第5章杆件的应力与强度计算.
建筑力学(5章)

M eB 0.95kN m
M eC 1.27kN m
M eD 1.59kN m
第5章 扭转杆的强度计算
(2)计算扭矩 1 1 2 2
截面1-1:
Mx 0
T2 WP2 14 106 MPa 71.3MPa π 1003 16
比较上述结果,该轴最大切应力位于BC段内任一截面的 边缘各点处,即该轴最大切应力为τmax=71.3MPa。
第5章 扭转杆的强度计算
圆轴扭转的强度计算
一、圆轴的扭转破坏试验与极限应力 圆轴的扭转试件可分别用Q235钢、铸铁等材料做成, 扭转破坏试验是在扭转试验机上进行。试件在两端外力偶
T1 M eB 0
T1 M eB 0.95kN m
截面2-2:
Mx 0
T1
T2 M eB M eA 0
T2 M eA M eB 2.87kN m
T2
第5章 扭转杆的强度计算
3
截面3-3:
Mx 0
T3 M eD 0
3
T3 M eD 1.59kN m
式中:[σC]为材料的许用挤压应力,可查有关设计手册。
注意:若两个相互挤压构件的材料不同,应对挤压强度 小的构件进行计算。
第5章 扭转杆的强度计算
挤压强度条件在工程中同样可以解决三类问题。 但工程中构件产生单纯挤压变形的情况较少,挤压强
度的计算问题往往是和剪切强度计算同时进行。
第5章 扭转杆的强度计算
第5章 扭转杆的强度计算
当挤压面为平面时,挤压计算面积与挤压面面积相等。
《工程力学》第四章 杆件的应力与强度计算

正应力均匀分布 F
FN
4.应力的计算公式:
拉压杆横截面上各点处只产生正应力,且正应力在截面上均匀分布 。
F
FN
A
——轴向拉压杆横截面上正应力的计算公式。
FN
式中:
为横截面上的正应力; FN为横截面上的轴力; A为横截面面积。
解:作出砖柱的轴力图 AB段柱横截面上的正应力
BC段柱横截面上的正应力 最大工作应力为
二、轴向拉压杆斜截面上应力的计算
1.斜截面上应力确定
(1) 内力确定:
F
F
FNa= F
(2)应力确定:
F
①应力分布——均布 ②应力公式——
F
a
x
a
FNa
pa FNa
pa
FNa Aa
F A
F cosa cosa
b
问题:正应变是单位长度的线变形量?
三、应力与应变关系(胡克定律 )
一点的应力与该点的应变之间存在对应的关系。
1.单向受力试验表明:在正应力作用下,材料沿应
力作用方向发生正应变,若在弹性范围内加载,正
应力与正应变存在线性成正比:
E ——胡克定律
E 称为材料的弹性模量或杨氏模量。 钢的弹性模量: E 200 GPa 铜的弹性模量: E 120 GPa
直角的改变量。
切应变的特点:
1.切应变为无量纲量;
2.切应变单位为弧度(rad)。
K 3.单元体受力最基本、最简单的两种形式:
单向应力状态:单元体仅在一对互相平行的截面上承受正应力; 纯剪切应力状态:单元体仅承受切应力。
正应变与切应变:
《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。
二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
三、梁的概念:主要产生弯曲变形的杆。
四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。
五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。
2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。
3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。
4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。
5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。
(二)、梁的简化:以梁的轴线代替梁本身。
(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。
2、分布力——荷载作用的范围与整个杆的长度相比不很小时。
3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。
