模态分析

合集下载

模态分析

模态分析
2014 Studies
模态分析
模态分析结果:
阶次 序列 特征值
Nastran f06文件:
固有频率 特征值输出 广义质量 广义刚度
采用质量正交化广义质量=1
与abaqus输出文件类似,在nastran模态分析设置中,我们也选择了质量正交化法则。从上面 的数据中可以看到,此模态计算包含了6个刚体模态,即自由模态。所谓的自由模态计算是指 整体模型没有任何约束,这样计算时,整体模型就会被当作一个刚体,而此刚体在6个自由度上 都有微弱的振动,因此反映在频率值上就是远远小于1hz的振动模态。从第7阶开始才是模型的 整体或者局部模态。如果在无约束的模型中,第7阶模态仍然还特别小,那么就要注意这阶模 态是否正常,可能模型的连接出了问题。需要修改模型,重新计算。 对于刚体模态—类似于应变自由发生的机构,节点间无相对位移。在静力分析中,刚体模态是 有矩阵奇异导致的,一般添加约束,使用惯量释放来避免这种情况。在动力学分析中,刚体 模态经常出现,如飞行中的飞行器或轨道中的卫星,这些情况刚体模态可能是模型求解的一 部分或者可能更重要,约束结构避免刚体模态将导致改变结构动力学特性以及响应。
2014 Studies
模态分析
我们设计的所有结构都具有各自的固有频率和模态振型。本质上,这些特性取决于确定结 构固有频率和模态振型的结构质量和刚度分布。作为一名设计工程师,需要识别这些频率 ,并且当有外力激励结构时,应知道它们怎样影响结构的响应。理解模态振型和结构怎样 振动有助于设计工程师设计更优的结构。 现在我们能更好地理解模态分析主要是研究结构的固有特性。理解固有频率和模态振型( 依赖结构的质量和刚度分布)有助于设计噪声和振动应用方面的结构系统。我们使用模态 分析有助于设计所有类型的结构,包括机车、航天器,宇宙飞船、计算机、网球拍、高尔 夫球杆……这些清单举不胜举。

模态分析原理

模态分析原理

模态分析原理模态分析是指通过对物体或系统的振动特性进行分析,来确定其固有频率、振型和振动模态等相关参数的一种分析方法。

在工程领域中,模态分析被广泛应用于结构设计、振动控制、故障诊断等方面,具有重要的理论和实际意义。

本文将对模态分析的原理进行介绍,希望能够帮助读者更好地理解和应用模态分析技术。

模态分析的基本原理是通过对系统的动力学方程进行求解,得到系统的固有频率和振型。

在进行模态分析时,需要考虑系统的质量、刚度和阻尼等因素,这些因素将直接影响系统的振动特性。

在实际工程中,通常会采用有限元方法或者试验测量的方式来获取系统的动力学参数,然后利用模态分析的理论进行计算和分析。

在进行模态分析时,首先需要建立系统的动力学模型,这包括系统的质量矩阵、刚度矩阵和阻尼矩阵等参数。

然后利用模态分析的理论,可以求解系统的特征方程,从而得到系统的固有频率和振型。

通过对系统的固有频率和振型进行分析,可以了解系统的振动特性,包括主要振动模态、振动形式和振动幅值等信息。

在实际工程中,模态分析通常用于结构设计和振动控制方面。

通过对结构的模态进行分析,可以确定结构的主要振动模态和固有频率,从而指导结构设计和优化。

同时,还可以通过模态分析来评估结构的振动响应,为振动控制和减震设计提供依据。

除了在结构设计和振动控制方面的应用外,模态分析还被广泛应用于故障诊断和结构健康监测等领域。

通过对系统的模态进行分析,可以发现系统的异常振动模态和频率,从而判断系统的工作状态和健康状况。

这对于提前发现系统的故障和隐患,具有重要的意义。

总之,模态分析作为一种重要的振动分析方法,具有广泛的应用前景和理论价值。

通过对系统的振动特性进行分析,可以深入理解系统的动力学行为,为工程设计和故障诊断提供重要的依据。

希望本文的介绍能够帮助读者更好地理解和应用模态分析技术,推动其在工程领域的进一步发展和应用。

模态分析及意义介绍

模态分析及意义介绍

六 模 态 分 析 总 结
五 模 态 举 例 CAE
四 模 态 试 验 举 例
三 模 态 问 题 举 例
二 整 车 模 态 分 布
一 模 态 基 础 理 论
车架前三阶模态振型:

