一元二次方程的根
一元二次方程的根的判别式

一元二次方程的根的判别式一元二次方程的根的判别式是指b²-4ac,它可以用来判断方程的根的情况。
当b²-4ac>0时,方程有两个不相等的实数根;当b²-4ac=0时,方程有两个相等的实数根;当b²-4ac<0时,方程没有实数根。
判别式的应用包括不解方程判断根的情况、确定方程待定系数的取值范围、证明方程根的性质以及解决综合题。
正确理解判别式的性质并熟练灵活地运用它是本节的重点和难点。
举例来说,对于方程2x²-5x+10=0,其判别式为b²-4ac=(-5)²-4×2×10=-550,因此该方程有两个不相等的实数根。
对于方程x²-2kx+4(k-1)=0,其判别式为b²-4ac=(-2k)²-4×1×4(k-1)=4(k-2)²≥0,因此该方程有实数根。
对于方程2x²-(4m-1)x+(m-1)=0,其判别式为b²-4ac=(-(4m-1))²-4×2×(m-1)=4(2m-1)²+5>0,因此该方程有两个不相等实根。
对于方程4x²+2nx+(n²-2n+5)=0,其判别式为b²-4ac=(2n)²-4×4(n²-2n+5)=-12(n-4/3)²-176/33<0,因此该方程没有实数根。
解这类题目时,一般先求出判别式Δ=b^2-4ac,然后对XXX进行化简或变形,使其符号明朗化,进而说明Δ的符号情况,得出结论。
对判别式进行变形的基本方法有因式分解、配方法等。
在解题前,首先应将关于x的方程整理成一般形式,再求Δ=b^2-4ac。
当Δ≥0时,方程有实数根,反之也成立。
例2已知关于x的方程x-(m-2)x+m^2=0,求解以下问题:1)有两个不相等实根,求m的范围。
一元二次方程式的求根公式

一元二次方程是形如ax²+bx+c=0的一元二次方程式,求解这种方程的根一直是数学学习中的重点和难点。
幸运的是,数学家们在几个世纪前就已经找到了一元二次方程的求根公式,这个公式被广泛地应用于解决各种实际问题和数学推导中。
一元二次方程的求根公式,也称为根的判别式,是一种能够根据方程系数直接求出方程根的公式。
它的应用在实际生活中非常广泛,例如在物理学和工程学中,用于计算物体的运动轨迹或者建筑结构的稳定性。
而在数学研究中,一元二次方程的求根公式更是作为代数方程的基石,为高阶方程的求解提供了重要的思路。
为了更好地理解一元二次方程的求根公式,我们首先来简单了解一下一元二次方程。
一元二次方程一般写作ax²+bx+c=0,其中a、b、c 分别为方程的系数。
那么,方程的根就是能够使得方程成立的未知数的值,也就是x的值。
而一元二次方程的求根公式就是用来求出这些根的具体数值。
这个公式可以分为求判别式和求根两个部分。
首先求判别式,通过计算Δ=b²-4ac来判断方程的根的情况。
如果Δ大于0,则方程有两个不相等的实根;如果Δ等于0,则方程有两个相等的实根;如果Δ小于0,则方程没有实根。
判别式不仅是用来判断方程根的情况,更重要的是它为我们之后的计算提供了信息。
接着是求根的部分,根据判别式的结果,我们可以直接套用求根公式来求出方程的根。
如果Δ大于0,方程的两个根分别为x1=(-b+√Δ)/2a和x2=(-b-√Δ)/2a;如果Δ等于0,方程的两个根为x1=x2=-b/2a;如果Δ小于0,方程没有实根,但可以求出两个虚根。
通过这样的求根过程,我们可以直观地得出方程的根,并且可以根据判别式的结果对根的情况有一个清晰的认识。
在日常生活和学习中,一元二次方程的求根公式为我们解决各种问题提供了便利。
无论是物理问题中的抛物线运动,还是工程问题中的结构稳定性,都可以通过一元二次方程的求根公式得到精确的解答。
在数学的学习中,理解和掌握一元二次方程的求根公式,不仅有助于我们进一步学习高阶方程和代数方程的解法,更能够帮助我们提高数学建模和分析问题的能力。
一元二次方程公式大全

一元二次方程公式大全
1. 一元二次方程的一般式:ax²+bx+c=0(a≠0)。
2. 一元二次方程的根公式:x=[-b±√(b²-4ac)]/2a。
3.一元二次方程的顶点公式:x=-b/2a,y=c-b²/4a。
4.一元二次方程的轴对称式:y=a(x-h)²+k,其中(h,k)为顶点坐标。
5. 一元二次方程的判别式公式:Δ=b²-4ac;当Δ>0时,有两个不