(四)、支座的简化:1、固定端——有三个约束反力。
2、固定铰支座——有二个约束反力。
3、可动铰支座——有一个约束反力。
(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。
§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。
求:距A 端x 处截面上内力。
解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。
《工程力学》第五章 杆件的变形与刚度计算

根据杆所受外力,作出其轴力图如 图 b所示。
(2)计算杆的轴向变形 因轴力FN和横截面面积A沿杆轴线变
化,杆的变形应分段计算,各段变形的 代数和即为杆的轴向变形。
l
FNili FN1l1 FN 2l2 FN 2l3
EAi
EA1
EA1
EA2
1 200 103
( 20 103 100 500
10 103 100 500
10 103 100 )mm 200
0.015mm
例5-2 钢制阶梯杆如图,已知
轴向外力F1=50kN,F2=20kN,
各段杆长为l1=150mm,
l2=l3=120mm,横截面面积为:
1
A1=A2=600mm2,A3=300mm2,
钢的弹性模量E=200GPa。求各
x
l 3
,ym
ax
9
Ml2 3E
I
xMl2 16EI
A
M 6EIl
(l 2
3b2 )
B
M 6EIl
(l 2
3a2 )
三、叠加法计算梁的变形
➢叠加法前提条件:弹性、小变形。 ➢叠加原理:梁在几个载荷共同作用下任一截面的挠度或转角, 等于各个载荷单独作用下该截面挠度或转角的代数和。
F1=2kN,齿轮传动力F2=1kN。主轴的许可变形为:卡盘 C处的挠度不超过两轴承间距的 1/104 ;轴承B处的转角
不超过 1/103 rad。试校核轴的刚度。
解(1)计算截面对中 性轴的惯性矩
Iz
D4
64
(1 4 )
804 (1 0.54 )mm4
64
188104 mm4
(2)计算梁的变形
过程装备基础第5章习题解

第5章 杆件的强度与刚度计算5-1 如图所示的钢杆,已知:杆的横截面面积等于100mm 2,钢的弹性模量E=2×105MPa ,F=10kN ,Q=4kN 。
要求:(1)计算钢杆各段的应力、绝对变形和应变; (2)计算钢杆的纵向总伸长量。
解:(1)计算钢杆各段内的轴力、应力、绝对变形和应变从左到右取3段,分别为1-1、2-2、3-3截面,则根据轴力的平衡,得各段内的轴力:(左)N 1=F=10kN (中)N 2=F-Q=10-4=6kN (右)N 3=F =10=10kN 各段内的应力:(左)MPa Pa S N 1001010010100101066311=⨯=⨯⨯==-σ (中)MPa Pa S N 6010601010010666322=⨯=⨯⨯==-σ (右)MPa Pa S N 1001010010100101066333=⨯=⨯⨯==-σ 各段内的绝对变形:(左)mm m ES L N l 1.0101.0)10100()102(2.0)1010(3653111=⨯=⨯⨯⨯⨯⨯==--∆ (中) mm m ES L N l 06.01006.0)10100()102(2.0)106(3653222=⨯=⨯⨯⨯⨯⨯==--∆ (右)mm m ES L N l 1.0101.0)10100()102(2.0)1010(3653333=⨯=⨯⨯⨯⨯⨯==--∆ 各段内的应变:(左)41111052001.0-⨯==∆=L l ε 题5-1图1 2 3 123(中)422210320006.0-⨯==∆=L l ε (右)43331052001.0-⨯==∆=L l ε (2)计算钢杆的总变形26.01.006.01.0321=++=∆+∆+∆=∆l l l l mm (3)画出钢杆的轴力图 钢杆的轴力图见下图。
Nx5-2 试求图示阶梯钢杆各段内横截面上的应力以及杆的纵向总伸长量。
05工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第5章_轴向拉伸与压缩

eBook工程力学(静力学与材料力学)习题详细解答(教师用书)(第5章)范钦珊 唐静静2006-12-18第5章轴向拉伸与压缩5-1试用截面法计算图示杆件各段的轴力,并画轴力图。
