19.1.1.1变量与函数第一课时教学设计
19.1.1.1变量与函数第一课时教学设计课题

本课从四个简单的实际问题入手,通过分析问题中数值的变与不变,引出变量与
常量的概念,而且问题中变量的单值对应关系也为学习函数的定义作了铺垫.
基于以上分析, 确定本节课的教学重点是: 能找出一个变化过程中的变量与常量,
了解常量与变量的意义 . 变量是学生第一次接触,对一个运动变化过程中的两个变量
的关系,学生往往只认为是一种确定的数量关系,类似于二元一次方程,没有用运动
注意
活动一: 自学交流 师生活动 1 :
问题一: 汽车以 60 千米/小时的速度匀速行驶, 行驶里程为 s
千米,行驶时间为 t 小时.
1 .请同学们根据题意填写下表:
t/ 时
1
2
3
4
5
t
s/ 千米 60
120 180 240 300 60t
2 .在以上这个过程中,变化的量是 _时间 _t _,路程 s__.不变
关系和变化
义.发现在同 3 .试用含 x 的式子表示 s. S=_ X (5-x ) ______
规律,深刻
一 个 变 化 过 4 、这个问题反映了矩形的 面积 随 二边长
的变化过程. 体会变量与
程中,始终保
常量的含
持不变的量
义.
标准文档
为常量,而数 值发生变化 的量为变量.
实用文案
活动二:
问题 1 :请给活动一(一) ~ (四)中发生了变化的量和始终不
三、教学过程设计
教学过程
教学内容
设计意图
知识准备
通过 知 识 准
人们在认识和描述某一事物时,经常会用“量”来具体表达
备的 解 答 , 提出 本 节 课
事物的某些特征(属性) ,如:速度、时间、路程、温度、面积 需要 研 究 的
人教版数学八年级下册19.1.1《变量与函数》教学设计

课前准备活动:每位同学都注意留心身边事物的运动变化过程,至少记录三个实例,以备上课使用。
【教材分析】
教
学
目
标
知识
技能
1.理解变量、常量的概念以及相互之间的关系,能指出一个变化过程中的变量与常量.
2.能找出变量之间的简单关系,列出简单关系式.
过程
方法
经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.逐步感知变量间的关系.
根据上面的描述,指出其中的变量和常量,
2,放学后,你步行回家的平均速度是80米/分钟,离开学校的路程是s米,离开学校的时间是t分钟。根据以上描述,指出变量与常量并完成下表
t/分钟
1
2
3
4
...
S/米
...
请用时间t表示路程s_______。
教师出示题目,学生分节完成。首先小组内交流,然后统一展示。
补
偿
提
高
如图,在长方形ABCD中,当点P在边AD(不包括A、D两点)上从A向D移动时,有些线段的长度和三角形的面积始终保持不变,而有些则发生了变化。
(1)试分别写出长度变和不变的线段,面积变和不变的三角形。
(2)若AP=x,BC=8,AB=4,求 和
作
业
设
计
作业:
课本P72练习题
教师布置作业,提出具体要求
问题1:找出乌龟追兔子这个过程中所涉及的量。
问题2:请同学们比较一下,乌龟追兔子的过程中,距离s和时间t这两个量与乌龟的速度v有什么不同的地方吗?