相等的实根;当Δ=0时,有一个重根;当Δ<0时,无实根。
6.一元二次方程的解的性质公式:两根之和=-b/a,两根之积=c/a。
7. 一元二次方程的因式分解公式:ax²+bx+c=a(x-x₁)(x-x₂),其中x₁、x₂为方程的两个实根。
8. 一元二次方程的求导公式:y'=2ax+b,其中a、b为方程系数。
9. 一元二次方程的求和差公式:(x+y)²=x²+2xy+y²,(x-y)²=x²-
2xy+y²。
10. 一元二次方程的配方法公式:根据(a±b)²=a²±2ab+b²,将一元
二次方程化为完全平方形式。
一元二次方程求根公式总结

一元二次方程求根公式是数学中的一个重要知识点,下面总结了一元二次方程求根公式,供大家参考。
一元二次方程求根公式当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。
它的标准形式为:ax²+bx+c=0(a≠0)其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
一元二次方程的解法(一)开平方法形如(X-m)²=n (n≥0)一元二次方程可以直接开平方法求得解为X=m±√n。
①等号左边是一个数的平方的形式而等号右边是一个常数。
②降次的实质是由一个一元二次方程转化为两个一元一次方程。
③方法是根据平方根的意义开平方。
(二)配方法用配方法解一元二次方程的步骤:①把原方程化为一般形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
(三)求根公式用求根公式法解一元二次方程的一般步骤为:①把方程化成一般形式aX²+bX+c=0,确定a,b,c的值(注意符号);②求出判别式△=b²-4ac的值,判断根的情况.若△<0原方程无实根;若△>0,X=((-b)±√(△))/(2a)。
一元二次方程的解法求根公式的使用技巧

一元二次方程的解法求根公式的使用技巧一元二次方程的解法是数学中的基础知识,在解决实际问题时起到了重要的作用。
其中,求根公式是一种常见的解法,它可以帮助我们快速求解一元二次方程的根。
本文将介绍一元二次方程的求根公式的使用技巧。
一、一元二次方程的形式一元二次方程通常具有以下形式:ax^2 + bx + c = 0其中,a、b、c为实数,并且a ≠ 0。
根据这个方程的形式,我们可以使用求根公式来求解方程的根。
二、一元二次方程的求根公式一元二次方程的求根公式如下:x = (-b ± √(b^2 - 4ac)) / (2a)其中,±表示两个根,√表示开方运算。
这个公式中的分子部分可以分为两个部分,分别是-b和√(b^2 - 4ac)。
根据这个公式,我们可以通过将方程中的系数代入公式中,快速求得方程的根。
三、使用技巧在使用一元二次方程的求根公式时,有一些技巧可以帮助我们更加高效地求解方程的根。
1. 化简方程在应用求根公式之前,我们可以先对方程进行化简。
例如,如果方程的系数存在公因子,我们可以将其提取出来,以简化计算过程。
2. 辨别方程的根的性质根据一元二次方程的判别式Δ=b^2-4ac的值,我们可以判断方程的根的性质。
- 当Δ>0时,方程有两个不相等的实数根;- 当Δ=0时,方程有两个相等的实数根;- 当Δ<0时,方程没有实数根,但存在两个共轭复数根。
通过辨别方程的根的性质,我们可以在求根过程中有所侧重,提高求解的效率。
3. 使用解根公式的步骤使用一元二次方程的求根公式时,可以按照以下步骤进行:Step 1: 计算判别式Δ的值。
Δ = b^2 - 4acStep 2: 根据Δ的值进行分类讨论。
- 当Δ>0时,应用求根公式计算两个不相等的实数根;- 当Δ=0时,应用求根公式计算两个相等的实数根;- 当Δ<0时,应用求根公式计算两个共轭复数根。
Step 3: 将方程系数代入求根公式,计算出根的近似值。
计算一元二次方程的根

计算一元二次方程的根一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c是已知实数并且a不为0。
计算一元二次方程的根是解方程的过程,通过求解方程得到x的值。
本文将介绍如何计算一元二次方程的根,并给出相应的求根公式以及求解步骤。
