复杂的按比例分配问题
比例的应用题

比例的应用题:一、按比例分配问题1. 学校把360 本图书分给三、四、五年级,三年级分到的图书数量与四年级分到的图书数量之比是2:3,四年级分到的图书数量与五年级分到的图书数量之比是4:5。
求三、四、五年级各分到多少本图书?-解析:首先统一比。
三年级∶四年级= 2∶3 = 8∶12,四年级∶五年级= 4∶5 = 12∶15,那么三年级∶四年级∶五年级= 8∶12∶15。
总份数为8 + 12 + 15 = 35。
三年级分到的图书数量为360×8/35 = 864/7 本;四年级分到的图书数量为360×12/35 = 1152/7 本;五年级分到的图书数量为360×15/35 = 1350/7 本。
2. 甲、乙、丙三人共同出资购买一批货物,甲出资的钱数与乙出资的钱数之比是3:4,乙出资的钱数与丙出资的钱数之比是6:5。
已知三人共出资102 万元,求甲、乙、丙各出资多少万元?-解析:统一比。
甲∶乙= 3∶4 = 9∶12,乙∶丙= 6∶5 = 12∶10,所以甲∶乙∶丙= 9∶12∶10。
总份数为9 + 12 + 10 = 31。
甲出资102×9/31 = 27×9 = 243 万元;乙出资102×12/31 = 27×12 = 324 万元;丙出资102×10/31 = 27×10 = 270 万元。
二、比例的简单应用问题1. 一辆汽车3 小时行驶了180 千米。
照这样的速度,5 小时可以行驶多少千米?-解析:设5 小时行驶x 千米。
因为速度一定,路程与时间成正比例。
所以180∶3 = x∶5,解得x = 300 千米。
2. 用同样的方砖铺地,铺18 平方米需要618 块砖。
如果铺24 平方米,需要多少块砖?-解析:设需要x 块砖。
因为每块砖的面积一定,所以砖的块数与铺地面积成正比例。
即618∶18 = x∶24,解得x = 824 块。
六年级数学上册典型例题系列之第四单元比的应用题提高部分(解析版)

六年级数学上册典型例题系列之第四单元比的应用题提高部分(解析版)编者的话:本专题是第四单元《比》的应用题“提高部分”,该部分内容是在《比的应用题基础部分》的基础上进行总结和编辑的,建议在使用本专题前先讲解使用“基础部分”内容。
本专题主要分为按比例分配和寻找不变量两大类型题,考题多以应用题型为主,共分为十四个考点,全部是考试试卷出现过的类型考题,题目难度稍大,其中以和比问题考察最多,易错点较多,可着重进行讲解,欢迎使用。
【考点一】按比例分配:较简单的和比问题。
【方法点拨】先求出每份数,即和÷份数和=每份数,再分别求出各部分数量是多少。
【典型例题】学校新购买了一批桌椅。
一套桌椅的价钱是90元,其中椅子的价钱和桌子的价钱的比是7:11,桌子和椅子的价钱分别是多少元?解析:椅子:90×1177+=35(元) 桌子:90×11711+=55(元) 答:略。
【对应练习1】甲、乙两个数的和是300,甲、乙两数的比是5:7,甲乙两数分别是多少? 解析:甲:300×755+=125 乙:300×757+=175【对应练习2】一种糖水,糖和水按照1:150配制的,要配制这样的糖水15100克,需要水多少克?解析:水:15100×1501150+=15000(克) 答:略。
【对应练习3】中国农历中的“夏至”是一年中白昼最长,黑夜最短的一天.这一天,北京的白昼时间与黑时间的比是5:3.白天和黑夜分别是多少小时?解析:白天:24×355+=15(小时) 黑夜:24×353+=9(小时) 答:略。
【对应练习4】若一个三角形三个内角度数的比是1:1:4,则这个三角形是一个什么三角形?180×4114++=120(度) 答:略。
【考点二】按比例分配:稍复杂的和比问题。
【方法点拨】和比问题,前提条件是已知和与比,因此,题目中没有和或比的时候,要先求出和与比。
按比例分配说题命题

