八年级数学不等式与不等式组(难+含答案)精编版

合集下载

八年级不等式组习题以及答案

八年级不等式组习题以及答案

一元一次不等式组【基础回顾】1.数轴上与坐标为3的点距离小于7的点的坐标x 满足( ).(A) 0<x-3<7 (B) -7<x-3<7 (C) -7≤x-3≤ 7 (D)x-3<7或x-3>-72.不等式组⎪⎩⎪⎨⎧-≤-->xx x 28432的最小整数解 ( ). (A) –1 (B) 0 (C) 1 (D) 43.若方程组⎩⎨⎧=++=+3414y x k y x 的解满足10<+<y x ,则k 的取值范围是( ).(A) -4<k <1 (B) -4<k <0 (C) 0<k <9 (D) k > -44. 若不等式组⎩⎨⎧>->-022x b a x 的解集是-1<x <1,则(a+b)2006= 5.若不等式组⎩⎨⎧≤->03x a x 有三个整数解,则a 的取 值范围为6.解不等式组 ⎪⎩⎪⎨⎧+≥->+<-x x x x x 312113250104【综合运用】7.设a,b 为正整数,且满足56≤a+b ≤59,91.09.0<<ba ,则b2-a2为( ). (A) 171 (B) 177 (C) 180 (D) 1828.已知a ,b 为常数,若ax+b >0的解集为31<x ,则b x-a <0的解集是( ). (A) x >-3 (B) x <-3 (C) x >3 (D) x <39.如果关于x 的不等式组⎩⎨⎧<-≥-0607n x m x 的整数解仅为1,2,3,那么适合这个不等式组的整数对(m,n)共有( ).(A) 49对 (B ) 42对 (C ) 3 6对 (D )13对10.已知关于x 、y 的方程组⎩⎨⎧=++=-a y x a y x 523的解满足x >y >0,化简=-+a a 311.已知m 是整数且-60<m <-30,关于x,y 的二元一次方程组⎩⎨⎧=---=-my x y x 73532有整数解,求x 2+y 的值.参考答案1. B 2 . B 3. A 4. 1 5.0<a ≤16.-1<x≤2 7. B,由0.9b +b<59,0.91b+b>56,故29<b <32,则b =30,31,可求得a=2 8,故b2-a2=177选(B).8.B 9. B,由得m=1,2,…,7;n=19,20,…24;10.当2<a≤3时,原式=3;当a≥3 时,原式=2a-3.11.30:由,又m,x,y为整数,且15-2m为奇数,所以15-2m为23倍数,而-60<m<-30即75<15-2m <135,故15-2m=175,解得m=-50,y=5,x= 5,故x2+y=30.。

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组重点解析试题(含答案解析)

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组重点解析试题(含答案解析)