一、求根公式要计算一元二次方程的根,可以使用求根公式。
求根公式是根据一元二次方程的形式推导出来的,可以直接求得方程的根。
根据求根公式,一元二次方程ax^2 + bx + c = 0的根可以表示为:x = (-b ± √(b^2 - 4ac))/(2a)其中,±表示两个解,即方程有两个不同的根;√表示求平方根;b^2 - 4ac被称为判别式,用来判断方程的根的情况。
当判别式大于0时,方程有两个不同的实根;当判别式等于0时,方程有两个相同的实根;当判别式小于0时,方程没有实根,但有两个共轭复根。
二、求解步骤下面以具体的例子来介绍如何计算一元二次方程的根。
例题:求解方程2x^2 - 5x + 2 = 0的根。
Step 1: 确认方程的系数该例中,方程的系数是a = 2,b = -5,c = 2。
Step 2: 计算判别式判别式D = b^2 - 4ac = (-5)^2 - 4*2*2 = 25 - 16 = 9。
根据判别式的值,可以得到方程的根的情况为大于0,即存在两个不同的实根。
Step 3: 求根x = (-b ± √(b^2 - 4ac))/(2a)将方程的系数代入求根公式,得到:x = (-(-5) ± √(25 - 4*2*2))/(2*2)= (5 ± √(25 - 16))/4= (5 ± √9)/4化简可得:x1 = (5 + 3)/4 = 8/4 = 2x2 = (5 - 3)/4 = 2/4 = 0.5所以,方程2x^2 - 5x + 2 = 0的根为x1 = 2,x2 = 0.5。
初中数学 一元二次方程的根的性质有哪些

初中数学一元二次方程的根的性质有哪些一元二次方程的根是指方程ax^2 + bx + c = 0 的解x1 和x2。
在初中数学中,我们可以通过观察方程的系数a、b 和c 来推断方程的根的性质。
以下是一元二次方程根的一些性质:1. 存在性:一元二次方程ax^2 + bx + c = 0 的根存在的条件是判别式D = b^2 - 4ac 大于等于0。
如果D > 0,则方程有两个不相等的实根;如果 D = 0,则方程有两个相等的实根;如果D < 0,则方程没有实根,但可能有复数根。
2. 和与积的关系:方程的两个根x1 和x2 的和等于-b/a,即x1 + x2 = -b/a。
方程的两个根x1 和x2 的积等于c/a,即x1 * x2 = c/a。
3. 对称性:如果一元二次方程的根为x1 和x2,则方程也可以写为(x - x1)(x - x2) = 0 的形式。
这表明方程的两个根具有对称性,即x1 + x2 = -b/a 和x1 * x2 = c/a。
4. 正负关系:如果方程的系数a 是正数,则方程开口向上,根的形式为两个实根、两个相等的实根或没有实根。
如果方程的系数 a 是负数,则方程开口向下,根的形式为两个实根或没有实根。
5. 平方完成形式:一元二次方程可以通过平方完成形式来求解。
通过平方完成形式,我们可以将方程转化为一个完全平方的形式,从而更容易求解方程的根。
6. 判别式的意义:判别式D = b^2 - 4ac 可以提供关于方程根的更多信息。
如果D > 0,则方程有两个不相等的实根;如果D = 0,则方程有两个相等的实根;如果D < 0,则方程没有实根,但可能有复数根。
判别式的值还可以用来判断方程的图像与x 轴的交点个数。
7. 根的范围:对于一元二次方程ax^2 + bx + c = 0,如果a > 0,则方程的根的范围是(-∞, x1] ∪ [x2, +∞);如果a < 0,则方程的根的范围是(x1, x2)。
一元二次方程的根定义

一元二次方程的根定义稿子一嘿,朋友!今天咱们来聊聊一元二次方程的根定义。
你知道吗?这一元二次方程的根,就像是一个神秘的密码,能解开方程的秘密。
简单来说呢,一元二次方程的根,就是能让这个方程成立的那些数。
比如说,对于方程ax² + bx + c = 0 ,如果把某个数代入 x 后,等式两边相等了,那这个数就是方程的根。
想象一下,方程就像一个大锁,根就是能打开这把锁的钥匙。
有时候,这把锁可能有两个不同的钥匙,也就是两个不同的根;有时候,这两个钥匙居然是一样的,那就是两个相同的根;还有的时候,这锁居然没有能打开它的钥匙,那就说明这个方程没有实数根。
比如说x² 4x + 3 = 0 ,通过求解,我们能得到 x = 1 或者 x = 3 ,这 1 和 3 就是这个方程的根啦。
怎么样,是不是有点感觉了?这一元二次方程的根,是不是还挺有趣的?稿子二亲,咱们来唠唠一元二次方程的根定义哈!这一元二次方程的根啊,其实就像是方程的宝贝。
你看哈,一个一元二次方程,比如说ax² + bx + c = 0 ,那根就是能让这个等式稳稳当当成立的 x 的值。
有时候,你会发现找到这个根就像找宝藏一样,得费点心思。
但一旦找到了,那感觉,超有成就感!比如说,x² 5x + 6 = 0 ,经过咱们一番捣鼓,发现 x = 2 或者 x = 3 时,方程完美成立,那 2 和 3 就是它的根。
而且哦,根的情况还不一样呢。
有的方程有两个清清楚楚的根,有的就只有一个根,还有的干脆就没有实数根。
就像生活中的各种惊喜和意外一样,一元二次方程的根也充满了未知和奇妙。
你要是能熟练掌握怎么找根,那在数学的世界里,可就像有了超级武器,能解决好多难题哟!不知道我这么说,你有没有更明白一元二次方程的根定义呀?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛专题选讲(初三.1)一元二次方程的根一 、内容提要1. 一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的.根公式是:x=aac b b 242-±-. (b 2-4ac ≥0) 2. 根的判别式① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式⇔方程有有理数根.③整系数方程x 2+px+q=0有两个整数根⇔p 2-4q 是整数的平方数.3. 设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么① ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);② x 1=a ac b b 242-+-, x 2=aac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b -, x 1x 2=ac (a ≠0, b 2-4ac ≥0). 4. 方程整数根的其他条件整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数.特殊的例子有:C=0⇔x 1=0 , a+b+c=0⇔x 1=1 , a -b+c=0⇔x 1=-1.二、例题例1. 已知:a, b, c 是实数,且a=b+c+1.求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.(1990年泉州市初二数学双基赛题)证明 (用反证法)设 两个方程都没有两个不相等的实数根,那么△1≤0和△2≤0.即⎪⎩⎪⎨⎧++=≤-≤ ③ ② ①-1040412c b a c a b由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥45, 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0,即(a -2)2+1≤0,这是不能成立的.既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数.例2. 已知首项系数不相等的两个方程:(a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数)有一个公共根. 求a, b 的值.(1989年全国初中数学联赛题)解:用因式分解法求得:方程①的两个根是 a 和12-+a a ; 方程②两根是b 和12-+b b . 由已知a>1, b>1且a ≠b.∴公共根是a=12-+b b 或b=12-+a a . 两个等式去分母后的结果是一样的.即ab -a=b+2, ab -a -b+1=3, (a -1)(b -1)=3.∵a,b 都是正整数, ∴ ⎩⎨⎧=-3111b a =-; 或⎩⎨⎧=-1131b a =-. 