解:(a)题(b)题(c)题(d)题习题5-1图F NxF N(kN)x-3F Nx A5-2 图示之等截面直杆由钢杆ABC 与铜杆CD 在C 处粘接而成。
直杆各部分的直径均为d =36 mm ,受力如图所示。
若不考虑杆的自重,试求AC 段和AD 段杆的轴向变形量AC l Δ和AD l Δ解:()()N N 22ssππ44BCAB BC AB ACF l F l l d dE E Δ=+33321501020001001030004294720010π36.××+××=×=××mm ()3N 232c100102500429475286mm π10510π364..CDCD AD AC F l l l d E ΔΔ×××=+=+=×××5-3 长度l =1.2 m 、横截面面积为1.10×l0-3 m 2的铝制圆筒放置在固定的刚性块上;-10F N x习题5-2图刚性板固定刚性板A E mkN习题5-4解图直径d =15.0mm 的钢杆BC 悬挂在铝筒顶端的刚性板上;铝制圆筒的轴线与钢杆的轴线重合。
若在钢杆的C 端施加轴向拉力F P ,且已知钢和铝的弹性模量分别为E s =200GPa ,E a =70GPa ;轴向载荷F P =60kN ,试求钢杆C 端向下移动的距离。
解: a a P A E l F u u ABB A −=−(其中u A = 0)∴ 935.0101010.11070102.1106063333=×××××××=−B u mm钢杆C 端的位移为33P 32s s601021100935450mm π20010154...BC C B F l u u E A ×××=+=+=×××5-4 螺旋压紧装置如图所示。
第5章_杆件强度与刚度计算.ppt

Q [ ]
S
式中 τ—剪切面上的切应力; S-横截面积; Q—剪力。
27
许用切应力[τ]是利用剪切试验求出抗剪强度 τb,再除以安全系数n得到的,即 [τ]= τb/n。
塑性材料 [τ]=(0.6~0.8)[σ] 脆性材料 [τ]=(0.8~1.0)[σ]
23
5.3.2 剪切和挤压的实用计算
(1)剪切的实用计算
简图
受力图
分离体 假定分布
24
1)剪力计算
求内力的方法:截面法 (截、取、代、平)
Q=F
25
2)剪应力的计算
剪力Q在截面上的分布比较复杂,在 工程中假定它在截面上是均匀分布的,则 可得切应力计算公式:
Q
S
26
3)剪切的强度条件
为了保证受剪构件安全可靠地工作,
?1第55章杆件的强度与刚度计算直杆轴向拉伸与压缩时的强度与变形计算杆件的强度条件与刚度条件杆件剪切时的强度计算圆轴扭转时的强度与刚度计算平面弯曲梁的强度与刚度计算直杆组合变形时的强度计算超静定问题简介?252直杆轴向拉伸与压缩时的强度与变形计算53杆件剪切时的强度计算54圆轴扭转时的强度与刚度计算56直杆组合变形时的强度计算第55章杆件的强度与刚度计算目录57超静定问题简介51概述55平面弯曲梁的强度与刚度计算?351概述?构件中的最大应力需视其受力与变形的具体情况而有所不同?对于杆件变形的基本形式通常采用其横截面上正应力或切应力建立强度条件组合变形情况的强度条件建立则比较复杂需要考虑材料的力学性能研究危险点的应力状态选用合适的强度理论?许用应力是构件正常工作时所允许承受的最大应力构件中的最大应力许用应力通用的强度条件式为
杆件应力及强度计算

P
BC
FNAB 30 103 149Mpa 6 AAB 201 10
FNBC 26 103 2.6Mpa 4 ABC 100 10
拉伸、压缩与剪切
•斜截面上的应力
P
拉压的内力和应力
有些材料在破坏时并不总是沿横截面,有的是沿斜截面。因此要进 一步讨论斜截面上的应力。 k 设拉力为P,横截面积 为A, P
材料力学
长沙理工大学
蔡明兮
2018年8月8日星期三
第四章
杆件应力与强度计算
拉伸、压缩与剪切
•横截面上的应力
A、几何方面: 根据实验现象,作如下假设:
拉压的内力和应力
平截面假设:变形前的横截面,变形后仍然保持为横截面, 只是沿杆轴产生了相对的平移。 应变假设:变形时纵向线和横向线都没有角度的改变,说明 只有线应变而无角应变。
o
o
拉伸、压缩与剪切
•高温短期
When t 250o ~ 300o C When t 2时间的影响
以低碳钢为例,当温度升高,E、S降低。
b b
& &