问题3:请大家按照刚才的步骤,(先找出变化过程中的量,再判断一下这些量有哪些在发生变化,又有哪些是不变的。)来研究一下刚才大家举出的实例。
八年级数学下册-19.1.1 变量与函数(1)教案

19.1.1变量与函数(第1课时)教案【教材分析】教学目标知识技能1.理解变量、常量的概念以及相互之间的关系,能指出一个变化过程中的变量与常量.2.能找出变量之间的简单关系,列出简单关系式.过程方法经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.逐步感知变量间的关系.情感态度1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.重点1.常量和变量的概念;2.用式子表示变量间关系.难点用含有一个变量的式子表示另一个变量.【教学流程】环节导学问题师生活动二次备课情境引入思考:一辆长途客车在行驶过程中,那些量不变?那些量发生了变化?教师出示问题,学生思考教师点拨:(1)若汽车的速度不变,则汽车所用的时间和汽车走过的路程发生了变化。
(2)若总路程不变,则汽车所需时间和行驶速度发生了变化。
自主探究合作【问题1】一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,•行驶时间为t小时.(1)请同学们根据题意填写下表:t/时 1 2 3 4 5s/千米(2)在以上这个过程中,变化的量是_ __,不变化的量是________.(3)试用含t的式子表示s.____ .学生在教师的启发引导下,经历尝试运算、猜想探究、归纳总结及验证等过程得到正确的结论.(1)分析:这是一个路程、速度与时间的问题,他们三者之间的关系是路程=速度×时间。
教师点名学生回答,(2)变化的量:行驶里程s千米,行驶时间t小时不变的量:60千米/小时交流自主探究合作交流【问题2】每张电影票的售价为10元,如果早场售出票150张,午场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影售出票x张,票房收入为y元,怎样用含x的式子表示y?(1)早场票房收入:_____(元)(2)午场票房收入:_____(元)(3)晚场票房收入:_____(元)(4)用含x的式子表示y的关系式:____________【问题3】用10m长的绳子围成一个长方形,当长方形的一边长x分别为3m、4m、4.5m,它的邻边长y分别为多少?写出y与x的关系式.【思考】上述各个问题中,数值发生变化的量有,数值不变的量有.归纳:在一个变化过程中,我们称数值发生变化的量为变量(variable),数值始终不变的量称之为常量(constant).xy(3)s=60t教师结合学生身边的实例让学生初步了解实际问题中的变量、常量.(1)早场电影票房收入:150×10=1500(元)(2)午场电影票房收入:205×10=2050(元)(3)晚场电影票房收入:310×10=3100(元)(4)y=10x教师出示问题,学生计算填表,感受变化规律:关系式:y=5-x尝试应用1.某种报纸每份a元,购买x份此种报纸共需y元,则axy=中的常量是___________,变量是______________.2.假设钟点工的工作标准为6元/时,设工作时数为t,应得工资额为m,则tm6=,其中常量是______________,变量是______________.3.若球体体积为V,半径为R,则334RVπ=.其中变量是_______、•_______,常量是________.4.在一根弹簧的下端悬挂重物,改变并记录重物教师出示问题,学生先自主,再合作,交流展示,师生共同评价答案:1.a,x、y.2.6,t、m.3.R、V,43π.4.挂1kg重物时弹簧长度:1×0.5+10=10.5(cm)挂2kg重物时弹簧长度:2×0.5+10=11(cm)的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)?(1)挂1kg重物时弹簧长度:l= 1×0.5+10=10.5(cm)(2)挂2kg重物时弹簧长度:l=___×0.5+10=_ _(cm)(3)挂3kg重物时弹簧长度:l=_ _×0.5+10= __(cm)(4)挂xkg重物时弹簧长度:l =_______ _______.5.写出下列问题中的关系式,并指出其中的变量和常量.(1)用20cm的铁丝所围的长方形的长x(cm)与面积S(c m2)的关系.(2)直角三角形中一个锐角α与另一个锐角β之间的关系.(3)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t•(小时)表示水箱中的剩水量y(吨).挂3kg重物时弹簧长度:3×0.5+10=11.5(cm)关系式:L=0.5m+10 5.(1)S=x(10-x),S和x 是变量,10是常量;(2)α=90°-β,α和β是变量,90是常量;(3)y=30-0.5t,y和t 是变量,30和0.5是常量成果展示欣赏自我:本节课你学会了什么?完善自我:对本课的内容,你还有哪些疑惑?教师引导学生归纳总结、反思、梳理知识,帮助学生形成知识体系.补偿提高6.瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数y与层数x之间的关系式.教师出示问题,学生先自主,再合作,交流展示,师生共同评价()1xx21y+=作业设计作业:课本P72练习题教师布置作业,提出具体要求学生认定作业,课下独立完成。
19.1.1变量与函数教学设计(第一课时).1.1变量与函数(第一课时)

小试身手
• 1.指出下列关系式中的变量与常量: • (1) y = 5x -6 • ; (3)y= 4x2 + 5x -7 ;
(2) y =
6 x
;
(4)S=πr2
.
• 2.甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千 米/时)满足S=vt,在这个变化过程中,下列判断中错误的是 ( ) • A.S是变量 B.t是变量 C.v是变量 D.S是常量 • 3.长方形相邻两边长分别为x、y,面积为100,则用含x的式子表示y,则y= _______,在这个问题中, 常量; 是变量. 4 • 4、球的体积V与半径R之间的关系是 V 3 R ,其中常量为_______________ ,变量为_______________。 • 5.一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t(小时)表示水 箱中的剩水量y(吨),y= ,t的取值范围是 .
八年级
下册
19.1.1 变量与函数(1)
利川市团堡中学 龚志
行星在宇宙中的位置随时间而变化
气温随海拔而变化
汽车行驶里程随行驶时间而变化
• • • •
为了更深刻地认识千变万化的世界, 在这一章里,我们将学习 有关一种量随另一种量变化的知识, 共同见证事物变化的规律.
•学习目标: • 1、通过探索具体问题中的数量关系和变化规 律了解常量、变量的意义. • 2、学会用含一个变量的代数式表示另一个变 量. •学习重点: • 1.认识变量、常量 • 2.用式子表示变量间关系 •学习难点: •用含有一个变量的式子表示另一个变量
19.1 .1 变量与函数
• 问题一 • 汽车以60千米/时的速度匀速行驶,行驶里 程为 s 千米,行驶时间为 t 小时,填下面 的表:
变量与函数教学设计-经典教学教辅文档

19.1.1变量与函数教学设计(第一课时)教学目标知识与技能1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.过程与方法1.经历观察、分析、考虑等数学活动过程,发展合情推理,有条理地、清晰地阐述本人观点.2.逐渐感知变量间的关系.情感与价值观要求1.积极参与数学活动,对数学产生好奇心和求知欲.2.构成实事求是的态度和独立考虑的习气.教学重点1.认识变量、常量2.用式子表示变量间关系教学难点用含有一个变量的式子表示另一个变量教学方法精心设疑合作交流自主探求教具预备多媒体课件课时安排1课时教学过程活动一图片欣赏开头语:为了更深入地认识千变万化的世界,在这一章里,我们将学习有关一种量随另一种量变化的知识,共同见证事物变化的规律.活动二提出成绩,创设情境成绩1:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.•行驶工夫为t小时.1.请同学们根据题意填写下表:2.在以上这个过程中,变化的量是________.没有变化的量是__________.3.试用含t的式子表示s.成绩2:每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影票的票房支出各多少元?若设一场电影售出票x张,票房支出为y元,怎样用含x的式子表示y?成绩3:圆形水波慢慢地扩大,在这一过程中,当圆的半径r 分别为10cm,20cm,30cm 时,圆的面积S分别为多少?怎样用半径r来表示面积S?成绩4:用10 m长的绳子围一个矩形,当矩形的一边长x分别为3m,3.5m,4m,4.5m时,它的邻边长y分别为多少?如何用一边长x来表示它的邻边长y?先生合作交流自主完成.结论:1.S=60t; 2.y=10x; 3.S=兀r2;4. y=5–x.成绩升华发问1:分别指出考虑(1)~(4)的变化过程中所触及的量,在这些量中哪些量是发生了变化的?哪些量是一直不变的?发问2:在考虑(1)~(4)的变化过程中,当一个量发生变化时,另一个量能否也随之发生变化?是哪一个量随哪一个量的变化而变化?发问3:在考虑(1)~(4)的变化过程中,发生变化的量无量制条件吗?如何限制?活动三构成概念变量(variable):在一个变化过程中,数值发生变化的量为变量。
