第十三章轴对称

合集下载

8年级上册数学第三单元《第十三章 轴对称》知识点总结

8年级上册数学第三单元《第十三章 轴对称》知识点总结

第十三章轴对称一、概念1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点3、让学生知道轴对称图形(一个图形,有一条或多条对称轴)和轴对称(两个图形,只有一条对称轴)的区别与联系4.轴对称的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.点(x, y)关于x轴对称的点的坐标为(x,- y).点(x, y)关于y轴对称的点的坐标为(-x, y).注意:像类似点(x,y)关于X=1对称的题目要学会做法2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等注意:知道角平分线交点(到边相等)和垂直平分线交点(到点相等)的区别四、等腰三角形1.等腰三角形的性质①.等腰三角形的两个底角相等。

(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)注意:三线合一不能直接来判定等腰三角形,需要证明全等。

八年级数学上册第十三章轴对称《轴对称:轴对称》

八年级数学上册第十三章轴对称《轴对称:轴对称》

教学设计2024秋季八年级数学上册第十三章轴对称《轴对称:轴对称》一、教学目标(核心素养)1.知识与技能:学生能够理解轴对称图形的概念,掌握识别轴对称图形的方法,能画出给定图形的轴对称图形。

2.过程与方法:通过观察、操作、归纳等数学活动,培养学生的空间想象能力和图形变换能力;在小组合作中,提升交流与合作能力。

3.情感态度价值观:激发学生对数学美的感受,培养探索数学规律的兴趣;通过解决实际问题,增强应用数学的意识。

二、教学重点•轴对称图形的定义及其性质。

•如何判断一个图形是否为轴对称图形。

•掌握作轴对称图形的基本方法。

三、教学难点•理解轴对称图形中对称轴两侧图形全等的意义。

•灵活运用轴对称性质解决复杂图形问题。

四、教学资源•多媒体课件(包含轴对称图形的实例、动态演示)。

•实物教具(如对称的剪纸、镜子等)。

•学生分组材料(纸张、剪刀、直尺、铅笔)。

•教材及配套练习册。

五、教学方法•直观演示法:利用多媒体和实物展示轴对称现象。

•动手操作法:学生动手剪纸或画图,体验轴对称图形的形成过程。

•合作探究法:小组内讨论轴对称图形的性质,共同解决问题。

•归纳总结法:引导学生总结轴对称图形的特征和应用。

六、教学过程1. 导入新课•情境引入:展示自然界和生活中轴对称图形的图片(如蝴蝶、树叶、建筑等),引导学生观察并思考这些图形的共同特点。

•提出问题:这些图形有什么共同之处?你能举出更多这样的例子吗?2. 新课教学•定义讲解:明确轴对称图形的定义,强调对称轴、对应点、对应线段等概念。

•实例分析:选取几个典型的轴对称图形,引导学生分析其对称轴和对称性质。

•动手操作:•活动一:学生分组,利用纸张和剪刀尝试剪出轴对称图形,并讨论其对称轴。

•活动二:给定一个简单图形,要求学生画出其关于某条直线的轴对称图形,并说明作图步骤。

•归纳总结:总结轴对称图形的性质,强调对称轴两侧图形全等的特点。

结构图示意(简化版):引入(生活实例)→ 定义讲解(轴对称图形)→ 实例分析(图形特征)→动手操作(剪纸/画图)→ 归纳总结(性质、作图方法)3. 课堂小结•回顾轴对称图形的定义、性质及作图方法。