图2-1 第一阶频率
模 态 举 例 CAE
图2-2 第二阶频率
图2-3 第三阶频率
五 模 态 举 例 CAE
阶次
CAE计算
一 模 态 基 础 理 论
1.3模态分析基本原理 模态分析有很多种方法,仅介绍频域法模态拟合的基本原理:
一 模 态 基 础 理 论
经离散化处理后,一个结构的动态特性可由N 阶矩阵微分方程描述:
经过拉普拉斯变换等处理,可得到频率响应函数矩阵H(ω),该矩阵 中矩阵中第i行第j列的元素
ωr、ξr 、Φr分别称为第r 阶模态频率、模态阻尼比和模态振型 。
100
0.056
4.79
3.47
0.229
0.748
0.646
Mode3
26.684 Hz
0.013
0.056
100
0.012
0.11
5.384
0.002
0.003
Mode4
36.487 Hz
2.957
4.79
0.012
100
1.377
0.003
1.179
1.786
Mode5
51.299 Hz
1.022
3.2方向盘低速抖动问题 某样车5档缓加方向盘12点Z向振动colormap图

2700.00 2.01 4.90
模 态 问 题 举 例
Tacho1 (T1)

模态分析及意义介绍

模态分析及意义介绍

模态分析及意义介绍模态分析是一种定量研究手段,用于解释和预测决策问题。

它基于概率理论和数学模型,结合多个影响因素,以及不确定性和风险因素,分析不同情景下的决策结果。

模态分析具有广泛的应用领域,例如项目管理、金融投资和政策制定等。

模态分析的基本原理是通过建立数学模型,模拟在不同情景下的决策结果。

这些情景通常包括决策变量的不同取值,以及其他相关因素的变化。

通过计算模型中不同情景下的决策结果,可以比较不同方案的优劣,并预测可能出现的风险和不确定性。

模态分析的意义主要体现在以下几个方面:1.提供决策支持:模态分析可以帮助决策者在制定决策方案时考虑到多种不确定因素和风险。

通过模拟不同情景下的决策结果,决策者可以更全面地评估不同方案的风险和潜在收益,从而做出更明智的决策。

2.预测可能的风险和不确定性:在现实生活中,决策过程往往伴随着不确定因素和风险。

模态分析可以通过模拟不同情景下的决策结果,识别可能的风险和不确定性,并为决策者提供相应的预测和应对策略。

3.评估方案的可行性和稳定性:模态分析可以帮助决策者评估不同方案的可行性和稳定性。

通过模拟不同情景下的决策结果,可以比较各种方案的优劣,并评估其在不同情况下的表现。

4.提供决策方案的灵活性:模态分析可以提供决策方案的灵活性。

通过分析不同情景下的决策结果,决策者可以调整决策方案,以适应不同情况下的需求和要求。

5.优化资源利用和风险控制:模态分析可以帮助决策者优化资源利用,降低风险。

通过模拟不同情景下的决策结果,可以找到最佳方案和最合理的资源配置,从而达到资源的最大利用和风险的最小化。

总之,模态分析是一种重要的决策支持工具。

它可以帮助决策者全面评估决策方案的优劣,并预测可能出现的风险和不确定性。

通过模态分析,决策者可以做出更明智、更有针对性的决策,以实现最佳的决策结果。

机械工程中的模态分析方法

机械工程中的模态分析方法

机械工程中的模态分析方法在机械工程领域,模态分析是一种重要的工具,用于研究和评估机械系统或结构的动力特性。

通过模态分析,工程师可以了解结构的固有振动频率、振型及其相关参数,从而对系统进行设计、改进和优化。

一、模态分析的基本原理模态分析基于结构的自由振动特性。

当结构受到外界激励或内部失稳因素影响时,会出现自由振动。

模态分析通过对这种振动进行精确测量和分析,得到结构的模态参数。

在模态分析中,最关键的一步是确定结构的固有频率和相应的振型。

固有频率是结构在自由振动时所表现出的振动频率,它与结构的刚度密切相关。

振型则描述了结构在不同固有频率下的变形形态,是结构动态响应的关键指标。

二、模态分析的常用方法1.加速度法加速度法是最常用的模态分析方法之一。

它基于物体的加速度与力的关系,通过测量结构上的加速度响应来推导出结构的模态参数。

具体操作中,可以通过加速度传感器将结构上的振动信号采集下来,再使用信号处理算法对信号进行分析。

2.激励-响应法激励-响应法是另一种常见的模态分析方法。

该方法将结构受到的激励信号与结构的振动响应进行对比,从而得到结构的模态参数。

激励信号可以是一个冲击物、一次瞬态激励或周期性激励。

