以推断总体的均值、方差等参数。
3. 随机模型建立:在随机模型中,随机事件与样本空间的定义是模型建立的基础。
根据具体问题的特点,可以建立相应的随机模型来分析事件的发生规律。
概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
1随机事件和概率

解 :令A={第一次取到次品},B={第二次取到次品}, 需求P(B│A).
(1)在缩减的样本空间中计算.因第一次已经取得了次品, 剩下的产品共19件其中3件次品,从而
P(B│A)=3/19 (2)在原样本空间中计算,由于
二 、乘法公式
设P(B)>0,则有 P(AB)=P(B)P(A│B) 同样,当P(A)>0时,有: P(AB)=P(A)P(B│A) 上述乘法公式可推广至任意有限个事件的情形:
三、样本空间
试验E的所有基本结果构成的集合称为样本空间, 记为S。 S中的元素即E的每个基本结果称为样本点,记为 ω,即S={ω}。 基本事件是样本空间的单点集。 复合事件是由多个样本点组成的集合。 必然事件包含一切样本点,它就是样本空间S。 不可能事件不含任何样本点,它就是空集φ。
四、事件间的关系及其运算 例1 : 从一批产品中任取8件,观察其中的正品件数, 则这一试验的样本空间为:
可列个事件A1 , A2 , … , An的积记为A1 ∩ A2 ∩ … ∩ An
或A1A2 … An ,也可简记为 在可列无穷的场合,用 件同时发生。” 。 表示事件“A1、A2 …诸事
4.互不相容事件
事件A与事件B不能同时发生,即AB=φ,则称A 和B是互不相容的或互斥的。 基本事件是两两互不相容的。 5.对立事件 若A,B互不相容,且它们的和事件为必然事件,即
例2: 设A,B,C为三个事件,试用A,B,C表
示下列事件: (1)A发生且B与C至少有一个发生; (2)A与B都发生而C不发生; (3)A,B,C恰有一个发生; (4)A,B,C中不多于一个发生; (5)A,B,C不都发生;
(6)A,B,C中至少有两个发生。
1.2 事件的概率
北邮概率论与数理统计样本空间及随机事件1.1

§1.1 随机事件及其运算1.随机现象自然界和社会上发生的现象多种多样.有些现象,我们可以准确预言他们在一定条件会出现何种结果,例如“在标准大气压下,纯水加热到C ︒100时必定沸腾”等等,这类现象我们称为确定性现象.然而自然界和社会上还有许多现象,他们在一定条件下,并不总是出现相同结果,而且事先我们无法准确预言会出现何种结果, 这类现象我们称为随机现象.随机现象随处可见。
如抛一枚硬币,其结果可能是正面朝上,也可能反面朝上,而且在出现结果之前无法准确预言会出现何种结果.再比如用一仪器在相同条件下测量一物体的质量,各次测量结果会有差异,等等。
有的随机现象可以在相同条件下重复,也有很多随机现象是不能重复的,比如经济现象(如失业,经济增长速度等)大多不能重复. 对在相同条件下可以重复的随机现象的观察、记录、实验称为随机试验.对于这类随机现象,我们常常通过多次重复的随机试验,观察其出现的结果,以期发现随机现象的规律性。
长期的实践经验表明,在大量重复试验下,随机现象的结果的出现往往呈现出某种规律性.例如大量重复抛一枚硬币,正面出现的次数与反面出面出现的次数大致相当,等等.这种在大量重复试验中所呈现的规律性就是我们以后常说的统计规律性.概率论与数理统计的研究对象是随机现象,研究和揭示随机现象的统计规律性. 概率论与数理统计主要研究能重复的随机现象,但也十分注意研究不能重复的随机现象.2.样本空间数学理论的建立总是需要首先给出一些原始的无定义的概念(例如,“点”和“直线”是欧氏几何的公理化处理中无定义的概念)。