第二章一元一次不等式和一元一次不等式组重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A.B.C.D.2、如图,已知直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b≤kx-1的解集在数轴上表示正确的是()A .B .C .D .3、下列式子:①5<7;②2x >3;③y ≠0;④x ≥5;⑤2a +l ;⑥113x ->;⑦x =1.其中是不等式的有( )A .3个B .4个C .5个D .6个4、下列判断不正确的是( )A .若a b >,则33a b +>+B .若a b >,则33a b -<-C .若22a b >,则a b >D .若a b >,则22ac bc >5、已知关于x 的不等式组0521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围( ) A .﹣3≤a <﹣2 B .﹣3≤a ≤﹣2 C .﹣3<a ≤﹣2 D .﹣3<a <﹣26、一次函数y 1=kx +b 与y 2=mx +n 的部分自变量和对应函数值如表:则关于x 的不等式kx +b >mx +n 的解集是( )A .x >0B .x <0C .x <﹣1D .x >﹣17、如图,数轴上表示的解集是( )A .﹣3<x ≤2B .﹣3≤x <2C .x >﹣3D .x ≤28、设m 为整数,若方程组3131x y m x y m+=-⎧⎨-=+⎩的解x 、y 满足175x y +>-,则m 的最大值是( ) A .4 B .5 C .6 D .79、不等式组3x x a >⎧⎨>⎩的解是x >a ,则a 的取值范围是( ) A .a <3 B .a =3 C .a >3 D .a ≥310、已知a >b ,下列变形一定正确的是( )A .3a <3bB .4+a >4﹣bC .ac 2>bc 2D .3+2a >3+2b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若方程组31323x y k x y k-=+⎧⎨+=-⎩的解满足2x ﹣3y >1,则k 的的取值范围为 ___. 2、已知关于x 的不等式组53120x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是_____________. 3、根据“3x 与5的和是负数”可列出不等式 _________.4、如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围为_____________.5、若关于x 的不等式1x m +>的解集如图所示,则m 的值为_____.三、解答题(5小题,每小题10分,共计50分)1、解不等式组()24018202x x +≤⎧⎪⎨+->⎪⎩,并把解集在数轴上表示出来. 2、由于新能源汽车越来越受到消费者的青睐,某经销商决定分两次购进甲、乙两种型号的新能源汽车(两次购进同一种型号汽车的每辆的进价相同).第一次用270万元购进甲型号汽车30辆和乙型号汽车20辆;第二次用128万元购进甲型号汽车14辆和乙型号汽车10辆.(1)求甲、乙两种型号汽车每辆的进价;(2)经销商分别以每辆甲型号汽车8.8万元,每辆乙型号汽车4.2万元的价格销售后,根据销售情况,决定再次购进甲、乙两种型号的汽车共100辆,且乙型号汽车的数量不少于甲型号汽车数量的3倍,设再次购进甲型汽车a 辆,这100辆汽车的总销售利润为W 万元.①求W 关于a 的函数关系式;②若每辆汽车的售价和进价均不变,该如何购进这两种汽车,才能使销售利润最大?最大利润是多少?3、已知一次函数26y x =--.(1)画出函数图象.(2)不等式26x -->0的解集是_______;不等式26x --<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.4、有一批产品需要生产装箱,3台A型机器一天刚好可以生产6箱产品,而4台B型机器一天可以生产5箱还多20件产品.已知每台A型机器比每台B型机器一天多生产40件.(1)求每箱装多少件产品?(2)现需生产28箱产品,若用1台A型机器和2台B型机器生产,需几天完成?(3)若每台A型机器一天的租赁费用是240元,每台B型机器一天的租赁费用是170元,可供租赁的A型机器共3台,B型机器共4台.现要在3天内(含3天)完成28箱产品的生产,请直接写出租赁费用最省的方案(机器租赁不足一天按一天费用结算).5、已知关于x的一次函数y=(2k-3)x+k-1的图象与y轴的交点在x轴的上方,且y随x的增大而减小,求k的取值范围.-参考答案-一、单选题1、A【分析】根据天平的图片得到m的取值范围,在数轴上表示m的取值,问题得解.【详解】解:由图可知,12mm⎧⎨⎩><,∴m的取值范围在数轴上表示如图:.故选:A【点睛】本题考查了用数轴表示不等式的取值范围,理解题意,正确得到不等式组是解题关键.2、D【分析】由图像可知当x≤-1时,1x b kx+≤-,然后在数轴上表示出即可.【详解】直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,关于x的不等式1x b kx+≤-的解集满足直线y1=x+b图像与y2=kx-1图形的交点及其下所对应的自变量取值范围,由图像可知当x≤-1时,1x b kx+≤-,∴可在数轴上表示为:故选D.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y1≤y2时x的范围是函数y1的图象在y2的图象下方时对应的自变量的范围,反之亦然.3、C【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:①②③④⑥均为不等式共5个.故选:C【点睛】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.4、D【分析】根据不等式得性质判断即可.