一阶隐式方程与参数表示

合集下载

常微分方程第六讲:一阶隐式微分方程.ppt

常微分方程第六讲:一阶隐式微分方程.ppt
dp 1 p x 或者 . dx 2
13
x2
将p x 代入方程 y 2 x p 得到特解 1 y - x. 2
x
2
2
(p )2
dp 1 由方程 知 dx 2
于是原方程的通解为
西 南 科 技 大 学 理 学 院
1 p x C , 2
1 x2 1 y 2 x ( x C ) ( x C )2 2 2 2 1 2 2 x C x C . 4
11
dp 若只能从关于 的方程求得通积分 dx G (p ,x ,C ) 0, y f (x ,p ) 则可通过联立方程 , G (p ,x ,C ) 0
再消去p ,得到原方程的通积分。
dp 若只能从关于 的方程求得解 dx x (p ,C ),
西 南 科 技 大 学 理 学 院
y '2 (3x y) y ' 3xy 0.
1
若不能从(1)解出 y 的一阶导数,或者即使能解 出,但很难求解,则需要借助于其它办法进行讨论。
本节主要介绍三种类型隐式微分方程 的求解方法。
(1)不含 y (或 x)的方程 (2)可解出 x 的方程
(3)可解出 y 的方程
西 南 科 技 大 学 理 学 院
** 借助于一些变量代换,将隐式形式的 方程化为参数形式方程。
20
作业:P46 T1(2)(4)(6)
(8)
(10)
T2.求一曲线,使它上面的每一点的切线与两坐标 轴所围城的三角形的面积都等于2。
西 南 科 技 大 学 理 学 院
21
p
p dy
p dy
西 南 科 技 大 学 理 学 院

常微分方程§24 一阶隐式微分方程及其参数表示24 一阶隐式微分方程及其参数表示

常微分方程§24 一阶隐式微分方程及其参数表示24 一阶隐式微分方程及其参数表示

其中p是参数,c为任意常数。
,则原方 ,则
§2.4 Implicit First-Order ODE and Parameter Representation
2 x f ( y, dy ) dx
解法 x f ( y, p)
(2.4.4)
( 2.4.5)
dy p dx
两边对 y 求导 1 f f dp (2.4.6)
dy (t)dx (t)(t)dt
dy (t)(t)dt y (t)(t)dt c
若求得为
p y p dy
p ( y,c)
1 f dp p y
则(2.4.4)的通解为x f ( y, ( y, c)) dy
f
p
若求得为 ( y, p, c) 0
x f (y, p) 则(2.4.4)的通解为 ( y, p, c) 0
§2.4 Implicit First-Order ODE and Parameter Representation
3 4
p2
y
2c
1
p3
p 2
( p 0)
当 p=0 时, 由y p3 2xp 可知,y=0也是方程的解。
§2.4 Implicit First-Order ODE and Parameter Representation
解法2:
解出
x,并把
dy dx
p
,x 得y p3 2p
两边对 y 求导 p(1 3 p2 dp ) ( y p3 ) dp
1
dy
dy
p
2p2
( p 0)
pdy ydp 2 p3dp 0
2yp p4 c
y c p4 2p

一阶隐式微分方程与参数表示

一阶隐式微分方程与参数表示
形如
F ( x, y ') 0 (4.5) 的方程的解法
F ( x, p) 0 代表xp平面上 记 ,从几何地观点看, 的一条曲线。设把这曲线表为适当的参数形式
dy p y' dx
x (t ), p (t )
(4.6)
这里t为参数。再注意到,沿方程(4.5)的任何一条积 分曲线上,恒满足基本关系 dy pdx
dp 从 1 0 解得 p x c,代入求得原方程的解为: dx
x y cx c 2 2
x 2 p x 0 从 解得 p 2
2
,代入求得原方程的解为:
x2 y 4
注意:此例解中的一个特解,即奇解。
奇解
奇解图
2. 讨论形如
dy x f ( y, ) dx
4.1 可以解出x(或y)的方程 1. 讨论形如
y f ( x, dy ) dx (4.1)
dy ) 有连续的偏导数。 dx
的方程的解法,这里假设函数 f ( x,
p 解:作变换(引入参数): dy dx
,有
y f ( x, p)
两边求关于x的导数:
f f dp p x p dx
以(4.6)代入上式得
两边积分,得到
dy (t ) '(t )dt
y (t ) '(t )dt c
于是得到方程(4.5)的参数形式的通解为
于是得到方程(4.5)的参数形式的通解为
x (t ) y (t ) '(t )dt c
(4.2)
(4.3)
方程(4.3)是关于x,p的一阶微分方程,若它的导数已解出。 则(4.1)的解有如下几种形式:

微分方程解的结构

微分方程解的结构

微分方程解的结构引言微分方程是数学中重要的研究对象,它描述了自然界中的变化和运动规律。

解微分方程是求解方程中未知函数的过程,它在物理学、工程学、经济学等领域都有广泛的应用。

解微分方程的结构可以帮助我们理解问题的本质,找到问题的解析解或数值解,从而得到有意义的结果。

一阶微分方程的解的结构一阶微分方程是最简单的微分方程形式,它可以表示为:dy=f(x,y)dx其中,y是未知函数,x是自变量,f(x,y)是已知函数。

一阶微分方程的解的结构可以分为三类:显式解、隐式解和参数形式解。

显式解显式解是指将未知函数y表示为x的函数的形式,即y=F(x),其中F(x)是x的函数。

显式解可以通过分离变量、变量代换、积分等方法求解。

隐式解隐式解是指将未知函数y表示为x和y的关系式的形式,即F(x,y)=0,其中F(x,y)是x和y的函数。

隐式解通常不能直接求得解析解,但可以通过数值方法求得近似解。

参数形式解参数形式解是指将未知函数y表示为参数t的函数的形式,即y=F(t),其中t是参数。

参数形式解可以通过变量代换、积分等方法求解。

二阶微分方程的解的结构二阶微分方程是常见的微分方程形式,它可以表示为:d2y dx2=f(x,y,dydx)其中,y是未知函数,x是自变量,f(x,y,dydx)是已知函数。

二阶微分方程的解的结构可以分为四类:通解、特解、特殊解和奇点解。

通解通解是指包含了所有特解的解的集合。

对于二阶微分方程,通解一般包含两个任意常数,可以通过给定初始条件求得特解。

特解特解是指满足特定初始条件的解。

给定初始条件后,可以确定特解。

特殊解特殊解是指满足特定边界条件或特殊条件的解。

特殊解可以通过变量代换、积分等方法求解。

奇点解奇点解是指在某些点上解不存在或不唯一的情况。

奇点解的存在使得微分方程的解的结构更加复杂。

高阶微分方程的解的结构高阶微分方程是包含多个导数的微分方程,它的解的结构更加复杂。

高阶微分方程的解的结构可以通过降阶、变量代换等方法简化。

一阶隐式微分方程

一阶隐式微分方程

隐式微分方程的解法讨论摘要:隐式微分方程是常微分方程中的一个重要课题,但是在大学时期,我们学习讨论的一般是一阶隐式微分方程,而本文主要就是研究讨论关于一阶隐式微分方程的几种比较常见的解法.关键词:参数;微分法;包络;奇解;克莱罗方程.引言:若要讨论一阶隐式微分方程的解法,首先应该了解隐式方程显示方程之间的联系,然后总结好解析一阶隐式微分方程问题的大致思路.下面,我们首先来了解几种常见的一阶隐式微分方程类型.一阶隐式微分方程的概念与求解思路1. 定义没有就'y 解出的形如F (,x y ,'y )=0的方程我们称为一阶隐式微分方程.2. 求解思路如果能从方程F (,x y ,'y )=0中解出'y 那么求解方程就可以归纳到一个或者几个一显式微分方程,求解这些解,就可以得到方程F (,x y ,'y )=0的解.例 1 解微分方程 220x x dy x dy y e xye dx y dx ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭解:将此微分方程的左端分解因式得2x dy dy x y e dx dxy ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=0 分别解两个微分方程dy dx =2y x e 和dy dx =xy,得到的解分别是 x e +11C y-0=和2220y x C --= 于是我们得到所求微分方程的通解为11x e C y ⎛⎫+-⎪⎝⎭()2220y x C --=应当说,例1当中的一阶方程的通解只有一个任意常数,但是在这个通解的表达式中有两个常数1C 和2C 。