3.频率域方法频率域方法是一种基于结构在频域内的特性进行模态分析的方法。

它以傅里叶变换为基础,将结构的时域信号转化为频域信号,进而得到结构的固有频率和振型。

频率域方法具有计算效率高、信号处理简易等优点。

4.有限元法有限元法是一种数值方法,常用于模态分析中的结构模态分析。

该方法将结构分解为多个小单元,利用有限元理论和方法对结构进行数值模拟。

通过进行有限元分析和计算,可以得到结构的固有频率和振型。

三、模态分析的应用领域模态分析在机械工程领域中具有广泛的应用。

它可以帮助工程师了解和评估结构的动力特性,发现结构的固有频率、共振点和脆弱部位,从而进行系统的设计和优化。

模态分析在航空航天领域中有着重要的应用。

通过对飞机、火箭等结构进行模态分析,可以评估其动态特性和共振情况,保证飞行安全性和运行可靠性。

机械系统动力学特性的模态分析

机械系统动力学特性的模态分析

机械系统动力学特性的模态分析机械系统动力学是研究物体在受到外力作用下的运动规律和机械系统动态特性的学科。

其中,模态分析是一种重要的方法,用于研究机械系统的固有振动特性。

本文将介绍机械系统动力学特性的模态分析方法及其应用。

一、模态分析的基本概念模态分析是研究机械系统振动模态的一种方法。

模态是指机械系统在自由振动状态下的振动形式和频率。

模态分析通过分析机械系统的初始条件、约束条件和外力等因素,确定机械系统的固有频率和振型,并进一步得到机械系统的振荡特性。

二、模态分析的基本步骤模态分析一般包括以下几个步骤:1. 系统建模:根据实际情况,将机械系统抽象为数学模型,包括质量、刚度、阻尼等参数。

2. 求解特征值问题:通过求解系统的特征值问题,得到系统的固有频率和振型。

3. 模态验算:将得到的固有频率和振型代入原始方程,验证其是否满足振动方程。

4. 模态分析:通过对系统的振动模态进行进一步分析,得到系统的动态响应和振动特性。

三、模态分析的应用模态分析在机械工程领域有广泛的应用。

主要包括以下几个方面:1. 结构优化设计:通过模态分析,可以评估机械系统的固有频率和振型,判断系统是否存在共振现象或其他异常振动情况,为结构设计提供依据。

2. 动力学特性分析:通过模态分析,可以了解机械系统的振动特性,包括固有频率、阻尼特性和模态质量等指标,为系统的动力学性能评估和优化提供依据。

3. 故障诊断与预测:模态分析可以用于机械系统的故障诊断和预测。

通过对机械系统振动模态的变化进行监测和分析,可以判断系统是否存在故障,并提前发现潜在的故障。

4. 振动控制技术:通过模态分析,可以了解机械系统振动的特征,并采取相应的振动控制措施。

比如调节系统的阻尼、改变系统的刚度等,来减小系统的振动幅度,提高系统的稳定性和工作性能。

四、模态分析存在的问题与挑战模态分析作为一种成熟的技术方法,仍然面临一些问题和挑战。

例如,模态分析需要对机械系统进行精确的建模,包括质量、刚度和阻尼等参数的准确度和全面性。

模态分析

模态分析

1. 什么是模态分析?模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。

模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。

这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。

这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。

通常,模态分析都是指试验模态分析。

振动模态是弹性结构的固有的、整体的特性。

如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。

因此,模态分析是结构动态设计及设备的故障诊断的重要方法。

模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。

2. 模态分析有什么用处?模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。

模态分析技术的应用可归结为以下几个方面:1. 评价现有结构系统的动态特性;通过结构的模态分析可以求得各阶模态参数(模态频率、模态振型以及模态阻尼),从而评价结构的动态特性是否符合要求,并校验理论计算结构的准确性。

2. 在新产品设计中进行结构动态特性的预估和优化设计;3. 诊断及预报结构系统的故障;近年来,结构故障技术发展迅速,而模态分析已成为故障诊断的一个重要方法。

利用结构模态参数的改变来诊断故障是一种有效方法。

例如,根据模态频率的变化可以判断裂纹的出现;根据振型的分析可以确定断裂的位置;根据转子支承系统阻尼的改变,可以诊断与预报转子系统的失稳等。

4. 控制结构的辐射噪声;结构噪声是由于结构振动所引起的。

结构振动时,各阶模态对噪声的“贡献”并不相同,对噪声贡献较大的几阶模态称为“优势模态”。

模态分析方法与步骤

模态分析方法与步骤

模态分析方法与步骤下面我将从模态分析的定义、方法、步骤和案例实践等方面进行详细介绍。

一、模态分析的定义模态分析是指通过对系统的不同动态模态(如结构模态、振动模态等)进行分析和评估,以揭示系统的特性、行为和潜在问题。

其目的是为了更好地了解系统的功能、性能、稳定性等,并为系统的优化提供依据。

二、模态分析的方法1.实验方法:通过实际测试和测量,获取系统的模态参数(如固有频率、阻尼比、模态形态等),从而分析系统的动态特性。

2.数值模拟方法:利用数学建模和计算机仿真技术,建立系统的动力学模型,并进行模拟分析,以获取系统的模态响应和模态特性。

3.统计分析方法:通过对大量历史数据或采样数据的分析,探索系统的模态变化规律和概率分布情况。

三、模态分析的步骤1.确定分析目标:明确需要进行模态分析的对象、目的和要求。

例如,是为了定位系统的故障、评估系统的稳定性、优化系统的结构等。

2.数据采集和处理:根据分析目标,确定所需的数据类型和采集方法,例如使用传感器进行采集或获取历史数据。

然后对采集到的数据进行处理,如滤波、时域变换、频域分析等。

3.建立模型:根据已有的数据和系统特性,建立适当的模型。

例如,对其中一结构物进行模态分析时,可以建立结构的有限元模型。

4.分析模态特性:利用实验、仿真或统计方法,分析系统的模态特性,如固有频率、振型等。

可以绘制频谱图、振型图等,以便直观地展示结果。

5.识别问题和改进方案:基于对系统模态特性的分析,识别潜在问题,并提出相应的改进方案。

例如,如果发现其中一模态频率太低,可能意味着系统存在过度振动或共振问题,需要采取相应的措施来改进。

6.验证和优化:对改进方案进行验证和优化,以确保其有效性和可行性。

可以通过迭代分析和实验评估来逐步完善方案。

四、模态分析的案例实践1.桥梁的模态分析:对大跨度桥梁的模态分析可以帮助提前发现潜在的共振问题,并优化桥梁的设计和结构。

例如,可以通过数值模拟方法对桥梁的振动特性进行分析,以确定固有频率和振型,并预测桥梁在不同外界激励下的动态响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Change Title …
在工作区右下角显示标题 不能输入中文 Utility Menu> Plot> Replot
设置单元类型
1
3
设置单元选项
注意:不是所有的单元 都能设置单元选项!
定义单元的实常数
定义材料属性
加载及求解
进入ANSYS求解器/SOLU
Main Menu> Solution
为便于理解振动现象,我们从了解固有频率(固有周期),固有模态, 共振等表示振动特有现象的术语开始
频率分析的相关知识
固有频率(以钟摆为例) 摆动钟摆,则钟摆以一定的周期和一定的频率有规律地振动 起来了。 振动的幅度(振幅)大也好小也好,周期和频率总是一定的。 振幅:大 振幅:小 振动频率:是单位时间里摆动的次数。 1秒钟内的次数用Hz(赫兹)来表示。 周期:摆动1次所需要的时间。 钟摆的形状(长度)决定了其固有的数值。 钟摆越长周期越长,钟摆越短周期越短。
指定分析标题(Change Title)
Utility Menu> File> Change Title
前处理器/PREP7,Main Menu> Preprocessor
选择单元类型 设置单元实常数 定义材料属性 创建几何模型
Change Jobname …
Enter new jobname:输入文件名 New log and error files?复选框打上钩
模态分析的定义
模态分析可以确定一个结 构的固有频率和振型,固 有频率和振型是承受动态 载荷结构设计中的重要参 数。 如果要进行模态叠加法谐 响应分析或瞬态动力学分 析,固有频率和振型也是 必要的。 所有动力学分析的基础。
模态分析的优点
模态分析的用途:
使结构设计避免共振或以特定频率进行振动(例如桥梁 设计); 使工程师可以认识到结构对于不同类型的动力载荷是如 何响应的; 有助于在其它动力分析中估算求解控制参数(如时间步 长)。
第三讲模态分析
在开始ANSYS分析之前,您需要作一些决定, 诸如分析类型及所要创建模型的类型。
标题如下:
A. 哪一种分析类型? B. 模拟什么? C. 采用哪一种单元类型?
准备工作
哪种分析类型?
分析类型通常遵循以下原则: 结构分析 实体的运动、压力、接触 热分析 热、高温及温度变化。 电磁场分析 装置承受电流(交流或直流)、电磁波、 电压或电荷激励 流体分析: 气体或液体的运动,或包容的气体/ 流体 耦合场: 上述分析的任意组合 在这里,我们将集中讨论结构分析。
频率分析的相关知识
设计就要避免出现共振现象
共振产生时的条件有以下两条: 激振力的周期(频率)和物体的固有周期(固有频率)相一致或接近 激振力的持续时间长到使物体振动以充分发展的时间
频率分析的相关知识
频率分析就是计算结构的共振频率及对应振动模态,不计 算位移和应力 固有频率:结构趋向于振荡的频率,固有的振动频率。 基本频率:最低的固有频率 固有振动模态:特定的固有频率对应唯一的振动形式。 每种模态对应着特定的固有频率
例如:考虑跳水板的分析 如果潜水者静止地站在跳水板上, 做一个静力分析已经足够了。 但是如果潜水者在跳水板上下跳动, 必须进行动力分析
准备工作
哪种分析类型?
如果施加的荷载随时间快速变化,则惯性力和 阻尼力通常是重要的 因此可以通过载荷是否是时间相关来选择是静 力还是动力分析 如果在相对较长的时间内载荷是一个常数, 请选择静态分析。 否则,选择动态分析 总之,如果激励频率小于结构最低阶固有频率 的1/3,则可以进行静力分析。
固有振动模态(以弦的振动为例) 两端被固定住的弦,以手指弹一下张紧的弦,弦则振动 起来,振动在空气中传播发出声音。弦以下图所示的各 个振动形式所对应的状态,振动起来。这种振动形式称 为弦的固有模态。 固有振动形态 名称 1阶振动 2阶振动
3阶振动
频率分析的相关知识
固有振动模态(以弦的振动为例) 固有模态和固有频率是一一对应的。对于1阶固有模态, 就有以1阶固有频率振动的振动形式,对于2阶固有模态 则有2阶频率振动的振动形式。 象这样所定的频率和振动模态组合起来则存在着1阶、2 阶、3阶……等多个振动形式。
要点:振动的形式(振形)称为振动模态。 一般从低频开始,称为1阶、2阶、3阶……固有频率,并且具 有与各个固有频率对应的振动模态。
频率分析的相关知识
共振(以荡秋千为例) 荡得好的人荡几下马上就能荡得很高
这是因为与秋千摆动的节拍和时间配合起来的原因。 换句话说,与秋千的固有频率(固有周期)相配合,这 种状况,称为共振。 共振,对于机械和结构一般是应该要避免的一种现象。
频率分析的相关知识
设计产品时,应保证产品的固有频率不与激励频率相吻 合。一般可将其固有频率设计成远离激振频率10~20% 以上。 为了改变结构的固有频率在危险范围外,可通过改变产 品的几何结构、材料、避震特性或在适当的地方添加质 量单元。 对于结构的固有频率,如果结构变刚,则频率高,如 果变柔,则频率低。 另外,振动部件的重量重,则频率变低,重量轻,频 率变高。 结构要变刚,即提高结构的刚性,可以加厚构件,可 以加入补强材。 结构要变柔,也即进行结构变刚那样反过来设计,则 可以用弹簧来支承。对于汽车或电车之类的乘用车的 车轮使用了弹簧。
通用动力学方程:
这个方程的根是 i, 即特征值, i 的范围从1到自由度的数目, 相应的向量是 {u}I, 即特征向量。
注意:
•模态分析假定结构是线性的(如, [M]和[K]保持为常数)
•简谐运动方程u = u0cos(t), 其中 为自振圆周频率(rad/s)
模态分析的理论基础
特征值的平方根是 i , 它是结构的自然 圆周频率(弧度/秒),并可得出自然频率 fi = i /2p。 特征向量 {u}i 表示振型, 即假定结构以频 率 fi振动时的形状。 模态提取 是用来描述特征值和特征向量计 算的术语。
要点:振动外力的周期和结构固有周期一致或接近则要发生共振。 共振因为会使振动变得越来越强,一般应该避免。
频率分析的相关知识
设计就要避免出现共振现象
洗衣机脱水结束,马达的转速低下来时,停止前发出突突的响声并晃动起 来。 这是洗衣机的固有频率和马达的转速一致时产生的共振现象。 要把脱水时马达的转速设计成洗衣机的1阶固有频率以上。从而,在脱水过 程中不会产生共振现象。 洗衣机的马达的转速直到停止前与它的固有频率相一致,产生共振,发出 突突声音。此后,因为很短时间即停止,洗衣机不会损坏。
减缩的系统矩阵求解,速度快,精度相对低 非对称系统矩阵问题,例如流固耦合
阻尼不可忽略的问题 减速的阻尼矩阵计算复杂阻尼问题,更高效 除Reduced方法外,所有的模 态提取方法都要设置阶数。
分块Lanczos方法
默认方法,适用于大多数场合; 是一种功能强大的方法,当提取中型到大型模型 (50000 ~ 100000 个自由度)的大量振型时 (>40),这种方法很有效; 经常应用在具有实体单元或壳单元的模型中; 在具有或没有初始截断点时同样有效。(允许提 取高于某个给定频率的振型); 可以很好地处理刚体振型; 需要较高的内存。
频率分析的相关知识
固有频率(以钟摆为例) 钟摆的振动所经过的时间越来越小,最后停了下来。 这是因为空气的阻碍、磨擦的阻碍等的阻力妨碍了钟摆的摆动(振 动)。 因为这样的阻力作用使振动衰减的力而起作用,被称为衰减力。
钟摆在没有外部而来的强迫它摆动的力(重力除外)作用下的振动 称为自由振动。 与此相对应,地震和汽车因为地基能、发动机等的强迫力作用下的 振动称为强迫振动。 任何结构都具有其固有频率(固有周期),其值由其本身的结构所决定 自由振动是一种无衰减力的振动状态,它将永远不停地振动下去。
模态分析的步骤
① ② ③ ④ ⑤ 建立几何模型(Preprocessor) 划分网格(Mesh Tool) 加载和求解(Solution) 扩展模态(Mode Expansion) 查看结果和后处理(Postprocessor)
建立模型
定义工作文件名(Change Jobname)
Utility Menu> File> Change Jobname
应力
应变
内容简介 模态分析的背景简介 ANSYS模态分析功能介绍 模态分析实例操作演示
学习要点
频率分析的相关知识
什么是振动 固有频率 固有振动模态 共振
频率分析的相关知识
什么是振动?
钟摆和秋千的摆动,是我们身边最典型的振动现象。 乐器的弦振动而发出声音。 小提琴用弓拉弦,吉他用手指或拨片拨弦,在钢琴上敲 击琴键则小锤打击琴弦而使琴弦振动起来。 洗衣机在脱水时也会突突突地产生很大的振动现象。 按摩机是机械的振动,地震则是大地的振动。 如果在不平整的地上或公路上开车的话,也会感到让人 心情变坏的烦人的振动。
频率分析的相关知识
静力分析中,节点位移是主要的未知量。[K]d=F中[K]为刚度 矩阵,d为节点位移的未知量,而F为节点载荷的已知量。 在动力学分析中,增加阻尼矩阵[C]和质量矩阵[M]
上式为典型的在有阻尼的交迫振动方程。当缺少阻尼及外力 时,该缺少阻尼及外力时(自由振动),该方程式简化为
频率分析的相关知识
模态分析的用途
有预应力的结构进行模态分析。例如旋转的涡轮 叶片。 循环对称结构模态分析。允许对循环对称结构的 一部分进行建模,而分析产生整个结构的振型。 ANSYS的模态分析都是线性分析。 ANSYS中的模态提取方法:
Block Lanzos(默认)、子空间、PowerDynamics、缩 减法、非对称法、阻尼法和QR 阻尼法。后两种允许结 构中包含阻尼。
相关文档
最新文档