解得⎩⎨⎧=42b a =; 或⎩⎨⎧==24b a . 又解: 设公共根为x 0那么⎪⎩⎪⎨⎧=+++--=+++-- ②( ①0)2()2()10)2()2()1(22202220b b x b x b a a x a x a 先消去二次项: ①×(b -1)-②×(a -1) 得[-(a 2+2)(b -1)+(b 2+2)(a -1)]x 0+(a 2+2a)(b -1)-(b 2+2b)(a -1)=0.整理得 (a -b )(ab -a -b -2)(x 0-1)=0.∵a ≠b∴x 0=1; 或 (ab -a -b -2)=0.当x 0=1时,由方程①得 a=1,∴a -1=0,∴方程①不是二次方程.∴x 0不是公共根.当(ab -a -b -2)=0时, 得(a -1)(b -1)=3 ……解法同上.例3. 已知:m, n 是不相等的实数,方程x 2+mx+n=0的两根差与方程y 2+ny+m=0的两根差相等.求:m+n 的值. (1986年泉州市初二数学双基赛题)解:方程①两根差是21x x -=221)x x -(=212214)(x x x x -+=n m 42-同理方程②两根差是21y y -=m n 42-依题意,得n m 42-=m n 42-.两边平方得:m 2-4n=n 2-4m.∴(m -n )(m+n+4)=0∵m ≠n ,∴ m+n+4=0, m+n =-4.例4. 若a, b, c 都是奇数,则二次方程ax 2+bx+c=0(a ≠0)没有有理数根.证明:设方程有一个有理数根n m (m, n 是互质的整数). 那么a(n m )2+b(nm )+c=0, 即an 2+bmn+cm 2=0. 把m, n 按奇数、偶数分类讨论,∵m, n 互质,∴不可能同为偶数.① 当m, n 同为奇数时,则an 2+bmn+cm 2是奇数+奇数+奇数=奇数≠0;② 当m 为奇数, n 为偶数时,an 2+bmn+cm 2是偶数+偶数+奇数=奇数≠0;③ 当m 为偶数, n 为奇数时,an 2+bmn+cm 2是奇数+偶数+偶数=奇数≠0.综上所述不论m, n 取什么整数,方程a(n m )2+b(nm )+c=0都不成立. 即 假设方程有一个有理数根是不成立的.∴当a, b, c 都是奇数时,方程ax 2+bx+c=0(a ≠0)没有有理数根.例5. 求证:对于任意一个矩形A ,总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1). (1983年福建省初中数学竞赛题)证明:设矩形A 的长为a, 宽为b ,矩形B 的长为c, 宽为d.根据题意,得 k abcd b a d c ==++. ∴c+d=(a+b)k, cd=abk.由韦达定理的逆定理,得c, d 是方程z 2-(a+b)kz+abk=0 的两个根.△ =[-(a+b )k ]2-4abk=(a 2+2ab+b 2)k 2-4abk=k [(a 2+2ab+b 2)k -4ab ]∵k ≥1,a 2+b 2≥2ab,∴a 2+2ab+b 2≥4ab ,(a 2+2ab+b 2)k ≥4ab.∴△≥0.∴一定有c, d 值满足题设的条件.即总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1). 例6. k 取什么整数值时,下列方程有两个整数解?①(k 2-1)x 2-6(3k -1)x+72=0 ; ②kx 2+(k 2-2)x -(k+2)=0.解:①用因式分解法求得两个根是:x 1=112+k , x 2=16-k . 由x 1是整数,得k+1=±1, ±2, ±3, ±4, ±6, ±12.由x 2是整数,得k -1=±1, ±2, ±3, ±6.它们的公共解是:得k=0, 2, -2, 3, -5.答:当k=0, 2, -2, 3, -5时,方程①有两个整数解.②根据韦达定理⎪⎪⎩⎪⎪⎨⎧--=+-=+-=--=+k k k k x x k k k k x x 222221221 ∵x 1, x 2, k 都是整数,∴k=±1,±2. (这只是整数解的必要条件,而不是充分条件,故要进行检验.) 