按比例分配说题命题
一、定义理解
按比例分配是指按照一定的比例将总量分成若干份,每一份的数量都按照这个比例来确定。
在日常生活和工作中,这种分配方式非常常见,比如工资按照工作量和职位高低来分配,投资按照出资比例来分配等。
二、计算方法
按比例分配的计算方法通常是将总量除以要分配的份数,得出每一份的量,然后再乘以自己应该得到的份数,就可以得到自己应该得到的量。
例如,如果有100个苹果,要按照2:3的比例分给甲和乙两个人,甲应该得到20个苹果,乙应该得到30个苹果。
三、实例分析
以一个具体例子来说明按比例分配的计算方法。
假设一家公司需要将1000万元的投资额按照4:5:3的比例分给甲、乙、丙三个人,那么甲应该得到400万元,乙应该得到500万元,丙应该得到100万元。
四、注意事项
在按比例分配的过程中,需要注意以下几点:
1. 确定比例:在进行分配之前,需要先确定好比例,确保比例合理、公正。
2. 计算准确:在进行计算时,要保证计算的准确性,避免出现误差。
3. 记录详细:在进行分配时,需要详细记录每一份的数量和分配情况,以便后续核对和查证。
4. 透明公开:在进行分配时,需要保证分配的透明公开,避免出现不公和不透明的情况。
五、应用拓展
按比例分配不仅在日常生活和工作中有着广泛的应用,还可以拓展到其他领域。
例如,在科学研究领域中,多个研究团队可能会按照贡献比例来分配论文的署名权;在教育领域中,教师可能会按照学生的成绩比例来分配奖学金等等。
通过掌握按比例分配的计算方法,我们可以在这些领域中更加灵活地运用相关规则和方法。
六年级数学按比分配全面专项练习题

按比分配专项练习按比分配::把一个数按着一定的比来进行分配,这种分配方法通常叫做按比分配. 归纳总结:解答按比例分配问题,要根据已知条件,把已知数量与份数对应起来,转化为求一个数的几分,一、简单的按比例分配应用题1、学校把栽480棵树的任务,按着六年级三班的人数分配给各组,一组有47人,二组有38人,三组有35人,三个组各应栽树多少棵?2、老师给班里买了90本儿童读物,按4:5分别借给一组和二组.这两个组各借书多少本?3、三条绳长的和是84米,三条绳的比是3:4:5.三条绳各长多少米?4、粮食公司有三个汽车队,甲队有6辆货车,乙队有7辆货车,丙队有8辆货车,每辆载重量相等,有378吨粮食运往外地,按运输能力分配,各队应运粮食多少吨?5、养殖专业户养鸡、鸭共6000只,鸡和鸭的比是1:11,鸡、鸭各多少只?6、一个直角三角形,两个锐角度数的比是1:4,这两个锐角各多少度?7、42名同学到面积分别是60和80平方米的菜园去帮忙种菜。
如果按面积大小分配人员,这两处菜园各应去多少名同学种菜?8、学校把540本画册按4:5借给三年级和五年级学生,每个年级各分到画册多少本?9、一个三角形铁框,三个内角度数的比是1:2:3,这个铁框的三个角分别是多少度?10、学校把864本图书按人数借给三个年级。
一年级有49人,二年级有50人,三年级有45人,三个年级各分得图书多少本?11、分别以1:2:10的石灰、硫磺和水配农药。
现在要配制农药650千克,石灰、硫磺和水各需要多少千克?12、一个等腰三角形的铁片,顶角和一个底角的度数的比是4:3,求这个等腰三角形的顶角和底角各是多少度?13、粮食局有三个汽车队,一队有9辆载重汽车,二队有8辆,三队有7辆,每辆载重量相同,有264吨粮食往外地运,按运输能力,各队应运粮食多少吨?二、稍复杂的按比例分配应用题例1.一个长方形的周长是360为米,长与宽的比是4:2,这个长方形的长和宽各是多少?例2.有840吨粮食,分给两个运输队运出去。
六年级数学上册难点和重点

六年级数学上册难点和重点六年级数学上册(人教版)重点与难点学习资料一、分数乘法1. 重点- 理解分数乘法的意义。
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算;一个数乘分数的意义就是求这个数的几分之几是多少。
例如:(2)/(3)×5表示5个(2)/(3)相加的和;3×(2)/(5)表示3的(2)/(5)是多少。
- 掌握分数乘法的计算方法。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
例如:(2)/(3)×4=(2×4)/(3)=(8)/(3);(2)/(3)×(4)/(5)=(2×4)/(3×5)=(8)/(15)。
- 能解决简单的分数乘法实际问题,如求一个数的几分之几是多少的问题。
例如:一本书有120页,小明第一天看了全书的(1)/(4),求小明第一天看了多少页?就是求120的(1)/(4)是多少,列式为120×(1)/(4) = 30(页)。
2. 难点- 理解分数乘法计算法则的算理。
尤其是分数乘分数时,为什么分子相乘的积作分子,分母相乘的积作分母,需要通过图形等直观方式来理解。
例如:把一个长方形看作单位“1”,平均分成3份,取其中的2份表示(2)/(3),再把这(2)/(3)平均分成5份,取其中的4份,相当于把单位“1”平均分成了3×5 = 15份,取了2×4 = 8份,所以结果是(8)/(15)。
- 解决较复杂的分数乘法实际问题,如连续求一个数的几分之几是多少的问题。
例如:果园里有苹果树100棵,梨树的棵数是苹果树的(3)/(4),桃树的棵数是梨树的(2)/(3),求桃树有多少棵?需要先求出梨树的棵数100×(3)/(4)=75棵,再求出桃树的棵数75×(2)/(3)=50棵。
二、位置与方向(二)1. 重点- 能根据方向和距离确定物体的位置。
按比例分配问题的解题方法(一)