对于给定两个常数1C ,2C ,要么只有通解表达式两个因子之一为0确定积分曲线,要么两个因子同时为零,这时,两个常数1C 和2C 就不是独立的了.总之,决定积分曲线时,总是只有一个常数起作用.一般来说,很难从方程F (,x y ,'y )=0中解出'y ,或者即使解出'y ,而其表达式也是极其复杂的,下面介绍的就是不解出'y ,采用引进参数的方法使之变成导数已解出的方程类型,这里主要有以下四个类型:1)y ='(,)f x y 2)x ='(,)f y y 3)'(,)0F x y = 4)'(,)0F y y =二、可解出y 或x 的方程的解法1.可解出y 的隐式方程y ='(,)f x y如果从方程F (,x y ,'y )=0中可以解出y ,那么就可以得到第一种类型y ='(,)f x y在这里假设函数y ='(,)f x y 有关于x 、'y 有连续的偏导数. 引入参数p ='y ,则原方程变为y =(,)f x p 将上式两边对x 求导数,并以p 代替'y ,这样可以得到()(),,f x p f x p dpP x p dx∂∂=+∂∂ 该方程是关于x ,p 的一阶显方程 如果求的该方程的通解为p =ϕ(,x C )将它代入y =f (,x p ),这样得到原方程的通解为y f =(,x ϕ(,x C )) (C 为任意常数)如果,方程()(),,f x p f x p dpP x p dx∂∂=+∂∂还有解 p=u (x )把上式代入到y =f (,x p ),那么就得到原方程的相应解y =f (x ,u (x )) 如果能求得方程()(),,f x p f x p dpP x p dx∂∂=+∂∂的通解 F=(x ,p ,C )=0将它和y =f (,x p )结合,就能得到原方程参数形式的通解{(,,)0,(,),F x p C y x p ==其中p 是参数,C 是任意常数,如果方程()(),,f x p f x p dpP x p dx∂∂=+∂∂还有解 (,)0G x p =将它和y =f (,x p )结合,这样得到方程相应的参数形式的解{(,)0,(,),G x p y f x p ==其中p 为参数.根据上面讨论,为了求解方程y ='(,)f x y ,我们引进参数'p y =,通过对x 进行求导数,从而消去y ,把问题简化成求解关于x 与p 的一阶显示方程,我们这种方法称为微分法.例2.解方程:1dyx y dx =++ 解:原方程是就dydx 解出的一阶线性方程,当然可以按其解法求解.在这里,可以把它当作可就y 解出的方程来求解.原方程就y 解出可得1dyy x dx=-- 令dydx=p ,则可得:1y p x =-- 对上式两边关于x 求导,用dyp dx =代入则可得1dp p dx =- 也就是1dp p dx=+1)当10p +≠时,分离变量,可得1dpdx p =+ 两边同时积分可得ln 1ln p x c +=+ (c 为不等于0的常数)或 ln 1p x c +=+ (c 为任意常数)即1ln 1x p ce x p c =-=+-或将上面两个式子代入到1y p x =--可得(2)x y ce x =-+ (c 为不等于0的任意常数)或ln 11y p p c =-++- (c 为任意实数) 2)当10p +=有:1p =-把它代入到1y p x =--可得:(2)y x =-+ 根据1)、2)即可知,原方程通解为:(2)x y ce x =-+(c 为任意常数)其参数形式的通解可表示为:{ln 1ln 11x p cy p p c =+-=-++- (1p ≠,参数;c 为任意常数)及(2)y x =-+例3. 解方程2'2'()2x y y xy =--+.解:令'y p =,原方程可化为222x y p xp =-+,两边同时对x 求导,可得2,dp dp p pp x x dx dx ⎛⎫=-++ ⎪⎝⎭化简整理之后可得(2)(1)0dpp x dx--= 对10dpdx-=积分就可以得到上式的通解 p x C =+ (C 为任意常数)把它代入到222x y p xp =-+,便可以得到原方程通解222x y Cx C =++ (C 为任意常数)又从20p x -=,便可得原方程一个解2x p =,把它代入222x y p xp =-+又可以得到方程一个特解: 24x y =应该注意到方程的通解222x y Cx C =++和这个特解24x y =它们同时经过点2(2,)P C C -,并且在改点斜率为C -.