把k=1,-1, 2, -2, 分别代入原方程检验,只有当k=2和k=-2 时适合.答:当k 取2和-2时,方程②有两个整数解.三、练习1. 写出下列方程的整数解:① 5x 2-3x=0的一个整数根是___.② 3x 2+(2-3)x -2=0的一个整数根是___.③ x 2+(5+1)x+5=0的一个整数根是___.2. 方程(1-m )x 2-x -1=0 有两个不相等的实数根,那么整数m 的最大值是____.3. 已知方程x 2-(2m -1)x -4m+2=0 的两个实数根的平方和等于5,则m=___.4. 若x ≠y ,且满足等式x 2+2x -5=0 和y 2+2y -5=0. 那么yx 11+=___.(提示:x, y 是方程z 2+5z -5=0 的两个根.) 5. 如果方程x 2+px+q=0 的一个实数根是另一个实数根的2倍,那么p, q 应满足的关系是:___________. (1986年全国初中数学联赛题)6. 若方程ax 2+bx+c=0中a>0, b>0, c<0. 那么两实数根的符号必是______.(1987年泉州市初二数学双基赛题)7. 如果方程mx 2-2(m+2)x+m+5=0 没有实数根,那么方程(m -5)x 2-2mx+m=0实数根的个数是( ).(A)2 (B )1 ( C )0 (D )不能确定 (1989年全国初中数学联赛题)8. 当a, b 为何值时,方程x 2+2(1+a)x+(3a 2+4ab+4b 2+2)=0 有实数根?(1987年全国初中数学联赛题)9. 两个方程x 2+kx -1=0和x 2-x -k=0有一个相同的实数根,则这个根是( )(A)2 (B )-2 (C )1 (D )-1 (1990年泉州市初二数学双基赛题)10. 已知:方程x 2+ax+b=0与x 2+bx+a=0仅有一个公共根,那么a, b 应满足的关系是:___________.11. 已知:方程x 2+bx+1=0与x 2-x -b=0有一个公共根为m ,求:m ,b 的值.12. 已知:方程x 2+ax+b=0的两个实数根各加上1,就是方程x 2-a 2x+ab=0的两个实数根.试求a, b 的值或取值范围. (1997年泉州市初二数学双基赛题)13. 已知:方程ax 2+bx+c=0(a ≠0)的两根和等于s 1,两根的平方和等于s 2, 两根的立方和等于s 3.求证:as 3+bs 2+cs 1=0.14. 求证:方程x 2-2(m+1)x+2(m -1)=0 的两个实数根,不能同时为负.(可用反证法)15. 已知:a, b 是方程x 2+mx+p=0的两个实数根;c, d 是方程x 2+nx+q=0的两个实数根.求证:(a -c )(b -c)(a -d)(b -d)=(p -q)2.16. 如果一元二次方程的两个实数根的平方和等于5,两实数根的积是2,那么这个方程是:__________. (1990年泉州市初二数学双基赛题)17. 如果方程(x -1)(x 2-2x+m)=0的三个根,可作为一个三角形的三边长,那么实数m的取值范围是 ( )(A ) 0≤m ≤1 (B )m ≥43 (C )43<m ≤1 (D )43≤m ≤1 (1995年全国初中数学联赛题)18. 方程7x 2-(k+13)x+k 2-k -2=0 (k 是整数)的两个实数根为α,β且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k<4 (B)-2<k<-1 (C) 3<k<4 或-2<k<-1 (D )无解(1990年全国初中数学联赛题)练习题参考答案1. ①0, ②1, ③-12. 03. 1(舍去-2)4. 52 5. 9q=2p 2 6. 一正一负 7. D 8. a=1,b=-0.5 9. C10. a+b+1=0, a ≠b 11. m=-1,b=2 12.⎩⎨⎧-=-=⎪⎩⎪⎨⎧≤=.1,241,1b a b a : 13. 左边=a(x 13+x 23)+b(x 12+x 22)+c(x 1+x 2)=……14. 用反证法,设x 1<0,x 2<0,由韦达定理推出矛盾(m<-1, m>1)15. 由韦达定理,把左边化为 p, q16. x 2±3x+2=0 17. C 18. C。