《高效速记:初中数学必考公式定律与知识梳理》 第13章 轴对称

《高效速记:初中数学必考公式定律与知识梳理》 第13章 轴对称

第13章轴对称0 0D / 高效速记︓初中数学必考公式定律与知识梳理 -@44 D/D/6>D>D/-@>% )一轴对称1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫作轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(或轴)对称.2.轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.拓展延伸两个图形成轴对称和轴对称图形的前提不一样,前者是两个图形,后者是一个图形.成轴对称的两个图形不仅大小㊁形状一样,而且与位置有关.OBNRQAM P图131例13.1如图131所示,点P 是øA O B 外的一点,点M ,N 分别是øA O B 两边上的点,点P 关于O A 的对称点Q 恰好落在线段MN 上,点P 关于O B 的对称点R 落在MN 的延长线上.若P M =2.5c m ,P N =3c m ,MN =4c m ,则线段Q R 的长为( )c m .A .4.5B .5.5C .6.5D .7所以P M=M Q,P N=N R.因为P M=2.5c m,P N=3c m,MN=4c m,所以N R=3c m,M Q=2.5c m,即N Q=MN-M Q=4-2.5=1.5(c m),则线段Q R的长为R N+N Q=3+1.5=4.5(c m).答案A3.垂直平分线经过线段中点并且垂直于这条线段的直线,叫作这条线段的垂直平分线.4.线段的垂直平分线的性质(1)线段的垂直平分线上的点,到这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.5.轴对称和轴对称图形的性质(1)如果两个图形关于某条直线对称,那么这条直线叫作对称轴,对称轴是两个图形中任何一对对应点所连线段的垂直平分线.(2)轴对称图形的对称轴是轴对称图形中任何一对对应点所连线段的垂直平分线.关键提醒轴对称图形(或关于某条直线对称的两个图形),它们的对应线段相等,对应角相等.6.轴对称的特征如果一个图形关于某条直线对称,那么连接对称点的线段的垂直平分线就是该图形的对称轴.二画轴对称图形1.作图形的对称轴找对称轴的方法:首先判断是不是轴对称图形,再观察是否存在一条直线将这个图形分成两部分,将这两部分沿这条直线折叠,如果重合,这条直线就是对称轴.另外,要全方位地去找,不要漏掉对称轴.2.画轴对称图形组成几何图形最基本的元素是 点 ,所以画轴对称图形必须掌握对称点的画法(即过已知点作对称轴的垂线并加倍延长即可).画轴对称图形的步骤如下:(1)确定对称轴.(2)作各定点关于对称轴的对称点.(3)按原图的形状依次连接各对称点.例13.2如图132所示,已知әA B C和直线l,试画出әA B C关于直线l的对称图形.解析分别作出A㊁B㊁C三点关于直线l的对称点A'㊁B'㊁C',后顺次连接即可.ABCl图132ACB BC(A )l图133解所画图形如图133所示:әA'B'C'即为所求.3.用坐标表示轴对称(1)已知点关于x轴或y轴对称的点的坐标的规律:点(x,y)关于x(2)如何在坐标系中作一个已知图形的对称图形:只要找到一些特殊点(如多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.例13.3在平面直角坐标系中,已知点A(2,3),则点A关于x轴对称的点的坐标为().A.(3,2)B.(2,-3)C.(-2,3)D.(-2,-3)解析因为点A(2,3),所以点A关于x轴对称的点的坐标为(2,-3).答案B三等腰三角形1.等腰三角形有两条边相等的三角形叫作等腰三角形.相等的两条边叫作腰,另一条边叫作底边,两腰所夹的角叫作顶角,底边与腰的夹角叫作底角.2.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成 等边对等角 ).性质2:等腰三角形的顶角平分线㊁底边上的中线㊁底边上的高相互重合(简称 三线合一 ).性质3:等腰三角形是轴对称图形,底边的垂直平分线就是它的对称轴.知识拓展等腰三角形是轴对称图形,其顶角的平分线㊁底边上的中线㊁底边上的高线所在的直线是对称轴.等腰三角形的外心㊁内心㊁重心和垂心都在底边的高线上(即 四心共线 ).等腰直角三角形的底角都等于45ʎ.关键提醒运用等腰三角形的性质解题时,在等腰三角形中若已知一内角为锐角,而未指明是底角还是顶角时,应注意分类讨论,防止漏解.3.等腰三角形的判定方法(1)利用定义:两条边相等的三角形是等腰三角形.(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成 等角对等边 ).AE D BC图134例13.4如图134所示,D 为әA B C 内一点,C D 平分øA C B ,B E ʅC D ,垂足为D ,交A C 于点E ,øA =øA B E .若A C =5,B C =3,则B D 的长为( ).A .2.5B .1.5C .2D .1解如图134所示,因为C D 平分øA C B ,B E ʅC D ,所以B C =C E .又因为øA =øA B E ,所以A E =B E .所以B D =12B E =12A E =12(A C -B C ).因为A C =5,B C =3,所以B D =12(5-3)=1.答案D四等边三角形1.等边三角形在等腰三角形中,有一种特殊的等腰三角形 三边都相等的三角形,我们把这样的三角形叫作等边三角形.知识拓展由定义可知,等边三角形是一种特殊的等腰三角形,也就是说等腰三角形包括等边三角形,因而等边三角形具有等腰三角形的一切性质.2.等边三角形的性质和判定方法(1)性质:①等边三角形的三个内角都相等,并且每一个角都等于60ʎ.②等边三角形是轴对称图形,它有三条对称轴.(2)判定:①三个角都相等的三角形是等边三角形.ADCEB图135②有一个角是60ʎ的等腰三角形是等边三角形.例13.5如图135所示,等边әA B C 的边长是6c m ,B D 是中线,延长B C 至E ,使C E =C D ,连接D E ,则D E 的长是c m .解析因为әA B C 是等边三角形,B D 是中线,所以øA B C =øA C B =60ʎ,所以øD B C =30ʎ.又因为C E =C D ,所以øC D E =øC E D .又因为øB C D =øC D E +øC E D ,所以øC D E =øC E D =12øB C D =30ʎ.所以øD B C =øC E D ,即D B =D E .因为等边әA B C 的边长是6c m ,所以D E =B D =33c m .五含30°角的直角三角形在直角三角形中,如果一个锐角等于30ʎ,那么它所对的直角边等于斜边的一半.关键提醒应用此性质的前提条件是 在直角三角形中 .例13.6如图136所示,әA B C 中,øC =90ʎ,A C =3,øB =30ʎ,点P 是B C 边上的动点,则A P 长不可能是( ).30°C BP图136A.3.5B.4.2C.5.8D.7解析由垂线段最短可知,A P的长不可小于3.因为在әA B C中,øC= 90ʎ,A C=3,øB=30ʎ,所以A B=6,所以A P的长不能大于6.故选D.答案D。

八年级第十三章《轴对称》知识点及典型例题

八年级第十三章《轴对称》知识点及典型例题

第十三章《轴对称》一、知识点归纳(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。

4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。

5.画一图形关于某条直线的轴对称图形步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

(二)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。

(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)用坐标表示轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);(五)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)(六)关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);(七)等腰三角形1、等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

人教版初中数学第十三章知识点总结

人教版初中数学第十三章知识点总结

第十三章轴对称13.1轴对称13.1.1轴对称1.轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;这条直线就是它的对称轴。

2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称;这条直线叫做对称轴;折叠后的点是对应点,叫做对称点。

3.轴对称图形与轴对称的区别:(1)轴对称是对两个图形而言,而轴对称图形是一个图形;(2)轴对称是指形状相同,大小相等,并且具有一定特殊位置的两个图形,轴对称图形是指一个具有特殊形状的图形;(3)轴对称只有一条对称轴,而轴对称图形的对称轴可能不只一条。

4.轴对称图形与轴对称的联系:(1)都是沿着某条直线折叠,折叠后都能够重合;(2)把成轴对称的两个图形看成一个整体,它就是一个轴对称图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条直线轴对称。

5.线段的垂直平分线:经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

6.轴对称的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(2)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

13.1.2线段的垂直平分线的性质1.线段垂直平分线的性质定理:线段垂直平分线上的点与这条线段的两个端点的距离相等。

2.线段垂直平分线的判定定理:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

3.线段的垂直平分线可以看成是到线段两个端点距离相等的所有点的集合。

4.尺规作图4:作已知线段的垂直平分线已知:线段AB求作:线段AB的垂直平分线CD作法:(1)分别以A,B为圆心,大于12AB长为半径画弧,两弧交于点C、D;(2)作直线CD.则直线CD为所求5.尺规作图5:经过已知直线外一点作这条直线的垂线已知:直线AB和AB外一点C求作:AB的垂线,使它经过点C作法:(1)任意取一点K,使点K和点C在AB的两旁;(2)以点C为圆心,CK长为半径作弧,交AB于点D和E;(3)分别以D,E为圆心,大于12DE长为半径画弧,两弧交于点F;作直线CF.则直线CF为所求的垂线。

部编人教版八年级数学上册《13第十三章 轴对称【全章】》精品PPT优质课件

部编人教版八年级数学上册《13第十三章 轴对称【全章】》精品PPT优质课件
正方形ABCD面积的一半,∵正方形ABCD的边长为4cm, ∴S阴影=42÷2=8(cm2).故选B.
方法归纳:正方形是轴对称图形,在轴对称图形中 求不规则的阴影部分的面积时,一般可以利用轴对 称变换,将其转换为规则图形后再进行计算.
当堂练习
1.观察下列各种图形,判断是不是轴对称图形?





方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.
例2 如图,正方形ABCD的边长为4cm,则图中 阴影部分的面积为( B )
A.4cm2 B.8cm2 C.12cm2 D.16cm2
解析:根据正方形的轴对称性可得,阴影部分的面积等于
(1)
(2)
思考:如图,△ABC和△A′B′C′关于直线MN对称, 点A′,B′,C′分别是点A,B,C的对称点,线段AA′, BB′,CC′与直线MN有什么关系?
A
AA′⊥MN,
M A′
BB′⊥MN,
B
B′
CC′⊥MN.
C
C′
N
知识要点
线段垂直平分线的定义
M
经过线段中点并且垂直于这条
线段的直线,叫做这条线段的
A
P
垂直平分线.
B
如图,MN⊥AA′, AP=A′P.
C
直线MN是线段AA ′的垂直平分线.
N
图形轴对称的性质
A'
B' C'
如果两个图形关于某条直线对称,那么对称轴是任 何一对对应点所连线段的垂直平分线.
一个轴对称图形的对称轴是否也具有上述性质呢? 请你自己找一些轴对称图形来检验吧!

新人教版八年级数学上册 第十三章 轴对称全章课件

新人教版八年级数学上册    第十三章 轴对称全章课件

(2)承(1)小题,请判断当∠ABC不是你指出的角 度时,PR的长度小于6还是大于6?并完整说 明你判断的理由.
解:PR的长度小于6,理由如下: ∠ABC≠90°,则点P、B、R三点不在 同一直线上,∴PB+BR>PR. ∵PB+BR=2OB=2×3=6, ∴PR<6.
重合,那么就说这两个图形关于这条直线对称,这条直线就是它
的对称轴.
知识要点
比较归纳
轴对称图形
两个图形成轴对称
图形
区别 联系
一个图形具有的特 殊形状
两个全等图形的特殊 的位置关系
1.都是沿着某条直线折叠后能重合. 2.可以互相转化.
这是轴对称图形还是两个图形成轴对称?
二 轴对称的性质
如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分
1.下列表情图中,属于轴对称图形的是( D )
2.下列图形,对称轴最多的是( D )
A.长方形
B.正方形
C.角
D.圆
3.如图,△ABC与△DEF关于直线MN轴对称,则以 下结论中错误的是( A )
A.AB∥DF
B.∠B=∠E C.AB=DE D.AD的连线被MN垂直平分
4.如图,Rt△ABC中,∠ACB= 90°,∠A=50°,将其折叠,使 点A落在边CB上A′处,折痕为 CD,则∠A′DB的度数为__1_0_°___.
A
A′
B
N B′
典例精析
例1 如图,一种滑翔伞的形状是左右成轴对称的 四边形ABCD,其中∠BAD=150°,∠B=40°, 则∠BCD的度数是( A ) A.130° B.150° C.40° D.65°
方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.