做出特解和通解的图形,从下图我们可以知道,在积分曲线24x y =上每一点处,都有积分曲线族222x y Cx C =++中的某一条积分曲线在该点与之相切.在几何中,我们称24x y =是曲线族222x y Cx C =++的包络.在微分方程中我们称积分曲线24x y =对应的解为原解的奇解,奇解对应的曲线上的每一点,至少有方程的两条积分曲线通过.而作为y ='(,)f x y 的一种重要类型,一般我们把形如:''()y xy y ϕ=+的方程称为克莱罗方程,它是关于y 可以解出的一阶隐式方程,其中()z ϕ二阶连续可微,且"()0z ϕ≠.可以利用微分法求解该方程,令'y p =,并对x 求导数可得'()dp dp p p xp dx dx ϕ=++ 即('())0dp x p dxϕ+= 当0dpdx=时,有p C =,因此通解为 ()y CX C ϕ=+当'()0x p ϕ+=时,可得克莱罗方程一个特解{''()()()x p y p p p ϕϕϕ=-=-+通解()y CX C ϕ=+是一族直线特解{''()()()x p y p p p ϕϕϕ=-=-+是该直线的包络.例 4 求解方程''1y xy y=+解:该方程克莱罗方程,''20p xp p =-,'0p =,21x p=所以该方程有通解:1y Cx C =+ 以及特解:211x p y px p ==+⎧⎪⎨⎪⎩消去参数p ,得到原方程的奇解:24y x = 所以该方程通解是直线族:1y Cx C=+,而奇解是通解的包络:24y x =. 2.可解出x 的隐式方程x =f (',y y ) 对于可解出x 的方程的第二种类型x =f (',y y )该方程的求解方法和方程y =f (',x y )的求解方法基本完全类似,这里,我们可以假定函数'(,)x f y y =有关于y 、'y 的连续偏导数. 引进参数'y p = ,则原式可变为(,)x y p =将上式两边对y 求导数, 并以1dx dy p =代入,可得 1f f dp p y p dy∂∂=+∂∂ 该方程是联系y p 、,并且可以根据dpdy解出的一阶微分方程,因此可以按照前面的方法来求解. 如果求的方程1f f dp p y p dy∂∂=+∂∂的通解形式: (,)p w y c = (c 为任意常数)则原方程x =f (',y y )的通解为:(,(,))x f y w y c = (c 为任意常数)如果求的方程1f f dp p y p dy∂∂=+∂∂的通解形式为:· (,)y v p c =(p 为参数,c 为常数)则原方程x =f (',y y )的通解为:{((,),)(,)x f v p c p y v p c ==(p 为参数,c 为常数)如果求的方程1f f dp p y p dy∂∂=+∂∂的通解形式为: (,,)0y p c Φ=则方程(,)x y p =的参数形式的通解为:{(,)(,,)0x f y p y p c =Φ= (p 为参数,c 为任意常数)例5.解方程:2'3'20y y xy y +-=解:在这里我们可以把原方程当作可就x 解出的方程来求解,因此就有.2'2'22y y y x y =-令'y =p ,则可得:2222y y p x p =-对上式两边关于y 求导,用'11dy dx y p==代入整理可得 3(12)0dp p yp dy y ⎛⎫++= ⎪⎝⎭由0dp pdy y+=,可以求得上式的通解C p y=, 将它代入到方程2222y y p x p =-,整理后可得原方程通解 232y Cx C =+再由312yp +=0可得3(12)0dp p yp dy y ⎛⎫++= ⎪⎝⎭的特解312y p =-原方程的参数表示的特解为433812x p y p =-=-⎧⎪⎨⎪⎩三、不显含x 或y 的方程的解法 1. 不显含y 的隐式方程如果从几何的观点来看,微分方程'(,,)0F x y y =的解是平面xOy 的一条曲线,它可以用直角坐标系来表示,同样也可以用参数坐标来表示,微分方程的解也可以用参数坐标来表示。