第一课时 19.1.1 变量与函数教学设计

第十九章一次函数19.1 函数第一课时19.1.1 变量与函数课件说明:本课是函数的起始课,函数是刻画运动变化现象的重要数学模型,要从数学的角度研究变化现象,把握变化规律,首先要关注变化过程中量的变化,这就是变,本课在充分体会运动变化过程中数量变化的基础上,领会变量与常量的含义,进一步研究运动变化过程中变量之间的对应关系,在观察具体问题中变量之间对应关系的基础上,抽象出函数的概念.学习目标:1.了解变量与常量的意义;2.体会运动变化过程中的数量变化.3.从典型实例中抽象概括出函数的概念,了解函数的概念.学习重点:1.了解变量与常量的意义,充分体会运动变化过程中量的变化.2.概括并理解函数概念中的单值对应关系.一、新课引入二、学习目标:1、了解变量的概念,会区别常量与变量2、理解变化与对应的内涵三、研读课文认真阅读课本第71页的内容,完成下面练习并体验知识点的形成过程.知识点一变量与常量三、研读课文1、汽车以60 km/h的速度匀速行驶,行驶路程为s km,行驶时间为t h,填写表19-1,s的值随t 的值的变化而变化吗?表19-1(1)请同学们根据题意填写下表:(2)在以上这个过程中,变化的是_____________,不变化的量是______.(3)试用含t的式子表示s 是_______.2、每张电影票的售价为10元,如果第一场售出150张票,第二场售出205张票,第三场售出310 张票(1)第一场电影的票房收入_____元;第二场电影的票房收入_____元;第三场电影的票房收入_____元.(2) 在以上这个过程中,变化的______________ 不变化的量是___________.(3) 设一场电影售出票x张,票房收入为y元,怎样用含x的式子表示y?(4)y的值随x的值的变化而变化吗?3、你见过水中涟漪吗?圆形水波慢慢地扩大.在这一过程中,当圆的半径分别为10 cm,20 cm,30 cm时,圆的面积s分别为多少?s的值随r的值的变化而变化吗?4、用10 m长的绳子围一个矩形.当矩形的一边长x分别为3 m,3.5 m,4 m,4.5 m时,它的邻边长y分别为多少?y的值随x的值的变化而变化吗?思考: 上面的问题,你能说出哪些量的数值是变化的?哪些量的数值是始终不变的? 变化的量:时间 t ,路程 s ; 售出票数x , 票房收入y ; 圆的半径r,圆的面积s ; 矩形的一边长x ,矩形的邻边长y 。
人教版数学八年级下册19.1.1《变量与函数》教学设计1
人教版数学八年级下册19.1.1《变量与函数》教学设计1一. 教材分析《变量与函数》是人教版数学八年级下册第19.1.1节的内容,本节课主要介绍变量的概念以及函数的定义。
学生在学习本节课之前,已经掌握了代数基础知识,如代数式、方程等,为本节课的学习打下了基础。
本节课的内容是学生学习更高级数学知识的重要基石,对于培养学生的逻辑思维能力、解决问题的能力具有重要意义。
二. 学情分析八年级的学生已经具备了一定的代数基础,对于未知数、代数式等概念有了初步的了解。
但是,学生在学习过程中,可能对于抽象的变量概念、函数的定义及表示方法等方面存在一定的困难。
因此,在教学过程中,需要注重引导学生通过具体实例来理解抽象概念,提高学生的抽象思维能力。
三. 教学目标1.理解变量的概念,掌握常量与变量的区别。
2.理解函数的定义,掌握函数的表示方法。
3.能够运用变量和函数的知识解决实际问题。
四. 教学重难点1.重点:变量、函数的概念及其表示方法。
2.难点:函数概念的理解,函数表示方法的应用。
五. 教学方法1.情境教学法:通过生活实例引入变量和函数的概念,使学生能够更好地理解抽象知识。
2.引导发现法:教师引导学生通过观察、分析、归纳等方法,自主发现变量和函数的规律。
3.实践操作法:让学生通过动手操作,加深对变量和函数概念的理解。
六. 教学准备1.教学课件:制作生动有趣的教学课件,帮助学生直观地理解变量和函数的概念。
2.教学实例:准备一些生活实例,用于引导学生学习变量和函数。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如气温、水位等,引导学生思考这些量是如何变化的。
通过观察、讨论,让学生初步理解变量概念。
2.呈现(10分钟)介绍常量与变量的定义,让学生明确常量与变量的区别。
接着,引入函数的定义,讲解函数的表示方法,如解析式、图象等。
3.操练(10分钟)让学生分组讨论,举例说明生活中的一些函数关系,如身高与年龄的关系、商品价格与数量的关系等。
人教版八年级下第19章一次函数19.1.1变量与函数教案
3.培养学生合作交流、自主探究的学习习惯,提高数学建模和数学运算的核心素养。
4.激发学生学习兴趣,培养勇于挑战、善于思考的学习态度,提升学生的数学素养和综合素质。
在教学过程中,重点关注学生在以下方面的表现:
1.能否运用所学知识,分析并解决实际问题,体现数学的应用价值。
3.重点难点解析:在讲授过程中,我会特别强调变量与常量的区别以及函数的三要素。对于难点部分,我会通过举例和图示来帮助大家理解一次函数的定义和图像特点。
(三)实践活动(用时10ቤተ መጻሕፍቲ ባይዱ钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如公交车票价与乘车距离的关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如用尺子和直尺绘制一次函数的图像,观察斜率和截距的变化。
五、教学反思
在上完这节课之后,我对自己的一些教学设计和学生的反应进行了思考。我发现,通过生活中的实例引入变量和函数的概念,学生们能够更直观地理解这些抽象的数学概念。他们对于一次函数的应用表现出浓厚的兴趣,尤其是当我将函数与他们的日常生活联系起来时,比如购物打折、手机话费等问题。
我注意到,在教学过程中,有些学生对一次函数的图像绘制感到困惑。我意识到,这里可能需要更多的直观演示和实际操作,让学生亲手尝试,从而更好地理解图像的生成过程。在接下来的课程中,我打算增加一些互动环节,比如让学生分组在教室里用道具来模拟一次函数的图像,这样既能增强他们的动手能力,也能加深对一次函数图像特征的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解变量与函数的基本概念。变量是随着某些条件变化而变化的量,而函数则是描述两个变量之间依赖关系的数学模型。它们在数学和生活中都有着广泛的应用。
人教版八年级数学下册19.1.1变量与函数(第1课时)优秀教学设计
(2)在以上这个过程中,变化的量是_和。不变化的量是。
(3)若一场电影售票x张,票房收入y元.请用含x的式子表示y是:y=
三、自主交流 探究新知
(1)设圆柱的底面积的半径为R不变,圆柱的体积V与圆柱的高h满足V= .在这个式子中的常量和变量分别是什么?
验收小结
五、评价小结:书写变量关系式的一般方法步骤是:
1.确定事物变化中的.
2.尝试运算寻求变量间存在的规律.
3.利用学过的有关知识公式确定关系式.
教学心得
1.以身边的实际问题展开讨论,突出数学与现实的联系.
2.及时进行学法指导,注重方法规律的提炼总结.
3.鼓励学生独立思考,自主探索,自己寻找问题的答案,在交流中完善自己的结果.
四、自主应用 当堂检测
1.一辆自行车在2千米长的环形赛道上行驶了5圈,
(1)请根据码表记录的速度,填写每圈的行驶的时间.
第一圈
第二圈
第三圈
第四圈
第五圈t(时)ຫໍສະໝຸດ V(千米/时)510
15
20
25
(2).在以上这个过程中,变化的量是______和。不变化的量是。
(3)对照自主学习第一题,你能得到什么结论
2.若球体体积为V,半径为R,则V= .其中变量是_____、 ______,常量是______.
课题
19.1.1变量与函数(第1课时)
优化方案
目标
1.认识变量、常量
2.学会用含一个变量的代数式表示另一个变量
准备
多媒体课件,导学案
设境
定向
一、创境引入:出示图片,行星在宇宙中的位置随时间而变化,气温随海拔而变化,汽车行驶路程随时间而变化,等等大千世界都处在不停地变化之中,那么如何来研究这些运动变化,并找寻其中的规律呢?数学上通常采用函数来刻画这些运动变化。
19.1.1变量与函数(1)教学设计【精品教案】
《19.1.1 变量与函数(1)》教学设计一、教学目标知识与技能1.了解常量与变量的含义,能分清实例中的常量与变量.2.学会用含一个变量的代数式表示另一个变量.过程与方法经历观察、分析、思考等数学活动过程,发展合情推理,以提高分析问题和解决问题的能力.情感、态度与价值观引导学生探索实际问题中的数量关系,渗透事物是运动的,运动是有规律的辩证思想,培养学生对学习的兴趣和积极参与数学活动的热情.二、教学重难点【重点】认识变量、常量,会用式子表示变量间的关系.【难点】用含有一个变量的式子表示另一个变量.三、教学过程设计活动一:情境感知,新课导入万物皆变,大到天体、小到分子都处在不停的运动变化之中,如何从数学的角度来刻画这些运动变化并寻找规律呢?数学上常用变量与函数来刻画各种运动变化.【师生活动】学生说出自己的看法.教师也可以让学生举出自己熟悉的例子,据此引出今天学习的课题:变量与函数.【设计意图】由学生经历的事情提问题,能引起学生的好奇心.活动二:问题探究,新知领悟(一)变量与常量的概念问题1:汽车以60 km/h的速度匀速行驶,行驶时间为t h.填写表19-1,s的值随t的值的变化而变化吗?(出示教材表19-1)表19-1t/h 1 2 3 4 5s/km【师生活动】学生填表,并思考.教师引导学生交流:1.根据题意填写下表:t/h 1 2 3 4 5s/km2.在以上这个过程中,变化的量是.不变化的量是.3.试用含t的式子表示s.4.这是个行程问题,发现:随着时间t的变化,汽车行走的路程S_____________________.【设计意图】挖掘和利用实际生活中与变量有关的问题情境,让学生经历探索具体情境中的变量与常量.问题2:电影票的售价为10元/张,第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各是多少元?设一场电影售出x张票,票房收入为y元,y的值随x的值的变化而变化吗?【师生活动】学生分析问题,并同桌交流.教师引导解析.1.电影票的售价为10元/张,第一场售出150张票,则第一场电影的票房收入为元; 第二场售出205张票,则第二场电影的票房收入为元; 第三场售出310张票,则第三场电影的票房收入为元. 2.在以上这个过程中,变化的量是_________,不变化的量是______.3.试用含x的式子表示y._______4.这个问题反映了票房收入____随售票张数_____的变化过程.【设计意图】通过适当地把问题进行分解,引导学生通过合理、正确的思维方法探索出变化规律.问题3:你见过水中涟漪吗?如图所示,圆形水波慢慢的扩大.在这一过程中,当圆的半径r分别为10 cm,20 cm,30 cm时,圆的面积S 分别为多少?S的值随r的值的变化而变化吗?【师生活动】学生活动填表,并讨论.教师引导学生交流.1.填表:半径r(cm) 10 20 30圆面积S(cm2)2.圆面积S与圆的半径R之间的关系式是;其中变化的量是;不变化的量是.3.这个问题反映了________随______的变化过程.【设计意图】挖掘和利用实际生活中与变量有关的问题情境,让学生经历探索具体情境中两个变量关系的过程,直接获得探索变量关系的体验.问题4:用10 m长的绳子围成一个矩形,当矩形的一边长x分别为3 m,3.5 m,4 m,4.5 m时,它的邻边长y分别为多少?y的值随x的值的变化而变化吗?【师生活动】学生活动小组讨论后,教师进行解析:因为矩形两组对边相等,所以它的一边长与它的邻边长的和应是周长10 m的一半,即5 m.若矩形一边长为3 m,则它的邻边长为5-3=2(m).若矩形一边长为3.5 m,则它的邻边长为5-3.5=1.5(m).若矩形一边长为4 m,则它的邻边长为5-4=1(m).若矩形一边长为4.5 m,则它的邻边长为5-4.5=0.5(m).若矩形一边长为x m,则它的邻边长为y=5-x(m),y随x的增大而减小.【设计意图】在本环节中,设计了问题情境,目的是让学生在现实情境中感知变量和常量的存在和意义,体会变量之间的互相依存关系和变化规律.此外,希望通过这几个问题引出常量、变量的概念,使学生体验从具体到抽象的认识过程.这些问题反映了不同事物的变化过程,涉及多个量,你能将这些问题中出现的量按照某种标准进行分类吗?【师生活动】学生分组讨论,交流自己的看法.按照有无变化,我们发现其中有些量(例如时间t,路程s;售出票数x,票房收入y……)的值是变化的,有些量的值始终不变(例如速度60 km/h;电影票的单价10元……),因此可分为两类.师生共同总结出变量和常量的定义并板书.变量和常量的定义:在某个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量叫做常量.【设计意图】通过上述的四个问题进行具体的讲评,借助实例来理解变量、常量的概念,在讲解概念后强调常量与变量的区别与联系,使学生进一步理解、领会有关常量和变量的概念.练习1 指出下列问题中的变量和常量:(1)某市的自来水价为4元/t.现要抽取若干户居民调查水费支出情况,记某户月用水量为xt,月应交水费为y元.(2)某地手机通话费为0.2元/min.李明在手机话费卡中存入30元,记此后他的手机通话时间为tmin,话费卡中的余额为w元.(3)水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π.(4)把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y本.【解答】(1)变量是x,y;常量是4.(2)变量是t,w;常量是0.2, 30.(3)变量是r,C;常量是π.(4)变量是x,y;常量是10.活动三:典例分析,知识理解例1 填空(1)某位教师为学生购买数学辅导书,书的单价是4元,则总金额y (元)与学生数n(个)的关系式是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.1.1《变量与函数》(第1课时)教学设计
二、教学目标和重难点
三、教学过程设计
四、目标检测设计
检测题目考查目的、答案及解析
一、精心选一选(每小题只有一个正确选项,请把正确选项的字母代号填在题后的括号内)
1.某人要在规定时间内加工100个零件,对剩余零件个数p 与工作时间t之间的关系,下列说法正确的是()A.数量100、p、t都是变量 B.数量100和p都是常量
C.p、t都是常量 D.100、t都是常量2.一根蜡烛原长是a(cm),点燃后燃烧的时间为t(min),剩余蜡烛的长为y(cm)下列说法正确的是()
A.常量是a,变量是y、t B.常量是t,变量是a、y
C.常量是y,变量是a、t D.以上说法都不对3.以固定的速度(米/秒)向上抛一个小球,小球的高度(米)与小球的运动的时间(秒)之间的关系式是
,在这个关系式中,常量、变量分别为( ) A.4.9是常量,、是变量
B.是常量,、是变量
C.、是常量,、是变量
D.4.9是常量,、、是变量
1、考查目的:考查常量和变量的概念.
答案:C.
解析:在同一变化过程中,始终保持不变的是常量,数量变化的是变量.故答案应选择C.
2、考查目的:考查常量与变量的概念.
答案:A.
解析:蜡烛原长是固定的,所以a是常量,点燃后,燃烧时间越长,剩余蜡烛越短,y随着t的变化而变化,所以t,y是变量.故答案应选择A.
3、考查目的:考查常量和变量的概念.
答案:C.
解析:在关系式中,速度
和数量是常量,小球的高度(米)随小球的运动时间(秒)的变化而变化,是变量.故答案应选择C.
二、细心填一填(把正确答案直接填在题中横线上)
4. 齿轮每分钟120转,如果表示转数,表示转动时间,那么用表示的关系是 ,其中 为变
量, 为常量.
5. 表格列出了一项实验的统计数据,表示小球从高度(单位m )落下时弹跳高度(单位m )与下落高的关系,据表可以写出的一个关系式是 .
50 80 100 150 25 40 50 75
6. 下表是某报纸公布的世界人口数据情况: 年份
1957
1974 1987 1999 2010 2025 人口数 30亿
40亿 50亿
60亿 70亿 80亿 表
中
有
个
变
量
,
其
中 随 的变化而变化,变化趋势是 .
4、考查目的:考查常量与变量的概念.
答案:;
;
.
解析:齿轮的转速为
转/分,是固定不变的,所以是常量;转数随着时间的变化而变化,所以是
变量.
5、考查目的:考查变量间的关系.在具体问题中,用代数是表示变量间的关系.
答案:
.
解析:根据表格数据分析,小球弹跳高度的取值是相应的下落高度的值的一
半,故关系式为.
6、考查目的:考查常量与变量的概念.
答案:2;人口数;时间;随着时间的增大,人口数也在增大.
解析:从表中可以看到,人口数随时间(年份)的变化而变化.变量有两个.随着时间的推移,人口数也越来越大.
三、专心解一解(解答应写出文字说明、演算步骤或证明过程)
7.某种水果的销售数量x(千克)与销售额y(元)的关系如下表所示:
数量x
(千克)
1 2 3 4 5
销售额y (元)
2
.1
4
.2
6
.3
8
.4
1
0.5
(1)上面的表格反映了哪两个变量之间的关系?
(2)请估计销售量是15千克时,销售额是多少元?
8.已知直线m、n之间的距离是4,的顶点在直线m上,顶点、在直线n上,指出其中的变量和常量,并求的面积s与的边长x之间的关系式.
7、考查目的:考查实际背景下常量与变量的概念.答案:(1)表格反映了销售数量x(千克)与销售额y(元)之间的关系;(2)估计销售15千克时,销售额是31.5元.
解析:表格第一行是销售量,第二行是对应的销售额,用常量和变量的概念可以判断.根据表中提供的数据,不难发现,销量与销售额的数量关系为,将代入式中,可得.
8、考查目的:考查常量与变量的概念及变量间的关系.
答案:常量是4,变量是x、s.面积s与的边长x 之间的关系式为.
解析:本题以三角形面积为问题背景,考查常量与变量之间的关系.此问题中,三角形的高是定值,当底边
的长变化时,面积s相应变化.根据三角形面积公式得到
.
五、教学反思
通过《变量与函数》的教学,本人对概念课的教学设计与教学实践有了更深入的了解.本设计呈现的课堂结构为:(1)揭示学习目标;(2)引入数学原型;(3)抽象出数学现实,逐步达致数学形式化的概念;(4)巩固概念练习(概念辨析);(5)小结(质疑).“数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境.但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节.从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题.本人在学生完成问题情境的几个问题后,提出系列问题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?
通过哪一个量可以确定另一个量?”在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量.。