(完整版)人教版数学八年级第十三章《轴对称》知识点及典型例题(无答案)

(完整版)人教版数学八年级第十三章《轴对称》知识点及典型例题(无答案)

第十三章《轴对称》(一)轴对称和轴对称图形1 、有一个图形沿着某一条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形对于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形对于直线对称也叫做轴对称.2、轴对称图形:假如一个图形沿一条直线折叠,直线两旁的部分能够相互重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

(对称轴一定是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。

4、轴对称图形的性质:假如两个图形对于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直均分线。

近似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直均分线。

连结随意一对对应点的线段被对称轴垂直均分.轴对称图形上对应线段相等、对应角相等。

5.画一图形对于某条直线的轴对称图形步骤:找到重点点,画出关键点的对应点,依据原图次序挨次连结各点。

(二)轴对称与轴对称图形的差别和联系差别:轴对称是指两个图形之间的形状与地点关系,成轴对称的两个图形是全等形;轴对称图形是一个拥有特别形状的图形,把一个轴对称图形沿对称轴分红两个图形,这两个图形是全等形,而且成轴对称.联系: 1 :都是折叠重合2; 假如把成轴对称的两个图形当作一个图形那么他就是轴对称图形,反之亦然。

线段的垂直均分线经过线段的中点而且垂直于这条线段的直线,叫做这条线段的垂直均分线(或线段的中垂线)(2)线段的垂直均分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直均分线上.(证明是一定有两个点)所以线段的垂直均分线能够当作与线段两个端点距离相等的全部点的会合.(四)用坐标表示轴对称1、点( x,y)对于 x 轴对称的点的坐标为(-x ,y)2、点( x,y)对于 y 轴对称的点的坐标为(x,-y );( 五)对于坐标轴夹角均分线对称点 P(x,y)对于第一、三象限坐标轴夹角均分线 y=x 对称的点的坐标是( y,x)点 P(x,y)对于第二、四象限坐标轴夹角均分线 y=- x 对称的点的坐标是(- y,- x)( 六)对于平行于坐标轴的直线对称点P(x,y)对于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)对于直线y=n 对称的点的坐标是(x,2n-y);(七)等腰三角形等腰三角形性质:性质 1:等腰三角形的两个底角相等(简写成“等边平等角”)性质 2:等腰三角形的顶角均分线、底边上的中线、底边上的高相互重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章轴对称
第一节轴对称
教学目标:
1.了解轴对称图形和两个图形关于某直线对称的概念
2.能识别简单的轴对称图形及其对称轴(直线)
,能找出两个图形关于某直线对称的对称点
3.了解轴对称图形与两个图形关于某直线对称的区别和联系
4.了解线段垂直平分线的定义.
教学重点:
轴对称图形的判定与对称轴的确定。

教学难点:
轴对称图形的性质。

教法与学法:
1、教法:教师要根据生活实际中的案例,引导学生探索和发现这些图形的共同特性,从形
状相同到沿某直线对折后发现两部分会完全重合,最后提升为轴对称图形的概念,
养学生观察、判断、分析问题的能力,也培养学生对实例进行归纳、抽象的能力,从探索图形的
共同特征,什么是轴对称图形,对称轴、对称点与线段的垂直平分线的关系,确定轴对称图形的
对称轴等问题的解决。

2、学法:学生结合具体的生活实例,在充分交流、讨论的基础上,经历从具体到抽象的方法归纳总
结出轴对称图形、对称轴、对称点等概念,并学会区分轴对称图形与两个图形成轴对称,从两个
点关于某条直线对称这一简单图形中,理解线段垂直平分的概念,并会反过来运用线段垂直平分
线来探索轴对称的性质,从而积累解决问题的方法与经验。

教学过程:
一、新课导入
既培我们在日常生活中见过很多办喜事结婚的, 那么你见过办喜事用的窗花吗?下面我们一
起来看一看这些好看的窗花吧!
二、互动新授
看完了窗花,带着你们的回忆来和我思考一个问题,这些美丽的图案有什么共同特点呢? 考虑到你们刚开始接触这个问题,不知道怎么表述,老师先来帮你们提示一下,
下面请同学们小组讨论,你能不能学着我刚才的样子把那几幅窗花也进行同样的操作呢?然后告诉我你们的发现。