【详解】A. 若a b >,则不等式两边同时加3,不等号不变,选项正确;B. 若a b >,则不等式两边同时乘-3,不等号改变,选项正确;C. 若22a b >,则不等式两边同时除2,不等号不变,选项正确;D. 若a b >,则不等式两边同时乘2c ,有可能2c =0,选项错误;故选:D .【点睛】本题考查不等式得性质,需要特别注意不等式两边同时乘(除)一个正数不等号不变,同时乘(除)一个负数不等号改变.5、C【分析】先求出不等式解组的解集为2a x ≤<,即可得到不等式组的4个整数解是:1、0、-1、-2,由此即可得到答案.【详解】解:0521x a x -≥⎧⎨->⎩①②解不等式①得x a ≥;解不等式②得2x <;∵不等式组有解,∴不等式组的解集是2a x ≤<,∴不等式组只有4个整数解,∴不等式组的4个整数解是:1、0、-1、-2,∴32a -<≤-故选C .【点睛】本题主要考查了解一元一次不等式组,根据不等式组的整数解情况求参数,解题的关键在于能够熟练掌握解不等式组的方法.6、D【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y 1=kx +b 中y 随x 的增大而增大;y 2=mx +n 中y 随x 的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x >﹣1时,kx +b >mx +n .故选:D .【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.7、A【分析】根据求不等式组的解集的表示方法,可得答案.【详解】解:由图可得,x >﹣3且x ≤2∴在数轴上表示的解集是﹣3<x ≤2,故选A .【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.8、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=,把25mx-=代入①得6315my m-+=-,解得125my--=,∵175x y+>-,∴21217555m m---+>-,即131755m->-,解得6m<,∵m为整数,∴m的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.9、D【分析】根据不等式组的解集为x>a,结合每个不等式的解集,即可得出a的取值范围.【详解】解:∵不等式组3xx a>⎧⎨>⎩的解是x>a,∴3a≥,故选:D.【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.10、D【分析】根据不等式的基本性质逐项排查即可.【详解】解:A .在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a >3b ,故A 不正确,不符合题意;B .无法证明,故B 选项不正确,不符合题意;C .当c =0时,不等式不成立,故C 选项不正确,不符合题意;D .不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D 选项正确,符合题意. 故选:D .【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.二、填空题1、34k >## 【分析】将①-②即可得2342x y k -=-,结合题意即可求得k 的范围.【详解】31323x y k x y k -=+⎧⎨+=-⎩①② ①-②得,2342x y k -=-2x ﹣3y >1421k ∴->解得34k > 故答案为:34k >【点睛】本题考查了解二元一次方程组,一元一次不等式,利用加减消元法得出方程组的解是解题关键. 2、4a ≥【分析】先把a 当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.【详解】解:53120x a x -≥-⎧⎨-<⎩①② 由①得:2x ≤ 由②得:2a x > 不等式组无解 ∴22a ≥ 4a ≥故答案为4a ≥.【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.3、350x +<【分析】3x 与5的和为35x +,和是负数即和小于0,列出不等式即可得出答案.【详解】3x 与5的和是负数表示为350x +<.故答案为:350x +<.【点睛】本题考查列不等式,根据题目信息确定不等式是解题的关键.4、1<m <2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一幅图得m >1,由第二幅图得m <2,故1<m <2;故答案是:1<m <2.【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键.5、3【分析】由数轴可以得到不等式的解集是x >﹣2,根据已知的不等式可以用关于m 的式子表示出不等式的解集.就可以得到一个关于m 的方程,可以解方程求得.【详解】解:解不等式x +m >1得1x m >-由数轴可得,x >﹣2,则12m -=-解得,m =3.故答案为:3.【点睛】本题主要考查了解一元一次不等式,数轴上表示不等式的解集,解一元一次方程,注意数轴上的空心表示不包括﹣2,即x >﹣2.并且本题是不等式与方程相结合的综合题.三、解答题1、42x -<≤-,作图见解析【分析】结合题意,根据一元一次不等式组的性质,求解得不等式组公共解,结合数轴的性质作图,即可得到答案.【详解】 解:()24018202x x +≤⎧⎪⎨+->⎪⎩ 解不等式240x +≤,得2x -≤ 不等式()18202x +->, 去括号,得:840x +->移项、合并同类项,得:4x >-∴不等式组的解为:42x -<≤-数轴如下:.【点睛】本题考查了数轴、一元一次不等式组的知识;解题的关键是熟练掌握一元一次不等式组的性质,从而完成求解.2、(1)甲、乙两种型号汽车每辆的进价分别为7万元、3万元(2)①W 关于a 的函数关系式为W =0.6a +120(0≤a ≤25);②甲型汽车25辆,乙型汽车75辆,最大利润是135万元【分析】(1)设甲种型号汽车的进价为a 元、乙种型号汽车的进价为b 元,根据题意,可以得到相应的二元一次方程组,然后即可得到甲、乙两种型号汽车每辆的进价;(2)①根据总利润=甲型汽车的利润+乙型汽车的利润可以得到利润与购买甲种型号汽车数量的函数关系;②根据乙型号汽车的数量不少于甲型号汽车数量的3倍,可以得到购买甲种型号汽车数量的取值范围,然后根据一次函数的性质,即可得到最大利润和此时的购买方案.(1)(1)设甲种型号汽车的进价为a 元、乙种型号汽车的进价为b 元,30202701410128a b a b +=⎧⎨+=⎩, 解得:73a b =⎧⎨=⎩, 即甲、乙两种型号汽车每辆的进价分别为7万元、3万元;(2)(2)①由题意得:购进乙型号的汽车(100﹣a )辆,W =(8.8﹣7)a +(4.2﹣3)×(100﹣a )=0.6a +120,乙型号汽车的数量不少于甲型号汽车数量的3倍,∴100﹣a ≥3a ,且a ≥0,解得,0≤a ≤25,∴W 关于a 的函数关系式为W =0.6a +120(0≤a ≤25);②W=0.6a+120,∵0.6>0,∴W随着a的增大而增大,∵0≤a≤25,∴当a=25时,W取得最大值,此时W=0.6×25+120=135(万元),100﹣25=75(辆),答:获利最大的购买方案是购进甲型汽车25辆,乙型汽车75辆,最大利润是135万元.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的二元一次方程组,利用一次函数的性质和不等式的性质解答.3、(1)见解析;(2)x<-3;x>-3;(3)BC=【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x<-3时,一次函数y=-2x-6的图象在x轴上方;当x>-3时,一次函数y=-2x-6的图象在x轴下方.∴不等式-2x-6>0的解集是x<-3;不等式-2x-6<0的解集是x>-3.故答案是:x<-3,x>-3;(3)∵B(-3,0),C(0,-6),∴OB=3,OC=6,∴BC=【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.4、(1)60件;(2)6天;(3)A型机器前2天租3台,第3天租2台;B型机器每天租3台【分析】(1)设每箱装x件产品,根据“每台A型机器比每台B型机器一天多生产40件”列出方程求解即可;(2)根据第(1)问的答案可求得每台A 型机器每天生产120件,每台B 型机器每天生产80件,根据工作时间=工作总量÷工作效率即可求得答案;(3)先将原问题转化为“若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用”,再设租A 型机器a 台次,则租B 型机器的台次数为16801203(21)802a a -=-台次,由此可求得a 的取值范围,进而可求得符合题意的a 的整数解,再分别求得对应的总费用,比较大小即可.【详解】解:(1)设每箱装x 件产品, 根据题意可得:65204034x x +-=, 解得:60x =,答:每箱装60件产品;(2)由(1)得:每台A 型机器每天生产666012033x ⨯==(件), 每台B 型机器每天生产520560208044x +⨯+==(件), ∴2860(120280)⨯÷+⨯1680280=÷ 6=(天),答:若用1台A 型机器和2台B 型机器生产,需6天完成;(3)根据题意可把问题转化为:若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用.设租A 型机器a 台次,则租B 型机器的台数为16801203(21)802a a -=-台次, ∵共有12台次B 型机器可用, ∴321122a -≤,解得a ≥6,∵共有9台次A 型机器可用,∴a ≤9,∴6≤9≤9,又∵a 为整数,∴若a =9,则3217.52a -=,需选B 型机器8台次,此时费用共为240×9+170×8=3520(元);若a =8,则32192a -=,需选B 型机器9台次,此时费用共为240×8+170×9=3450(元);若a =7,则32110.52a -=,需选B 型机器11台次,此时费用共为240×7+170×11=3550(元);若a =6,则321122a -=,需选B 型机器12台次,此时费用共为240×6+170×12=3480(元);∵3450<3480<3520<3550,∴3天中选择共租A 型机器8台次,B 型机器9台次费用最省,如:A 型机器前两天租3台,第3天租2台,B 型机器每天租3台,此时的费用最省,最省总费用为3450元,答:共有4种方案可选择,分别为:3天中共租A 型机器9台次,B 型机器8台次;3天中共租A 型机器8台次,B 型机器9台次;3天中共租A 型机器7台次,B 型机器11台次;3天中共租A型机器6台次,B型机器12台次,其中3天中共租A型机器8台次,B型机器9台次(如A型机器前两天租3台,第3天租2台,B型机器每天租3台),此时的费用最省,最省总费用为3450元.【点睛】本题考查了一元一次方程的应用以及解一元一次不等式,解题的关键是:找准等量关系,正确列出一元一次方程以及根据各数量之间的关系,正确列出一元一次不等式.5、3 12k<<【分析】根据题意易得23010kk-<⎧⎨->⎩,然后求解即可.【详解】解:∵关于x的一次函数y=(2k-3)x+k-1的图象与y轴的交点在x轴的上方,且y随x的增大而减小,∴23010kk-<⎧⎨->⎩,解得:312k<<.【点睛】本题主要考查一次函数的图象与系数的关系,熟练掌握一次函数的图象与系数的关系是解题的关键.。

初二不等式练习题及答案

初二不等式练习题及答案

初二不等式练习题及答案1. 解不等式2x - 5 < 7。

解:首先将等号左边的表达式变成0,得到2x - 5 - 7 < 0。

然后合并同类项:2x - 12 < 0。

通过对序号相反的两个数字应用不等式规则,得到x < 6。

2. 解不等式3(4 - x) > 5x + 12。

解:首先将括号内的表达式进行分配,得到12 - 3x > 5x + 12。

然后通过对等式两侧的同类项进行移项,得到-3x - 5x > 12 - 12。

合并同类项,得到-8x > 0。

由于8x为负数,所以需要将不等号翻转,得到x < 0。

3. 解不等式2(3x - 1) ≤ 4(x + 2) - 1 + 5x。

解:首先将括号内的表达式进行分配,得到6x - 2 ≤ 4x + 8 - 1 +5x。

合并同类项,得到6x - 2 ≤ 9x + 7。

然后将未知数移动到等号的一侧,得到6x - 9x ≤ 7 + 2。

合并同类项,得到-3x ≤ 9。

由于系数为负数,所以需要将不等号翻转,得到x ≥ -3。

4. 解不等式-2x + 5 > 4 - 3x。

解:首先将未知数移动到等号的一侧,得到-2x + 3x > 4 - 5。

合并同类项,得到x > -1。

5. 解不等式2x - 8 < x + 3。

解:首先将未知数移动到等号的一侧,得到2x - x < 3 + 8。

合并同类项,得到x < 11。

答案:1. x < 62. x < 03. x ≥ -34. x > -15. x < 11通过对初二不等式练习题的解答,我们可以进一步巩固和加深对不等式的理解和应用。

熟练掌握不等式的求解方法和规则,能够帮助我们在数学问题中更加灵活地运用和处理不等式关系,解决实际问题。

初二不等式组练习题及答案

初二不等式组练习题及答案

初二不等式组练习题及答案不等式是数学中重要的概念之一,对于初中学生来说,掌握不等式的性质和解不等式的方法是十分关键的。

为了帮助大家巩固和提高对不等式的理解和应用能力,以下是一些初二不等式组的练习题及答案,希望对大家的学习有所帮助。

题目一:解下列不等式组,并将解的结果表示在数轴上。

1. {x < 3, x ≥ -2}2. {-1 < x ≤ 5, x > 2}3. {x + 3 ≥ 5, x - 2 < 8}4. {-3 < x ≤ 1, x ≥ -4}题目二:解下列不等式组,并用集合的形式表示出来。

1. {x > 3, x < 7}2. {x ≤ 5, x ≥ -3}3. {2 ≤ x < 5, x ≥ 3}4. {x > -1, x < 3, x > 2}题目三:解下列不等式组,并将解的结果表示在坐标平面上。

1. {x > 2, y < 4}2. {x ≤ 3, y ≥ -2}3. {x ≥ -1, y > 1}4. {x > -2, y ≤ 3}题目四:解下列不等式组,并用不等式表示出来。

1. {x < 3, y > 4}2. {x ≤ -3, y < -2}3. {x > 2, y ≤ 1}4. {x ≥ -1, y > 2}解答如下:题目一:1. x < 3 表示实数x小于3,取等号的原因是x可能等于3;x ≥ -2 表示实数x大于等于-2。

将两个不等式合并得到 -2 ≤ x < 3。

在数轴上标记-2和3,用一个实心圆表示-2,一个空心圆表示3,对应的数轴上的点即为-2 ≤ x < 3 的解。

2. -1 < x ≤ 5 表示实数x大于-1,小于等于5;x > 2 表示实数x大于2。

将两个不等式合并得到2 < x ≤ 5。

在数轴上标记2和5,用一个空心圆表示2,一个实心圆表示5,对应的数轴上的点即为2 < x ≤ 5 的解。

初二不等式练习题以及答案

初二不等式练习题以及答案

初二不等式练习题以及答案1. 求下列不等式的解集并表示在数轴上:a) 3x + 5 > 2x - 1b) 2(x + 3) < 5 - 3x解:a) 将不等式中的x合并,得到:x > -6解集为 (-6, +∞),在数轴上表示为从-6开始的开区间。

b) 将不等式中的x合并,得到:2x + 6 < 5 - 3x移动同项后得到:5x < -1解集为 x < -1/5,即 (-∞, -1/5),在数轴上表示为从负无穷到-1/5的开区间。

2. 求下列不等式的解集并表示在数轴上:a) 4 - x > 2x + 1b) 3(x - 2) ≤ 6x + 1解:a) 将不等式中的x合并,得到:4 - x > 2x + 1移动同项后得到:3x < 3解集为 x < 1,即 (-∞, 1),在数轴上表示为从负无穷到1的开区间。

b) 将不等式中的x合并,得到:3x - 6 ≤ 6x + 1移动同项后得到:-3x ≤ 7注意到不等号左边有一个系数-3,为了使不等号方向不变,我们需要将其乘以-1,但是注意此时不等号方向要颠倒,得到:3x ≥ -7解集为x ≥ -7/3,即 [-7/3, +∞),在数轴上表示为从-7/3开始的闭区间。

3. 求下列不等式的解集并表示在数轴上:a) 2(x - 1) ≥ 3 - 5xb) 4x + 2 > 2(3 - x)解:a) 将不等式中的x合并,得到:2x - 2 ≥ 3 - 5x移动同项后得到:7x ≥ 5解集为x ≥ 5/7,即[5/7, +∞),在数轴上表示为从5/7开始的闭区间。

b) 将不等式中的x合并,得到:4x + 2 > 6 - 2x移动同项后得到:6x > 4解集为 x > 2/3,即(2/3, +∞),在数轴上表示为从2/3开始的开区间。

4. 解不等式 |2x - 1| < 5解:首先将绝对值不等式转化为两个不等式:-5 < 2x - 1 < 5解得 -4 < x < 3综合起来,解集为 -4 < x < 3。

八年级一元一次不等式(教师讲义带答案).

八年级一元一次不等式(教师讲义带答案).

第四章一元一次不等式(组)考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4、求不等式的解集的过程,叫做解不等式。

5、用数轴表示不等式的方法考点二、不等式基本性质(3-5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

初二不等式练习题附答案

初二不等式练习题附答案

初二不等式练习题附答案初二时代是学习数学的关键时期,不等式作为数学知识的重要一环,需要我们掌握和熟练运用。

为了帮助同学们更好地巩固不等式的知识,以下是一些初二不等式练习题及其答案,供大家参考和练习。

一、填空题1. 若 x + 3 > 7,求 x 的取值范围。

解答:x > 7 - 3,即 x > 4。

2. 若 2y - 5 < 13,求 y 的取值范围。

解答:2y < 13 + 5,即 2y < 18;又因为 2 > 0(正数),所以当 2y < 18 时,y 的取值范围为 y < 9。

3. 若 4x - 7 ≥ 5,求 x 的取值范围。

解答:4x ≥ 5 + 7,即4x ≥ 12;又因为 4 > 0,所以当4x ≥ 12 时,x的取值范围为x ≥ 3。

二、选择题1. 下列不等式中,与 x > 2 等价的不等式是:A) x < 2B) x ≥ 2C) x ≤ 2D) x ≠ 2解答:B) x ≥ 22. 若不等式 3 - 2x > 7 的解集为 S,下列解集中符合不等式的是:A) S = {x | x > 2}B) S = {x | x < -2}C) S = {x | x < 2}D) S = {x | x > -2}解答:B) S = {x | x < -2}三、简答题1. 解不等式 5x - 9 > 6 的过程。

解答:首先将不等式化简为 5x > 6 + 9,即 5x > 15。

然后除以 5(注意 5 > 0),得到 x > 15/5,即 x > 3。

所以解集为 {x | x > 3}。

2. 解不等式 -2y + 4 ≤ 8 的过程。

解答:首先将不等式化简为 -2y ≤ 8 - 4,即 -2y ≤ 4。

然后除以 -2(注意 -2 < 0),得到y ≥ 4 / -2,即y ≥ -2。

初二不等式练习题答案

初二不等式练习题答案

初二不等式练习题答案1. 解不等式1:2x + 3 > 7解法:将不等式中的数字进行移项,得到 2x > 7-3,简化为 2x > 4。

然后将两边都除以2,得到 x > 2。

答案:x > 22. 解不等式2:-5x + 8 ≤ 3x - 7解法:将不等式中的数字进行移项,得到 -5x - 3x ≤ -7 - 8,简化为 -8x ≤ -15。

然后将两边都除以-8,并注意不等号的变化,得到x ≥ 15/8。

答案:x ≥ 15/83. 解不等式3:3(4 - x) < 7 + 6x解法:首先将括号内的表达式展开,得到 12 - 3x < 7 + 6x。

然后将数字进行移项,得到 -3x -6x < 7 - 12,简化为 -9x < -5。

再将两边都除以-9,并注意不等号的变化,得到 x > 5/9。

答案:x > 5/94. 解不等式4:3x + 5 ≤ 2(4 + x)解法:首先将括号内的表达式展开,得到3x + 5 ≤ 8 + 2x。

然后将数字进行移项,得到 3x - 2x ≤ 8 - 5,简化为x ≤ 3。

最后没有其他运算,直接得到解。

答案:x ≤ 35. 解不等式5:-2(x - 3) > 5x + 6解法:首先将括号内的表达式展开,得到 -2x + 6 > 5x + 6。

然后将数字进行移项,得到 -2x - 5x > 6 - 6,简化为 -7x > 0。

再将两边都除以-7,并注意不等号的变化,得到 x < 0。

答案:x < 0请注意以上答案仅为初二不等式练习题的解答,可能会有其他解法。

对于每个不等式,我都给出了详细的解题方法,希望能对你的学习有所帮助。

如果你有任何其他问题,欢迎再次提问。

祝你学习进步!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式与不等式组(难+含答案)
一、选择题
1. 如果a 、b 表示两个负数,且a <b ,则( ).
(A)
1>b
a (B)
b
a <1 (C)
b
a 11< (D)a
b <1
2. a 、b 是有理数,下列各式中成立的是( ).
(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 3. |a |+a 的值一定是( ).
(A)大于零 (B)小于零 (C)不大于零 (D)不小于零 4. 若由x <y 可得到ax >ay ,应满足的条件是( ).
(A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0 5. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).
(A)a <0 (B)a >-1 (C)a <-1 (D)a <1
6. 九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩
印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ). (A)2人 (B)3人 (C)4人 (D)5人 7. 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km
按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ).
(A)11 (B)8
(C)7
(D)5
8. 若不等式组⎩⎨
⎧>≤<k
x x ,
21有解,则k 的取值范围是( ).
(A)k <2 (B)k ≥2
(C)k <1
(D)1≤k <2
9. 不等式组⎩⎨
⎧+>+<+1
,
159m x x x 的解集是x >2,则m 的取值范围是( ).
(A)m ≤2
(B)m ≥2
(C)m ≤1
(D)m ≥1
10. 对于整数a ,b ,c ,d ,定义
bd ac c d b a -=,已知34
1
1<<d
b
,则b +d 的值为_________. 11. 如果a 2x >a 2y (a ≠0).那么x ______y . 12. 若x 是非负数,则5
231x
-≤
-的解集是______. 13. 已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______. 14. 6月1日起,某超市开始有偿..
提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7
日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 15. 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.
16. 乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几
天里每天至少要读多少页?设以后几天里每天要读x 页,列出的不等式为______. 17. k 满足______时,方程组⎩⎨
⎧=-=+4
,
2y x k y x 中的x 大于1,y 小于1.
二、解下列不等式
18. 2(2x -3)<5(x -1). 10-3(x +6)≤1. 19. ⋅-->+2
2531x x
⋅-≥--+6
1
2131y y y
20. 3[x -2(x -7)]≤4x . .17
)
10(2383+-≤--
y y y 21.
.15
1
)13(21+<--y y y
.15
)
2(22537313-+≤--+x x x
22. ).1(32
)]1(21[21-<---x x x x
⋅->+-+2
5
03.0.02.003.05.09.04.0x x x
三、解不等式组 23. ⎩
⎨⎧≥-≥-.04,
012x x


⎧>+≤-.074,
03x x
24. ⎪⎩⎪⎨⎧+>-<-.
3342,121
x x x x
-5<6-2x <3.
25. ⎪⎩⎪
⎨⎧⋅>-<-32
2,352x x x x
⎪⎩
⎪⎨⎧->---->-.6)2(3)3(2,
13
2x x x
x
26. ⎪⎩⎪⎨⎧+>-≤+).
2(28,142x x x
.2
3
4512x x x -≤-≤-
四、变式练习
27. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .
28. .已知关于x ,y 的方程组⎩⎨⎧-=++=+1
34,
123p y x p y x 的解满足x >y ,求p 的取值范围.
29. 适当选择a 的取值范围,使1.7<x <a 的整数解:
(1) x 只有一个整数解; (2) x 一个整数解也没有.
30. 当3
10)3(2k k -<
-时,求关于x 的不等式k x x k ->-4)
5(的解集.
31. 已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.
32. 已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-0
2,
43x a x 的解集是x >2,求a 的值.
33. 关于x 的不等式组⎩
⎨⎧->-≥-123,
0x a x 的整数解共有5个,求a 的取值范围.
34.k取哪些整数时,关于x的方程5x+4=16k-x的根大于2且小于10?
不等式与不等式组答案
1.A
2.D
3.D
4.D
5.C
6.C
7.B
8.A
9.C
10.±3
11.x>y
12.0≤x≤4
13.a<4
14.8
15.x<(1-m)/(5-m)
16.8x≥72-10
17.-1<k<3
18.x>-1,x≥-3
19.x>6,y≤3
20.x≥2,y≤25/6
21.y<5,x≥-3/2
22.x<-5,x<9
23.1/2≤x≤4,x≥0
24.无解,3/2<x<11/2
25.x>6,-6<x<6
26.x<-12,x≤-4
27.x<-n/(1+m²)
28.p>-1
29.(1)2<a<3,(2)a≤2
30.x<k/(k-4)
31.A-B=7x+7 当x>-1时,A-B>0,即A>B 当x=-1时,A-B=0,即A=B 当x<-1时,A-B<0,
即A<B
32.解不等式组得x≥(4+a)/3 且x>2 (4+a)/3≤2解得a≤2,a=0,1,2
33.解不等式组得x≥a且x<2,若x有5个整数解,则-4<a≤-3
34.解不等式组得2<x=(8k-2)/3<10
1<k<4,k为整数,则k=2,3。

相关文档
最新文档