常微分方程的初等解法与求解技巧

常微分方程的初等解法与求解技巧

山西师范大学本科毕业论文(设计)常微分方程的初等解法与求解技巧姓名张娟院系数学与计算机科学学院专业信息与计算科学班级12510201学号1251020126指导教师王晓锋答辩日期成绩常微分方程的初等解法与求解技巧内容摘要常微分方程在数学中发挥着举足轻重的作用,同时它的应用在日常生活里随处可见,因此掌握常微分方程的初等解法与求解技巧是非常必要的.本论文主要论述了其发展、初等解法与求解技巧,前者主要有变量分离、积分因子、一阶隐式微分方程的参数表示,通过举例从中总结出其求解技巧,目的是掌握其求解技巧.【关键词】变量分离一阶隐式微分方程积分因子求解技巧Elementary Solution and Solving Skills of OrdinaryDifferential EquationAbstractOrdinary differential equations take up significant position in mathematics, and at the same time, the application of it can be seen everywhere in our daily life, therefore, it’s necessary to grasp the elementary solution of ordinary differential equations and solving skills. This paper mainly introduced the definition of ordinary differential equations, elementary solution method and solving skills, the former mainly included the separation of variables, integral factor, a parameter-order differential equations implicit representation, by way of examples to sum up their solving skills, the purpose is to master the skills to solve.【Key Words】the separation of variables the first order implicit differential equation integrating factor solution techniques目录1.引论 ............................................................................................................................. 1 2.变量分离方程与变量变换 .. (1)2.1变量分离方程的解法 .............................................................................................. 1 2.2变量分离方程的举例 .............................................................................................. 2 2.3变量分离方程的几种类型 .. (2)3.线性微分方程和常数变易法 (6)3.1线性微分方程与常数变易法 ................................................................................. 6 3.2伯努利微分方程 .. (8)4.恰当微分方程与积分因子 (9)4.1恰当微分方程 ......................................................................................................... 9 4.2积分因子 (11)5.一阶隐式微分方程与参数表示 (13)5.1一阶隐式微分方程的主要类型 (13)6.常微分方程的若干求解技巧 (18)6.1将一阶微分方程dx dy变为dydx 的形式 ................................................................... 18 6.2分项组合 (19)6.3积分因子的选择 (20)7.总结 ........................................................................................................................... 21 参考文献 ........................................................................................ 错误!未定义书签。

1.7一阶隐式微分方程.

1.7一阶隐式微分方程.


x


(t ) (t)
dt

C
y (t)
例 4 求解方程 x 1 y2 y .
解:令
y

tan
t
,得
x

sin
t
原方程的参数形式为
x sin t

y

tan
t
,由基本关系式得
dy tan t cos tdt 即 dy sin tdt 积分得 y cos t C
2.如果在(1)中不能解出 y 时,则可用下面介绍的“参数法”求解,本节主要介
绍其中两类可积类型,
类型 Ⅰ
y f (x, y), x f ( y, y)
类型 Ⅱ
F (x, y) 0, F ( y, y) 0
类型Ⅰ可以解出 y (或 x )的方程
考虑类型Ⅰ中的方程 y f (x, y) 参数法求解过程。 从几何上看,方程(2)表示 (x, y, y) 空间中的曲面,
x sin t









y

cost
C
,消去参数 t,得原方程通积分为
x2 (y C)2 1。
四、作业与习题布置
1——1,2,3
五、归纳总结 1、掌握两种可积类型的参数求解方法 2、理解参数法的解题原理。
参考书: [1] 常微分方程,东北师大数学系编,高教出版社 [2] 常微分方程,伍卓群,李勇,高 0
同理,可以考虑类型Ⅰ的方程
x f ( y, y)
(5) 例 1 求解方程
y y2 xy 1 x 2 2

一阶隐式微分方程与参数表示

一阶隐式微分方程与参数表示

积分并注意到 2 xpdp
xdp
2
于是求得x:
3 p4 2 xp c 得到: 4 3 4 c p 4 x p2
故原方程的参数形式的通解为:
3 4 c p 4 x 2 ,p0 p 2c 1 3 y p 2 p
当 p 0 时,y=0也是原方程的解。
例3 求解方程:
分析 于是
3 3
其中c为任意常数
x y ' 3xy ' 0
y ' p tx
3t x 3 1 t
3t x 3 1 t 3 3 1 4 t y c 3 2 2 (1 t )
因此,方程的参数形式的通解为
形如 F ( y, y ') 0
再注意到沿方程45的任何一条积分曲线上恒满足基本关系dypdx于是得到方程45的参数形式的通解为4242不显含不显含的方程的方程因此方程的参数形式的通解为分析于是形如形如的方程的解法的方程的解法的方程其求解方法通方程45的求解方法类似
第四节 一阶隐含方程与参数表示
1、一阶显式微分方程可解类型: (1)可分离变量型:y f ( x) ( y)
x 1 t c y 1 t t
作业:p69: 1(单), p72-74 1(1,4,14,26,27,31),2,4,5(1,7)
x ( p, c) 则方程(4.1)有参数形式的通解为: y f ( ( p, c), p)
•若求得(4.3)的通解的形式为:
( x, p, c) 0
( x, p, c) 0 则方程(4.1)有参数形式的通解为: y f ( x, p)
dy 3 dy 例1 求方程 ( ) 2 x y 0的通解。 dx dx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有参数形式通解
(x, p, c) 0 y f (x, p)
其中p是参数,c为任意常数。
§2.4 Implicit First-Order ODE and Parameter Representation
2 x f ( y, dy ) dx
解法 x f ( y, p)
(2.4.4)
pdy ydp 2 p3dp 0
2 yp p4 c
y c p4 2p
所以,方程的通解为:
此外,还有解 y = 0
x