同学们很容易就能发现上面的图形都可以沿着一条直线进行折叠并且两部分会完全重合,师根据学生的语言进行组合并板书,同时ppt展示让孩子们理解。

(板书:轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.)
知识讲解
如果个平面图形沿条貢线折養,直线两労的部分
能够吃相重合,这个图形就叫做轴对称圈形,这条真莖就
是它的对称轴.
2、练一练
(1)咱们来小试牛刀看看你们理解的怎么样,下面的图形是轴对称图形吗?
指派每一组一个代表回答,看哪个小组判断得又快又准!大家都很棒,我跟你们的
想法一样,下面我要加大难度考考你们啦!
(2)下面这些图形是轴对称图形吗?如果是,有几条对称轴?
各小组快速讨论总结你们的答案然后派个代表上小黑板写下你们的答案。

完成的非常不错,咱们来看看大家找的一不一样。

那通过这些图形找对称轴你们发现了什么吗?
总结:1有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条
教师进行提示:对称轴通常画成虚线,是直线,不能画成线段。

(3)大家都知道,国旗是国家的一个象征,观察下面的国旗,哪些是轴对称图形?试找出它们的对称轴.
3、认识轴对称图形了之后咱们再来观察下面的每对图形有什么共同特点
根据上面的图片完成下面的填空
4你们能根据你们平时在生活中见到的举一些类似的实例吗?
(水中的倒影、镜子里的成像等等)
三、巩固练习
1.成轴对称的两个图形全等吗?( )
2.如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?( )
这两个图形对称吗?( )
3你能归纳出我们今天学过的轴对称图形和两个图形成轴对称的区别与联系吗?
四、能力提升
(1)已知图中的两个三角形关于直线m对称,请说出图中的哪些点可以重合?
能重合的点叫___________ .
图中的对称点有哪些?点A的对称点是点F 点C的对称点是
____ 的对称点是点E
(2)如图所示,请问该图中的A和F的连线与直线m有什么样的关系?
线段AF被直线m垂直平分.
直线m叫做线段AF的垂直平分线.
CD , BE与直线m有什么关系?
(板书定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.)
图形轴对称的性质:
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线
类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线
五、 课堂小结(指派学生起来单独回答最后进行汇总)
这节课你有哪些收获呢?
1轴对称图形及对称轴
2两个图形关于某条直线对称以及对称点
3轴对称的性质
六、 板书设计
13.1轴对称
第一课时
1轴对称图形及对称轴:如果一个平面图形沿一条直线折叠,
直线两旁的部分能够互相重合,
这个图形就叫做轴对称图形,这条直线就是它的对称轴。

2两个图形关于某条直线对称及对称点:把一个图形沿着某一条直线折叠
,如果它能够与另 一个图形重合,,那么就说这两个图形关于这条直线对称,折叠后重合的点是对应点
,叫做对 应点。

3轴对称的性质
七、 作业设计 1若点A 、B 关于直线 m 对称,则A 、B 与直线m 的位置关系是 ________________________ ,并且线段AB 被直线m __________
3.
(福州•中考)下面四个中文艺术字中,不是轴对称图形的是( )
4、(日照•中考)已知以下四个汽车标志图案:其中是轴对称图形的图案是
____ (只需填
入图案代号)
.2.把一圆形纸片两次对折后,得到右图, 然后沿虚线剪开,得到两部分,其中一
部分展开后的平面图形是
① ②
八、教学反思
本节课主要是学会认识和判定轴,对称图形和两个图形成轴对称以及独立的性质学生往往凭直观的感觉来判断一个图形是否是轴对称信息或两个图形是否成轴对称,头脑中缺乏定义中指出的折叠与重合的判断过程线段垂直平分线是一个完全新的概念,熟悉线段垂直平分线的意义正确理解轴对称的性质很有帮助,因此教学中重视体现认知的过程,让学生说出判断理由,指出具体的轴对称的位置,对称轴的条数,并有意识的将学习知识与生活实际相结合,重视易错点的突破,同时对最常见的图形进行归纳、整理。

相关文档
最新文档