在低温情况下。象低碳钢, p 、S增大,减小。即发生冷脆现象。
max
s
拉伸、压缩与剪切
剪切的实用计算:
剪切和挤压的实用计算
FS A
剪切的强度条件:
P
P
FS [ ] A
Q
) [1 ] (塑性材料) (0.6 ~ 0.8 [] 0.8 ~ 1.0) [1 ] (脆性材料) ( [1 ] 为材料的许用拉应力
拉伸、压缩与剪切
2、选择截面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FNAB 60103 MPa 0.96MPa AAB 250 250
BC
FNBC 180103 MPa 0.72MPa ABC 500 500
轴向拉伸和压缩
比较得:最大工作应力为压应力,产生在AB段。 即|σmax|=0.96Mpa。 (3)校核强度 σmax=0.96MPa<[σC] =1.05MPa
对于等截面直杆,最大正应力一定发生在轴力最大的截 面上。
max
FN max A
习惯上把杆件在荷载作用下产生的应力,称为工作应 力。 通常把产生最大工作应力的截面称为危险截面,产生 最大拉(压)变形的等直杆,轴力最大的截
面就是危险截面,该截面上任一点都是危险点。
τ
max
σ/2
450 450
max 45
0 0
2
sin
2
τ
min
min 45
σ
= 0
2
σ/2
当α =900 时 说明緃向无正应力
轴向拉伸和压缩
三、强度计算
任何一种材料都存在一个能承受应力的上限,这个上 限称为极限应力,常用符号σo表示。 极限应力
max
FNAB [ ] A
轴向拉伸和压缩
FNAB 63 103 A mm 2 393.8mm 2 [ ] 160
当拉杆为实心圆截面时
d
A
d2
4
393.8mm 2
4 393.8 mm 22.39mm 3.14
取d=23mm。
当拉杆用角钢时,查型钢表。每根角型的最小面积应为
FBy
FAy FBy 42kN
轴向拉伸和压缩 q =4.2kN/m (2)求拉杆的轴力。
FCy FCx
用截面法取左半个屋架为 研究对象,列平衡方程
ΣMC =0
l l FAy 4.2 q FNAB 1.4 0 2 4
FN
钢拉杆
FAy
(3)设计拉杆的截面。
FNAB 63kN
45°
y
B F
Fy 0
x
FN 1 sin 45 F 0
FN 1 28.3kN
Fx 0
FN 1 cos 45 FN 2 0
FN 2 20kN
2、计算各杆件的应力。
FN 1 28.3 103 1 90MPa A1 20 2 4
FN 2 20 103 2 89MPa 2 A2 15
1 1
ab
1 1
1
2
O1O2
( r y )d rd y rd r
可知:梁内任一层纵向纤维的线应变与其的坐标成正比。
弯曲应力
2. 物理关系方面
由于假设梁内各纵向纤维只受拉伸或压缩,所以当材料 在线弹性范围内工作时,由虎克定律可得各纵向纤维的正应 力为
E
Ey
r
梁横截面上任一点处的正应力与该 点到中性轴的距离成正比。即弯曲正应
所以该柱满足强度要求。
轴向拉伸和压缩
例 已知钢筋混凝土组合屋架受到竖直向下的均布荷载 q=10kN/m,水平钢拉杆的许用应力[σ]=160MPa。试按要求 设计拉杆AB的截面。⑴ 拉杆选用实心圆截面时,求拉杆的 直径。⑵ 拉杆选用二根等边角钢时,选择角钢的型号。
q
钢拉杆 8.4m
FAy 解 (1)整体平衡求支反力
弯曲应力
平面假设:梁变形后其横截面仍保持为平面,且
仍与变形后的梁轴线垂直。同时还假设梁的各纵向纤 维之间无挤压。
单向受力假设:将梁看成由无数条纵向纤维组成,
各纤维只受到轴向拉伸或压缩,不存在相互挤压。
弯曲应力
中性层:梁的下部纵向纤维伸长,而上部纵向纤维缩短 ,由变形的连续性可知,梁内肯定有一层长度不变的纤维 层,称为中性层。 中性轴:中性层与横截面的交线称为中性轴,
A 393.8 A1 mm 2 196.9mm 2 2 2
选用两根36×3的3.6号等边角钢。
轴向拉伸和压缩
36×3的3.6号等边角钢的横截面面积 A1=210.9mm2 故此时拉杆的面积为 A=2×210.9mm2=421.8mm2>393.8mm2 能满足强度要求,同时又比较经济。
四、应力集中的概念
第5节 平面弯曲梁的应力与强 度计算
弯曲应力
a
A FP
FP
FP
a D
B
CD梁段横截面上
C
只有弯矩,而没有剪力,