c p4 2p

p3

c 3p4
2p
4p2
x

c 4p2

3 4
p2


y

mplicit First-Order ODE and Parameter Representation
§2.4 Implicit First-Order ODE and Parameter Representation
解法2:
解出 x,并把
dy p ,得 dx
x
y p3 2p
两边对 y 求导 p(1 3 p2 dp) ( y p3 ) dp
1
dy
dy
p
2p2
( p 0)
2
得方程的通解 y x2 cx c2
2
p xc
§2.4 Implicit First-Order ODE and Parameter Representation
方程的通解 y x2 cx c 2
2 再由 2 p x 0 得
p x 2
将它代入 y p 2 xp x 2 ,又得方程的一个解 y x 2
1 y f (x, dy) dx
这里假设函数 f (x, dy ) 有连续的偏导数。 dx
解法:引进参数 dy P ,则(2.4.1)变为
dx
(2.4.1)
y f (x, p)
dy
两边关于 x 求导,并把 p
dx
p f f dp
( 2.4.3)
x p dx
(2.4.2)
2
4
注意: 此解与通解 y x2 cx c2 中的每一条积分曲线均
2
相切这样的解我们称之为奇解
§2.4 Implicit First-Order ODE and Parameter Representation
y x2 cx c2 2
y
x2 y
4
x o
练习:P70 1(1)
y f (x, p)
(ii) 若得出(2.4.3)通解形式为 x ( p, c) ,则原方程(2.4.1)
有参数形式的通解
x ( p,c) y f ( ( p, c), p)
其中 p 是参数,c为任意常数。
(iii) 若求得(2.4.3)通解形式 (x, p, c) 0,则原方程(2.4.1)
代入,得
dp
p f x
dx
f
关于 x 和 p 显式方程
p
§2.4 Implicit First-Order ODE and Parameter Representation
(i) 若已得出(2.4.3)的通解形式为, p (x, c) 代入(2.4.2)得
y f (x,(x,c)) 就是(2.4.1)的通解。
c 3 p4
解出 x,得 x
4 p2
将它代入 y p3 2xp
2(c 3 p 4 )
y p3
4
p
因此,方程参数形式通解
x
c p2

3 4
p2
y

2c

1
p3
p 2
( p 0)
当 p=0 时, 由 y p3 2xp 可知,y=0也是方程的解。
( 2.4.5)
dy p dx
两边对 y 求导 1 f f dp (2.4.6)
p y p dy
若求得为 p ( y, c) 则(2.4.4)的通解为 x f ( y, ( y, c))
1 f
dp dy
p y f
p
若求得为 ( y, p, c) 0
求解方程 y ( dy )2 x dy x2
dx
dx 2

令 dy p dx
得 y p 2 xp x 2 2
两边对 x 求导,得 p 2 p dp x dp p x dx dx
( dp 1)(2 p x) 0 dp 1 0
dx
dx
将它代入 y p 2 xp x 2
x f (y, p) 则(2.4.4)的通解为 ( y, p, c) 0
§2.4 Implicit First-Order ODE and Parameter Representation
例1 求解方程 解法1: 解出 y
(dy)3 2x dy y 0
dx
dx
令 dy p dx
§2.4 一阶隐式微分方程及其参数表示
/Implicit First-Order ODE and Parameter Representation/
§2.4 Implicit First-Order ODE and Parameter Representation
一、 能解出 y (或 x )的方程
得 y p3 2xp 两边对 x 求导
p 3p2 dp 2x dp 2 p dx dx
3 p2dp 2xdp pdx 0
当 p 0 时,上式乘以 p,得
3 p3dp 2xpdp p 2dx 0
积分,得
3 p 4 xp2 c 4
§2.4 Implicit First-Order ODE and Parameter Representation
相关文档
最新文档