在概率论中,第一个“无定义”的原始概念是“样本点”,这一原始概念又联系着另一原始概念“随机试验”.概率论中所说的随机试具有下述特点:(1)可以在相同条件下重复地进行;(2)每次试验的可能结果不止一个,并且事先能明确试验的所有可能的结果;(3)进行一次试验之前不能确定哪个结果会发生.随机试验的可能结果称为样本点,用ω表示样本点;而随机试验的一切样本点组成的集合称为样本空间,记为}{ω=Ω.在具体问题中,认清“样本空间是哪些样本点构成的”是十分重要的. 有些随机试验凭“经验”可确定样本点和样本空间,有些随机试验需要“数学的理想化”去确定样本点和样本空间.样本点和样本空间的确定也与研究目的有关,或者说与观察或记录的是什么有关.看下面一些例子.例 1 考虑试验:掷一骰子,观察出现的点数.根据“实际经验”,该试验的基本结果有6个:1,2,3,4,5,6,从而其样本空间为}6,5,4,3,2,1{=Ω.如果我们只是观察出现奇数点还是偶数点,那么样本空间可以确定为{=Ω出现奇数点,出现偶数点}.例 2 考虑试验:观察一天内进入某商场的人数. 一天内进入某商场的人数是非负整数,但由于不知道最多的人数和最少的人数,我们把该试验的样本空间“理想化”地定为},3,2,1,0{⋅⋅⋅=Ω,即样本空间确定为全体非负整数构成的集合.例3考虑试验:考察一个元件的寿命.为了数学上处理方便, 我们把该试验的样本空间“理想化”地确定为),0[+∞=Ω.例 4 对于试验:将一硬币抛3次.若我们记录3次正反面出现的情况,则样本空间为},,,,,,,{TTT TTH THT HTT THH HTH HHT HHH =Ω;若我们记录正面出现的次数,则样本空间为}3,2,1,0{=Ω.若样本空间中的元素个数是有限个,我们称此样本空间为有限样本空间. 若样本空间中的元素个数是有限个或可列个,我们称此样本空间为离散样本空间.3.随机事件有了样本空间后,我们可以给出随机事件的概念.直观上, 随机事件是随机现象或随机试验中可能发生也可能不发生的事件.例如,在掷骰子试验中,“出现偶数点”是可能发生也可能不发生的,因此它是随机事件,而且当试验出现的结果是2或4或6时该事件就发生了,否则该事件就不发生.一个事件是否发生应当能由试验出现的结果判定,因此一个事件可以由使其发生的那些样本点组成,换言之, 随机事件可以由一个或多个样本点组成的集合来表示.因此有下面概念.设随机试验E 的样本空间为}{ω=Ω,我们称样本空间为}{ω=Ω的子集为随机事件,简称为事件,常用大写字母A,B,C,…表示.若一事件是由单个样本点组成,则称该事件为基本事件;由2个或2个以上样本点组成的事件称为复合事件.由全体样本点组成的事件称为必然事件,必然事件就是样本空间Ω本身.空集Φ作为样本空间Ω的子集也是事件,称此事件为不可能事件. 显然, 必然事件在每次试验中是必定发生的,不可能事件在任一次试验中都不会发生.这两种情况已无随机性可言,但我们把它们视为随机事件的特例.以后在理论上讨论概率论问题时,我们总是假定样本空间已经给定,随机事件就是该样本空间的子集。
§1.1随机事件与样本空间

§1.1随机事件与样本空间§1.1 随机事件与样本空间随机事件与样本空间是概率论中的两个最基本的概念。
⼀、基本事件与样本空间对于随机试验来说,我们感兴趣的往往是随机试验的所有可能结果。
例如掷⼀枚硬币,我们关⼼的是出现正⾯还是出现反⾯这两个可能结果。
若我们观察的是掷两枚硬币的试验,则可能出现的结果有(正、正)、(正、反)、(反、正)、(反、反)四种,如果掷三枚硬币,其结果还要复杂,但还是可以将它们描述出来的,总之为了研究随机试验,必须知道随机试验的所有可能结果。
1、基本事件通常,据我们研究的⽬的,将随机试验的每⼀个可能的结果,称为基本事件。
因为随机事件的所有可能结果是明确的,从⽽所有的基本事件也是明确的,例如:在抛掷硬币的试验中“出现反⾯”,“出现正⾯”是两个基本事件,⼜如在掷骰⼦试验中“出现⼀点”,“出现两点”,“出现三点”,……,“出现六点”这些都是基本事件。
2、样本空间基本事件的全体,称为样本空间。
也就是试验所有可能结果的全体是样本空间,样本空间通常⽤⼤写的希腊字母Ω表⽰,Ω中的点即是基本事件,也称为样本点,常⽤ω表⽰,有时也⽤A,B,C 等表⽰。
在具体问题中,给定样本空间是研究随机现象的第⼀步。
例1、⼀盒中有⼗个完全相同的球,分别有号码1、2、3……10,从中任取⼀球,观察其标号,令=i {取得球的标号为i },=i 1,2,3,…,10. 则Ω={1,2,3,…,10},=i ω{标号为i },=i 1,2,3,…,101ω,2ω,…, 10ω为基本事件(样本点)例2 在研究英⽂字母使⽤状况时,通常选⽤这样的样本空间:Ω={空格,A,B,C,…,X,Y,Z}例 1,例 2讨论的样本空间只有有限个样本点,是⽐较简单的样本空间。
例3讨论某寻呼台在单位时间内收到的呼叫次数,可能结果⼀定是⾮负整数⽽且很难制定⼀个数为它的上界,这样,可以把样本空间取为Ω={0,1,2,3,…}这样的样本空间含有⽆穷个样本点,但这些样本点可以依照某种顺序排列起来,称它为可列样本空间。
1.2 样本空间、随机事件

S
A=B,则称事件 相等。 若 A ⊂ B 且 B ⊃ A ,即 A=B,则称事件 A 与事件 B 相等。
2°事件 A U B = { x | x ∈ A 或 x ∈ B }称为事件 A 与 B 的 ° 中至少有一个发生。 和事件,它指的是事件 A 与事件 B 中至少有一个发生。 事件,它指的是事件
如何来研究随机现象? 如何来研究随机现象 随机现象是通过随机试验来研究的! 随机现象是通过随机试验来研究的! 随机试验来研究的 研究方法?数学方法? 研究方法?数学方法? 将E的结果数量化!---用集合:S={e},A,B… 的结果数量化!---用集合:S={e}, 用集合 引进(随机)变量、函数(概率、分布函数) 引进(随机)变量、函数(概率、分布函数)… 概率论研究的主线? 概率论研究的主线? 1、事件表示:---利用事件间关系、运算表示较复 事件表示:---利用事件间关系、 利用事件间关系 杂事件… 杂事件 计算事件的概率:----利用概率的定义 性质、 利用概率的定义、 2、计算事件的概率:----利用概率的定义、性质、 概率运算公式… 概率运算公式
2. 几点说明
由一个样本点组成的单点集,称为基本事件。 由一个样本点组成的单点集,称为基本事件。 基本事件
S 作为自己的一个子集,在每次试验中必然发生,称为 作为自己的一个子集,在每次试验中必然发生, 必然发生 必然事件; 必然事件; 空集∅ 作为 S 的一个子集,在每次试验中都不会发生,称 的一个子集,在每次试验中都不会发生, 都不会发生 为不可能事件 不可能事件. 事件
子集
事件间关系。。。 随机事件→事件间关系。。。 事件间关系
集合→ 集合→集合间关系运算
定义于集合的函数: 定义于集合的函数:函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 样本空间与随机事件
15
可列无穷与不可列无穷
如果无穷多个元素 an 可以按照某种顺序排成一排:
a1, a2 , ? , an , ?
则称元素 an 是可列无穷多个;否则称元素 an 为不可列无穷多 个.
A? ?出现偶数点?
?2, 4? ?3, 4?
?2, 5? ?3, 5?
?2, ?3,
66??????
? ?
?4, 5? ?4, 6???
??
?5, 6???
第一节 样本空间与随机事件
12
例4
从上午8 : 00~9 : 00 观察通过某交通路口 的汽车数.
令:? n ? ?在该时间间隔内通过 n 辆车 ?
则该试验的样本空间为
第一节 样本空间与随机事件
8
说明
? 由于随机试验的所有结果是明确的, 从而样本点也是明确的;
? 样本空间与随机试验有关,即不同 的随机试验有不同的样本空间;
? 刻画一个随机试验的样本空间是学 好概率论的基础.
第一节 样本空间与随机事件
9
例1
掷一枚硬币,令:
? 1 ? ?出现正面 ?,? 2 ? ?出现反面 ?
第一节 样本空间与随机事件
26
注意此结论 ! ?对任何随机事件A,都有
? ? A? ?
第一节 样本空间与随机事件
27
2.随机事件的相等关系
? 若随机事件A与B满足
A? B 且 B ? A
则称随机事件 A与B相等,记作:
A? B
第一节 样本空间与随机事件
28
随机事件相等关系的例子
? 在本节例2中,若定义
第一节 样本空间与随ຫໍສະໝຸດ 事件241.事件的包含关系
? 若随机事件A的所有样本点都包 含在随机事件 B中,这时随机事 件A发生必然导致随机事件 B发 生,我们称随机事件 A包含在随 机事件B中,或者称随机事件 B 包含随机事件 A,记作:
A? B
第一节 样本空间与随机事件
25
事件包含关系的例子
? 在本节例4中,若定义 A={ 至少通过200 辆汽车 } B={ 至少通过100 辆汽车 } 则: A ? B
例如,自然数是可列无穷多个;整数是可列无穷多个;有理 数是可列无穷多个.但是无理数是不可列无穷多个,实数也是 不可列无穷多个.
第一节 样本空间与随机事件
16
二.随机事件
第一节 样本空间与随机事件
17
随机事件
? 定义了样本空间与样本点,我们 可以把随机事件看作是某些样本 点组成的集合.
? 我们称一个随机事件发生当且仅 当它所包含的一个样本点在试验 中出现.
袋中有 2 个白球,4 个黑球,从中任意取出 2 球.
记 2 个白球分别为1号球和 2 号球;
记 4 个黑球分别为 3号球至 6 号球.
令?i, j?表示取出 i 号球和 j 号球,则该试验的
样本空间为
??1, 2? ?1, 3? ?1, 4? ?1, 5? ?1, 6??
?
?
?
?? ?
?2, 3?
? ? ?? n : n ? 0, 1, 2, ? ,?
第一节 样本空间与随机事件
13
例5
观察某元件的使用寿命(单位:小 时),令:
? t ? ?使用寿命为 t 小时?
则该试验的样本空间为: ? ? ?? t : t ? 0?.
第一节 样本空间与随机事件
14
注意
? 在上述例题中,例1~例3中样本空间中的 样本点的个数都是有限个;而例4与例5中 样本空间中的样本点的个数为无限个.
第一节 样本空间与随机事件
4
随机试验
?对随机现象的 观察和试验称为 随机试验.
第一节 样本空间与随机事件
5
随机试验的例子
? 掷一枚硬币;
? 掷一颗骰子;
? 观察某交通路口在某时间间隔内 通过的汽车数;
? 观察某电子元件的使用寿命;
?… …
第一节 样本空间与随机事件
6
随机试验的特点
? 试验可以在相同条件下重复进行;
第一节 样本空间与随机事件
18
随机事件的表示
?我们常用大写的英文字 母 A、B、C、… 等来 表示随机事件.
第一节 样本空间与随机事件
19
随机事件的例子
? 在本节例2中,我们定义了掷一颗骰子这一 随机试验的样本空间,若定义 A={ 出现偶数点 } 则A就是一个随机事件. 事件A发生当且仅当在试验中或者出现2点, 或者出现4点,或者出现6点.
则该随机试验的样本空间为: ? ? ?? 1, ? 2 ?.
第一节 样本空间与随机事件
10
例2
掷一枚骰子,令:
ω i? ?出现 i 点 ?
?i ? 1, 2, ? , 6 ?
则该试验 的样本空间为
Ω ? ?ω1 , ω2 , ω3 , ω4 , ω5 , ω6 ?
第一节 样本空间与随机事件
11
例3
? 试验的所有可能结果是明确可知的, 并且不止一个;
? 每次试验总是恰好出现这些可能结 果中的一个,但在一次试验之前却 不能肯定会出现哪一个结果 .
第一节 样本空间与随机事件
7
样本点与样本空间
? 随机试验的每一个可能结果称为样本 点,或为基本事件,样本点常用字母ω 来表示.
? 样本点的全体所成集合称为样本空间, 或称为基本事件空间,通常用字母Ω 来 表示.
第一节 样本空间与随机事件
20
随机事件的例子
? 在本节例4中,我们定义了在某一时间 间隔内观察通过某交通路口的车辆数这 一随机试验的样本空间,若定义
A={ 至少通过50辆汽车 } B={至多通过200辆汽车} 则A、B都是随机事件.
第一节 样本空间与随机事件
21
随机事件的例子
? 在本节例5中,我们定义了观察某一电 子元件使用寿命这一随机试验的样本空 间,若定义
第一章
随机事件及其概率
第一节 样本空间与随机事件
1
? §1.1 ? §1.2 ? §1.3 ? §1.4 ? §1.5
目录
样本空间与随机事件 频率与概率 古典概型与几何概型 条件概率 随机事件的独立性
第一节 样本空间与随机事件
2
§1.1 样本空间和随机事件
第一节 样本空间与随机事件
3
一.随机试验与样本 空间
A={ 该元件的使用寿命介于1000~2000 小时之间 }
则A是随机事件.
第一节 样本空间与随机事件
22
注意
为方便起见,我们把必然事件 ? 与不可能事件 ? 也看作是随机事 件.
我们把必然事件与不可能事件看 作是随机事件的两种极端情形.
第一节 样本空间与随机事件
23
三.随机事件间的 关系与运算