这种平面弯曲称为纯 弯曲。
FQ
FP M FPa
AC和DB 梁段横截
面上不仅有弯矩还伴 有剪力,这种平面弯
曲称为横力弯曲。
弯曲应力
一、纯弯曲时梁横截面上的正应力
与圆轴扭转同样,纯弯曲梁横截面上的正应力研究
低碳钢在拉伸时的力学性质
拉伸过程
• • • • 弹性阶段 屈服阶段 强化阶段 局部变形阶段
强度指标与塑性指标
• 对低碳钢这一类材料:屈服极限和强度极 限是衡量其强度的主要指标。 • 弹性变形 • 塑性变形 • 延伸率和截面收缩率:
l 100% l A A1 100% A
力沿截面高度成线性分布。
中性轴上各点处的正应力等于零, 距中性轴最远的上、下边缘上各点处正 应力最大,其它点的正应力介于零到最 大值。
弯曲应力
3. 静力学关系方面
坐标系的选取: y轴:截面的纵向对称轴。 z轴:中性轴。 x轴:沿纵向线。 O ( y z)
M
z
x
dA y
受力分析:dA上的内力为σdA,于是整个截面上所有内力 组成一空间平行力系,由于横截面上只有绕中性轴的弯矩MZ, 所以横截面法向的轴力FN和力偶矩My应为零,即:
二、斜截面上的应力
图示直杆拉力为P 横截面面积A 横截面上正应力为
P
A
α
Aα
P
N P A A
pα P N=Pα σα α τα
斜截面上正应力为
P P p cos cos A A
pα斜截面上的应力称为全应力
P
pα
p cos cos
轴向拉伸和压缩
根据从杆件表面观察到的现象,从变形的可能性考虑,
可推断:
轴向拉杆在受力变形时,横截面只沿杆轴线平行移动。 由此可知:横截面上只有正应力σ。 假如把杆想象成是由许多纵向纤维组成的话,则任意两 个横截面之间所有纵向纤维的伸长量均相等,即两横截面间 的变形是均匀的,所以拉(压)杆在横截面上各点处的正应 力σ都相同。
塑性材料 脆性材料
0 S
0 b
n —安全系数
0
n
—许用应力。
轴向拉伸和压缩
塑性材料的许用应力 脆性材料的许用应力
s
ns
b nb
选取安全系数的原则是:在保证构件安全可靠的前提下, 尽可能减小安全系数来提高许用应力。 确定安全系数时要考虑的因素,如:材料的均匀程度、荷 载的取值和计算方法的准确程度、构件的工作条件等。 塑性材料 nS取1.4~1.7; 脆性材料 nb取2.5~3。 某些构件的安全系数和许用应力可以从有关的规范中查到。
受压区 z 中 受拉区 性 层 y 中性轴
由于荷载作用于梁的纵向对称面内,梁的变形沿纵向 对称,则中性轴垂直于横截面的对称轴。梁弯曲变形时, 其横截面绕中性轴旋转某一角度。
弯曲应力
梁中取出的长为dx的微段
1 2 1
2
o2 b 2
o1 o2 a b 1 dx 2
o1 a 1
变形后其两端相对转了d角
d M
1
2
M
r
1
2
O1 a1
O2 b1
弯曲应力
距中性层为y处的纵向纤维ab的变形 原
长: ab O1O2 rd dx 1
o1 a
2
o2
d
r
变形后长: a1b1 (r y)d
式中ρ 为中性层上的纤维的曲率半径。
1
则纤维的应变为
2a
b O1
1
O2 b1
a b ab a b O O
轴向拉伸和压缩
1.强度条件
FN max σmax≤[σ] A σmax是杆件的最大工作应力,可能是拉应力,也可能是
压应力。 对于脆性材料的等截面杆,其强度条件式为:
t max t c max c
式中:σtmax及[σt] 分别为最大工作拉应力和许用拉应力
力。
第2节 材料在轴向拉压时的力 学性能
材料在拉伸、压缩时的机械性能
• 标准圆试件:l0/d0=10或5,常用d=10mm, l0=100mm的试件进行测试。称为标距; • 压缩时,圆截面试件高度h与直径d之比为 1—3。 • 试验通常在室温的条件下按一般的变形速 度进行。在上述条件下所得材料的力学性 质,称为常温、静载下材料在拉伸(压缩) 是的力学性质。
2
2
(1 cos 2 )
p sin sin cos
为斜截面上的应力计算公式
2
sin 2
2. 最大应力和最小应力 (1)最大 最小应力正应力 当 α = 00 时 拉杆 σ max = σ 压杆 σ min = - σ
( 2 ) 最大 最小应力剪应力 当 α =+45 0 时
;σcmax及[σc] 分别为最大工作压应力和许用压应力。
轴向拉伸和压缩
⒉ 强度条件在工程中的应用
根据强度条件,可以解决三类强度计算问题 1、强度校核: 2、设计截面: