minitab应用经典案例
minitab应用实例

从一个分类总体中抽样
加 工 的 直 径
加工的轴 2组的样本
总体
样本
minitab应用实例
过程抽样
过程在运动
总体抽样
样本
有助于理解过程的特性和状况
样本
决定总体的特征
minitab应用实例
抽样的方法
随机抽样
分组随机抽样
minitab应用实例
应采取什么方法从总体或过程抽样?
大多数的统计工具需要使用随机的和有代表性的数据。不论你是从一个过程 还是从一个总体收集数据,你必须选定正确的抽样方法,以确保你的样本从 统计角度看是有效的。
总体
过程
minitab应用实例
过程抽样
过程在运动
总体抽样
样本
有助于理解过程的特性和状况
一直关注数据! 哪些 KPIV 在驱动 KPOV? 从统计 角度讲, 你需要检查什么?
minitab应用实例
直方图
过程居中,分散及形状
为什么使用直方图?
•汇总一定时间内收集的数据. •用图形显示出数据的频率分布.
如何使用?
运用直方图显示数据的频率分布
直方图有什么作用?
•体现数据分布频率 •揭示数据的居中,偏差及形状 •显示数据的分布。 •作为预测未来过程表现的工具 •帮助确定过程变化 •帮助回答如下问题: “该过程的能力是否能满足我的客户的需求?” •用来显示大量数据的简单有用的工具
minitab应用实例
2020/11/2
minitab应用实例
什么是总体?
“总体” 代表着. . .所有的信息 (人员, 物品,事件,活动,等.)
Minitab实际应用

Minitab还提供了强大的数据管理和过程控制功能,可以帮助用户管理和跟踪数据, 以及进行过程改进和控制。
Minitab与其他统计软件的比较
与其他统计软件相比,Minitab具有 易用性和直观性强的特点,使得用户 可以快速学习和掌握各种统计方法。
描述性统计量
计算数据的均值、中位数、众数、标准差等统计 量,以全面了解数据的基本特征。
数据筛选和整理
对数据进行筛选和整理,去除异常值和缺失值, 确保数据质量。
推论性统计分析
参数估计
使用参数估计方法,对总体参数进行估计,如总体均 值和总体比例。
假设检验
通过假设检验方法,对总体参数进行假设检验,判断 假设是否成立。
方差分析
使用方差分析方法,比较不同组数据的均值是否存在 显著差异。
图表制作与展示
01
02
03
直方图
使用直方图展示数据的分 布情况,直观地了解数据 的形状和变化趋势。
箱线图
使用箱线图展示数据的中 心趋势、异常值和离群点。
散点图
使用散点图展示两个变量 之间的关系,判断是否存 在相关性。
03
Minitab在质量控制中的应用
制定改进计划
利用Minitab的流程图和矩阵工具,制 定详细的改进计划和时间表。
测量阶段的应用
数据收集
使用Minitab的数据输入和整理功能,确保数据准确无误地录 入。
测量系统分析
通过Minitab的统计分析工具,评估测量系统的稳定性和准确 性。
分析阶段的应用
描述性统计分析
利用Minitab的图表和统计功能,对数据进行初步的描述性分析,了解数据的 分布和异常值情况。
minitab的使用教材

minitab的使⽤教材第⼀节计量值控制图应⽤案例⼀、Xbar-R控制图应⽤案例某公司SPC⼩组对A产品注塑过程的⼀个关键尺⼨的分布离散过⼤的问题进⾏改进,在控制阶段,他们选⽤了X-R控制图对该尺⼨进⾏监控,应⽤流程如下:1.确定需要控制的过程:本例选定的需控制过程为A产品注塑成型过程。
2.确定需控制的项⽬:A产品的⼀个关键尺⼨规格为5.50+0.05mm3.定义测量系统:因为该过程采⽤3班⽣产,因此项⽬组确定的测量系统为3班各⼀位检验员,共⽤同⼀把卡尺,及各班⽣产的产品.4.量测系统分析:经⼩组分析认为该测量系统可接受5.消除明显过程偏差经过⼩组DMAI各阶段已将注塑成型过程的偏差降⾄最低6.确定抽样数及频率每⼩时⼀次,每次5PCS抽取样本数如下表:表17.计算控制界限:(1)计算X和RbarX=5.501 Rbar=0.031(2)计算X bar图控制界限:UCL=X+A2 R bar =5.501+0.58×0.031=5.519LCL=X-A2 R bar =5.5.01-0.58×0.03=5.483CL= X=5.501(3)计算R图控制界限:UCL=D4 R bar =2.11×0.031=0.065LCL= D3 R bar (⽆)CL=R bar =0.0318.根据作图:图,根据准则未发现异常.9.分析Rbar10分析X图:异常总结如下:bar(1)第6、10、11、26、超过控制界限(2)第3、7、27、28点排列呈⼀定的规律性,因为在这些点上,连续3个点中中⼼线⼀侧有2点超过2ó,即靠近控制界限的点太多。
11、计算过程能⼒:因为处于⾮受控状态,故⽆法计算过程能⼒。
12、Minitab在作X bar-R图中的运⽤:步骤如下:第⼀步:将表中的数据输⼊Minitab⼯作表中如下图:(图1-1)第⼆步:在minitab的下拉菜单中选择stat>control charts>Xbar-R,格⼯如下图(图1-2)第三步选中后出现的对话框出现如下信息:如(图1-3).(图1-3)第四步,点选TEST选项作测试选项选择:见(图1-4)(图1-4)各选项含义如下:超出3sigma的规格点;连续9点出现在中⼼线的⼀侧;连续14点交替上升或下降;中⼼线的⼀侧连续3个点中有2个超过2sigma;中⼼线的⼀侧连续5个点中有4个超出1sigma;连续15点位于1sigma规格内;连续8点超过1sigma规格;第五步:点击Options,输⼊sigma⽔平和控制图标题图1-5 第六步:点击“OK”⽣产我们所需的控制图:如下:图1-6第七步⼯作表输出结果如下:⼆、案例X bar-S控制图案例某公司最近接到⼀批机加⼯订单,因客户对产品的某个关键尺⼨“孔径A”要求极为严格,该公司决定⽤控制图平对该尺⼨的加⼯过程进⾏控制,为了对“孔径A”的分布状态有较为详细-S图对“孔径A”进⾏控制,控制流程如下:的了解,品质⼯程部⼯程师决定⽤Xbar1.确定需控制的过程及项⽬。
MINITAB应用案例

MINITAB应用案例就近一个文章说:对2010 年全国大学生调查的分析。
该调查利用随机分层法,抽取了19 所的5000 多名大四学生进行调查。
在这19 所高校中,有10 所“211 工程”的重点大学和9 所普通大学。
调查中搜集了学生的来源省份、家庭背景、高考成绩和高中表现等多项数据。
统计结果发现,如果其父母在政府、国企和事业单位有干部身份,那么这些学生有更大几率上“211”。
而如果其父母是工人,农民,文员,技术员或企业家,那么这些学生上重点大学的几率则会降低。
统计结果说明,在控制了父母教育水平和家庭收入两个变量之后,父母职业这个变量的影响还是显著。
以上是原文调查者是如何统计得到结论的,利用MINITAB软件就可以搞定,假如他们调查得到的数据是:5000大学生,其中官二代2670,考入大学重点大学有1000人;富二代2330,考入重点大学有680人。
打开minitab软件/基本统计量/2p在右上图中输入1000,2670;680,2330点击确定,得到以下:样本 X N 样本 p1 1000 2670 0.3745322 680 2330 0.291845差值 = p (1) - p (2)差值估计值: 0.0826863差值的 95% 置信区间: (0.0566522, 0.108720)差值 = 0(与≠ 0) 的检验: Z = 6.22 P 值 = 0.000Fisher 精确检验: P 值 = 0.000解释:差值的 95% 置信区间: (0.0566522, 0.108720) 不包含0,说明两者之间有差异。
重复核对在,假如富二代考入重点大学的有811人,这样检验数据就没有差异。
差值的 95% 置信区间: (-0.000204317, 0.0531306)包括0.样本 X N 样本 p1 1000 2670 0.3745322 811 2330 0.348069差值 = p (1) - p (2)差值估计值: 0.0264632差值的 95% 置信区间: (-0.000204317, 0.0531306)差值 = 0(与≠ 0) 的检验: Z = 1.94 P 值 = 0.052Fisher 精确检验: P 值 = 0.055以上用实际生活案例来引发MINITAB的应用。
minitab doe案例

minitab doe案例
以下是一个使用Minitab进行DOE(实验设计)的案例:
案例:PCB板的镀铜线质量优化
1. 确定每个因子的高低水平,例如温度、时间、电流等。
2. 打开Minitab软件,创建一个新的DOE计划。
3. 选择合适的因子数、区组中心点数、角点仿行数和区组数,以满足实验需求。
4. 生成正交试验矩阵,并按照计划进行实验。
5. 将实验数据复制到Minitab中进行DOE分析。
6. 选择因子和响应,进行效应图和方差分析。
7. 根据分析结果,优化因子水平,以提高镀铜线的质量。
通过以上步骤,可以使用Minitab进行DOE,优化PCB板的镀铜线质量。
minitab实例分析

应用二: 测定边数的独立性:
(5): Chi-Square t(离散-单样本)
H0: 独立的(无相关) Ha: 从属的(有相关);
不良类型
背景:确认班次别和不同类型不良率是否相关?
班次
P-Value < 0.05
→ Ha → 两因素从属(相关)
A—ANOVA(分散分析): 两个以上母集团的平均是否相等; (1): One-way A(一因子多水平数)
-> 确认哪个因子影响收率,利用2(5-1)配置法
① 因子配置设计: 统计-DOE-Factorial
表示2 5-1 部分配置的清晰度 和部分实施程度.
输入data:
② 曲线分析:
如何设置? ? ?
-B、D、E有意;
-在A=10,B=2,C=120,D=180,E=3时, Y=95最佳;
-BD、DE有交互作用;
有意水平 α = 0.05
查出力 1-β = 0.8
差值:u0-ua =25-30=-5
功效值(查出力): 1-β =0.8 标准差(推定值):sigma=10
样本数量27 >已知u的1-sample Z的样本数量 ->t 分布假定母标准偏差未制定分析;
A—假设测定-决定标本大小:
(3):1 Proportion(单样本)
倾斜越大, 主效果越大 无法确认交互效果
③ 统计性分析:
④ 确认此后试验方向:
通过分散分析,判断1次效果、2次效果的有意性;
- 主效果有有意, - 交互效果无有意。
最佳方向
I — DOE: (3):2水准部分配置
背景: - 反应值 : 收率(Yield) - 因 子 : 流入量(10, 15), 触媒(1, 2), 旋转数(100,120), 温度(140, 180), 浓度( 3, 6)
MSA测量系统分析之Minitab中文应用案例(步骤清晰实用)精选全文

应多数值在控 制限外
在控制限外表示过程实际 的变差大,同时表明测量 能力高。
均值
部件对比图:可显示在研究过程中所测量的并按部件排列的所有测量结果。测量结果用 点表示,平均值用带十字标的圆形符号表示。 判断:1.每个部件的多个测量值应紧靠在一起,表示测量的重复再现性的变差 小。
2.各平均值之间的差别应明显,这样可以清楚地看出各部件之间的差别。 例:图中的7#、10#重复测量的精确度较其他点要差,如果测量系统的R&R偏大时,可 以对7#、10#进行分析。
所有点落在管理界限内 ->良好
大部分点落在管理界限外 ->主变动原因:部品变动
->良好
->测量值随部品的变动 ->测量值随OP的变动
->对于部品10,OP有较大分歧;
M--测量系统分析: 离散型案例(名目型):gage名目.Mtw
背景:3名测定者对30部品反复2次TEST
检查者1需要再教育; 检查者3需要追加训练; (反复性)
(2).在量具信息与选项栏分别填入相关资料与信息。
填入相关 资料
注:其他选项若无要求,选择 默认项,不做改动。
一般为6 倍标准差
零件公差 规格
4.5、结果生成:数据表与图表
图表分析表
数据会话表
5.结果分析: (1)图表分析
变异分量条形图:展示了会话窗口中的计算结果,此图显示整个散布中R&R 占的比重是否充分小。 判断:量具R&R,重复(Repeat), 再现性(Reprod)越小越好。
A—假设测定:案例:2sample-t.MTW (2): 2-sample t(单样本)
① 正态性验证:
<统计-基本统计- 正态性检验 : >
minitab 分类模型案例

minitab 分类模型案例Minitab是一种常用的统计分析软件,它可以用于各种分类模型的建立和分析。
下面列举了10个基于Minitab的分类模型案例,来说明其在实际应用中的作用和效果。
1. 疾病诊断模型:医院收集了大量患者的临床数据和诊断结果,利用Minitab建立了一个疾病诊断模型。
该模型可以根据患者的临床指标,如血压、血糖、血脂等,预测患者是否患有某种疾病,并给出相应的诊断建议。
2. 信用评分模型:银行通过Minitab分析了大量客户的信用记录和还款情况,建立了一个信用评分模型。
该模型可以根据客户的个人信息、财务状况和信用历史等因素,预测客户的还款能力和风险等级,并据此决定是否给予贷款。
3. 市场细分模型:一家电商公司利用Minitab分析了大量用户的购物行为和偏好数据,建立了一个市场细分模型。
该模型可以根据用户的购买记录、浏览行为和兴趣标签等,将用户分为不同的市场细分群体,并据此进行个性化推荐和营销策略。
4. 员工离职预测模型:一家公司利用Minitab分析了员工的离职记录和个人信息,建立了一个员工离职预测模型。
该模型可以根据员工的职位、工龄、绩效等因素,预测员工是否有离职倾向,并据此采取相应的人力资源管理措施。
5. 欺诈检测模型:一家保险公司利用Minitab分析了保单的理赔记录和客户信息,建立了一个欺诈检测模型。
该模型可以根据保单的理赔金额、申请时间、客户的历史记录等因素,预测保单是否存在欺诈嫌疑,并据此采取相应的调查和处理措施。
6. 产品质量分类模型:一家制造公司利用Minitab分析了产品的质量数据和生产参数,建立了一个产品质量分类模型。
该模型可以根据产品的生产批次、工艺参数、质量指标等因素,预测产品的合格率和质量等级,并据此进行质量控制和改进。
7. 股票市场预测模型:一家投资公司利用Minitab分析了股票市场的历史数据和宏观经济指标,建立了一个股票市场预测模型。
该模型可以根据股票的历史价格、交易量、市场情绪等因素,预测股票的涨跌趋势,并据此进行投资决策和风险管理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
•实际效果检验
•
•项 目
•
•假设检验理论: 如果P值>0.05,承 认Ho(归无假设)即 二者之间无差异. 如果P值<0.05,承 认Ha(对立假设)即 二者之间有差异.
•
•数据正态检验
•
•数 据
•
•假设检验理论: 如果P值>0.05,承 认Ho(归无假设)即 二者之间无差异. 如果P值<0.05,承 认Ha(对立假设)即 二者之间有差异.
minitab应用经典案例
•
•帕累托图的制作方法
•
•题目
•项目 •数量
•
•
•计数型的MSA
•
•结 果
•样 本 •周 期
•
•测量值大于 95%以上可以 信赖
•
•计量型的MSA
•
•型号别
•样 本
•结 果
•
•测量值小于 30%以下可以 信赖
• •工程能力分析(计数型)
பைடு நூலகம்
•总
•规
体
格
•个
体
•
•I– CHART(1) 图
•
•数 据
•
•
•I– CHART(2) 图
•
•数 据
•改 善前 后
•
•工 程能 力
•
• •工程能力分析(计量型)
•
•项 目 •规 格 •下 限 •上 限
•
•
•主要影响图
•
•结 果
•项 目
•
•
•ANOVA分析
•
•结 果 •项 目
•
•假设检验理论: 如果P值>0.05,承 认Ho(归无假设)即 二者之间无差异. 如果P值<0.05,承 认Ha(对立假设)即 二者之间有差异.