按比例分配问题的解题方法(一)按比例分配问题的解题方法在日常生活和数学问题中,我们常常遇到需要按比例分配的情况。
这里,将介绍一些常见的解题方法。
方法一:直接比例法直接比例法是最常用的一种方法,适用于相对简单的比例分配问题。
具体步骤如下:1.确定已知条件,例如总量、比例等。
2.建立比例关系式,将已知条件用字母表示。
3.根据比例关系式求解未知量。
方法二:增加单位法增加单位法适用于需要在已知比例基础上进行增加或减少的问题。
具体步骤如下:1.确定已知条件,并将其按照比例转化为单位量。
2.根据单位量进行分配,根据需要增加或减少的量来计算每个单位分配到的数量。
3.根据已知条件和单位量重新计算每个单位的分配数量。
方法三:三角形相似法三角形相似法适用于需要按照特定的比例进行分配的问题,一般涉及到面积或长度的比例。
具体步骤如下:1.确定已知条件,并建立相似三角形关系。
2.根据相似三角形的性质,求解未知量。
方法四:分数法分数法适用于需要按照分数比例进行分配的问题。
具体步骤如下:1.将比例转化为分数,比如2:3可以表示为2/3。
2.根据分数比例进行分配,将总量按照分数比例进行划分。
3.根据已知条件求解未知量。
方法五:代数法代数法适用于需要通过代数方程进行解题的问题。
具体步骤如下:1.根据已知条件建立代数关系式。
2.解方程求解未知量。
方法六:综合方法综合方法适用于复杂的比例分配问题,需要综合多种方法进行求解。
具体步骤如下:1.分析已知条件,确定不同的比例关系。
2.根据不同的比例关系,选择合适的解题方法进行求解。
3.根据已知条件反复求解,直到得到所有未知量。
以上是几种常见的按比例分配问题解题方法,通过灵活运用这些方法,我们可以高效地解决各种比例分配问题。
希望这些方法能够对你有所帮助!方法一:直接比例法直接比例法是最简单也是最直接的一种方法,适用于相对简单的比例分配问题。
1.确定已知条件:首先我们需要明确已知条件,例如总量、比例等。
难算的分数(比和比例)应用题(一)

难算的分数(比和比例)应用题(一)1、一条路已修了500米,是未修的2/5,求这条路一共有多长?解答:已修的是未修的2/5,那就是说是已修的是全长的2/7。
列式为:500÷2/7=1750(米)答:略。
2、一桶油用去1/5后连桶重14千克,用去1/3后连桶重12千克,求桶重多少千克?油重多少千克?分析与解答:用去油1/5后连桶重14千克,用去1/3后连桶重12千克,那就是说这桶油的1/3比1/5多2千克,也就是说1/3—1/5=2/15就是2千克。
那么这桶油重可以列式求出来:(14-12)÷(1/3—1/5)=2÷2/15=15(千克)那么桶重就是14-15×(1—1/5)=2(千克)或者12-15×(1—1/3)=2(千克)答:略。
3、修一条水渠,已修了4天,平均每天修35米,已修的比剩下的少全长的30%,这条水渠全长多少米?分析与解答:已修四天,每天修35米,则已修的是35×4=140米。
已修的比剩下的少全长的30%,那就是说,如果去掉这30%,剩下的和已修的刚好相等。
于是就有:(100%—30%)÷2=35%,这35%就是已修的。
到这儿就很好算了。
列式:35×4÷[(100%—30%)÷2]=140÷35%=400 (米)列方程为:解:设这条路全长为X米,则X—35×4—35×4=30%X 或(X—30%X)÷2=35×4答:略。
4、师傅和徒弟合做200个零件,师傅做的1/4比徒弟做的1/5多14个,求徒弟做了多少个?分析:师傅做的1/4比徒弟做的1/5多14个,那就是说,师傅做的4/4比徒弟做的4/5多14×4=56(个)。
这样题就变成了“师傅和徒弟合做200个零件,师傅做的比徒弟做的4/5多56个,求徒弟做了多少个?”这已是一个和倍问题了。
小学六年级比的应用应用题题型解析

小学六年级比的应用应用题题型解析在小学数学的学习中,比的应用是一个重要的知识点。
尤其是在六年级,我们经常会遇到与比相关的应用题。
本文将对这些题型进行解析,希望能帮助同学们更好地理解和掌握比的应用。
一、定义和概念我们需要理解什么是比。
比是指两个量之间的关系,通常用冒号或斜线表示。
例如,A与B的比是3:2,或者A是B的1.5倍。
二、常见的题型解析1、比例分配问题比例分配问题是比的应用中最常见的一种题型。
例如,有10个苹果,分给A、B、C三个人,要求他们之间的分配比例是2:3:5。
我们需要找出每个人应该得到多少个苹果。
解决这种问题的方法是先找出各个部分占总量的比例,然后按照比例分配。
以这个例子为例,A、B、C三人分别得到的苹果数为:10×(2/(2+3+5))、10×(3/(2+3+5))、10×(5/(2+3+5))。
2、倍数问题倍数问题是比的应用中另一种常见的题型。
例如,A的年龄是B的1.5倍,B的年龄是C的2倍,求A、B、C的年龄关系。
解决这种问题的方法是通过设未知数来找出数量关系。
以这个例子为例,我们可以设A的年龄为x,那么B的年龄就是1.5x,C的年龄就是1.5x/2=0.75x。
这样就可以清楚地看出他们之间的年龄关系。
3、比率问题比率问题是比的应用中另一种常见的题型。
例如,在生产过程中,某产品的合格率是90%,求合格品与不合格品的数量比。
解决这种问题的方法是利用数量关系来计算。
以这个例子为例,假设总产量为100件,那么合格品数量为90件,不合格品数量为10件。
所以合格品与不合格品的数量比为9:1。
三、解题思路和步骤在解决比的应用问题时,我们通常需要遵循以下步骤:1、读懂题目:首先需要认真阅读题目,理解题目中给出的信息和要求。
2、确定关系:根据题目中给出的比例或倍数关系,确定各个量之间的关系。
3、设未知数:如果需要,可以设未知数来帮助解决问题。
4、建立方程:根据题目中的数量关系建立方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间之比依次是4∶5∶6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?
例2一块合金内铜和锌的比是2∶3,现在再加入6克锌,共得新合金36克,求新合金内铜和锌的比?
例3 师徒两人共加工零件168个,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,完成任务时,两人各加工零件多少个?
例4洗衣机厂计划20天生产洗衣机1600台,生产5天后由于改进技术,效率提高25%,完成计划还要多少天?
例5 一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?
画出图便于解题:
1.一块长方形的地,长和宽的比是3∶2,长比宽多24米,这块地的面积是多少平方米?
2.一块长方形的地,长和宽的比是3∶2,长方形的周长是120米,求这块地的面积?
3.化肥厂计划生产化肥1400吨,由于改进技术5天就完成了计划的25%,照这样计算,剩下的任务还需多少天完成?
4.
5.
6. 甲乙丙三个班人数的和是175人,甲班和乙班的比是2:3,乙班和丙班的比是
4:5,甲乙丙三个班各是多少人?
7. 甲乙丙三个班的人数平均是20人,甲乙丙三个班人数的比是6:5:4,甲乙丙三
个班各有多少人?
8. 三个煤炭厂内共有煤炭2800万千克,甲厂和乙厂煤炭重量的比是3:4,乙厂与丙厂煤炭重量的比是
6:7,三个煤炭厂各存煤炭多少万千克?
9. 两个城市相距760千米,货车和客车同是从两城市相对开出,经过4小时相遇。
货车
和客车的速度比是12:7。
货车和客车各行多少千米?
10.图书馆里科技书和连环画的比8:5,科技书比连环画多90本,科技书和连环画各有多少本?
11.甲乙丙三个组按2:3:5分配劳动力去完成一向任务,已知乙组要派120人,求甲丙两组应各派多少
人?
12. 加工一批零件,甲单独做需要8小时,乙单独做需要7小时,丙单独做需要14小时才能完成,三人合作2小时后,甲因另外有事离开,乙丙两人继续合作还需要几小时才能完成?
13. 一列快车和一列慢车同时从两地相向开出,3小时后相遇。
相遇时两车所行路程的比是7:5,两地相距360千米。
快车和慢车每小时各行多少千米?
14. 长270dm的绳子,截去1/3用来围城一个长宽高之比是4:3:2的长方形,求表面积
12.AB两个城市相距若干米,一列快车与一列慢车同时从两个城相对开出,3小时后相遇,相遇时快车比慢车多行了60千米,已知慢车速度与快车速度的比是9:11,慢车平均每小时行多少千米?。