列联表卡方检验

合集下载

卡方检验及校正卡方检验的计算

卡方检验及校正卡方检验的计算

卡方检验及校正卡方检验的计算卡方检验是一种统计方法,用于比较一个样本中观察到的频数与期望频数之间的差异。

它适用于分析两个或更多个分类变量之间的关联性或独立性。

卡方统计量的计算方法如下:1.设置原假设(H0)和备择假设(Ha):-H0:观察到的频数与期望频数之间不存在差异,两个变量之间独立。

-Ha:观察到的频数与期望频数之间存在差异,两个变量之间存在关联。

2.构建列联表:- 将两个或多个分类变量的观察值按照行列交叉方式记录在一个称为列联表(Contingency Table)的表格中。

3.计算期望频数:-在H0条件下,计算每个单元格的期望频数。

-期望频数通过总频数除以总行数、总列数或总样本量再乘以各自的行或列的个数来计算。

4.计算卡方统计量:-将观察到的频数与期望频数之间的差异进行量化,可用卡方统计量来表示。

- 卡方统计量的计算方法为:卡方统计量 = sum((观察频数-期望频数)^2 / 期望频数)。

其中sum表示对所有的单元格进行累加。

5. 计算自由度(df):- 自由度是指用于计算卡方统计量时可以自由变动的数值个数。

对于2x2的列联表,自由度为1,对于更大的列联表,自由度为(df)=(行数-1) x (列数-1)。

6.查找临界值:-根据所设定的显著性水平(通常为0.05),查找临界值。

以自由度和显著性水平为参数,在卡方分布表中查找对应的临界值。

7.比较卡方统计量和临界值:-如果计算得到的卡方统计量大于临界值,则拒绝原假设,即观察到的差异是显著的,变量之间存在关联。

-如果计算得到的卡方统计量小于临界值,则接受原假设,即观察到的差异不是显著的,变量之间独立。

校正卡方检验是针对样本容量较小的情况进行的一种修正卡方检验方法。

当使用传统卡方检验时,如果期望频数过低或者有一些单元格的期望频数小于5,那么卡方统计量的计算结果可能不准确。

此时,可以使用校正卡方检验方法,通过修正期望频数来避免这个问题。

校正卡方检验的计算方法如下:1.构建列联表和计算期望频数与卡方统计量的步骤与传统卡方检验相同。

卡方检验

卡方检验

• (2)分析过程说明 • ①表6-1的资料是经过人为汇总得到的,即是采用频数表 格式来记录的的资料,同组分别有两种互不相容的结果— —杀灭或未杀灭,两组各自的结果互不影响,即相互独立。 对于这种频数表格资料,在卡方检验之前须用Weight Cases命令对频数变量进行预先统计处理,操作如下:单 击Data-Weight Cases命令,则弹出如图6-3所示对话框, 选中Weight cases by,按三角按钮将变量“计数”置入 Frequency Variable框内,定义“计数”为权数,按OK 。 • ②单击主菜单Analyze-Descriptive Statistics-Crosstabs, 则弹出对话框,按三角按钮将行变量“治疗方法” 置入 Row框内,将列变量“治疗效果” 置入Column框内,如 图6-4。 • ③按Stastics按钮,弹出“选择统计方法”对话框(见图 6-5),选中Chi-square,按Continue,返回图6-4,点OK, 输出表6-2、表 6-3。
x 2 1.428, p 0.839 0.05
,差异不显著,可以认为不同的治疗方法与治疗效果无关,即三 种治疗方法对治疗效果的影响差异不显著。
下表为不同灌溉方式下水稻叶片衰老情况的资料,试测验 稻叶衰老的情况是否与灌溉方式有关?
灌溉方式 深水 浅水 湿润 总计 绿叶数 146 183 152 481 黄叶数 7 9 14 30 枯叶数 7 13 16 36
第五章 卡方检验
一、2X2列联表的独立性检验 (一)计算公式
(二)例题及统计分析
例6.1 分别用灭螨A和灭螨B杀灭害虫,结果如表6-1, 问两种灭螨剂的效果差异是否显著? 表6-1 灭螨A和B杀灭害虫试验结果
组别 灭螨A 灭螨B 未杀灭数C1 12 22 TC1=34 杀灭数C2 32 14 TC2=46 TR1=44 TR2=36 T=80

列联表的卡方检验

列联表的卡方检验

列联表的卡方检验
列联表的卡方检验是一种用于检验两个分类变量之间是否存在关联性的统计方法,通常适用于二维列联表。

而在实际操作中,我们需要根据数据情况制作列联表,然后进行卡方检验,以便更加准确地得出结论。

列联表的制作通常需要根据研究问题把样本数据列出,将两个变量组成表格,以检验它们之间是否存在关联关系。

一般而言,列联表的行和列代表变量的不同水平,而每个单元格内则表示对应变量水平之间的交叉频数。

在进行卡方检验之前,我们需要计算出每个单元格的期望频数。

这可以通过假设两个变量之间没有任何关联关系,然后使用边际频率计算每个单元格的期望频数来实现。

接着,我们可以计算出卡方值,其公式为:
$\chi^2 = \sum \frac{(O - E)^2}{E}$
其中,$O$ 表示观察频数,$E$ 表示期望频数,$\sum$ 表示对于所有单元格求和。

最终,我们需要比较卡方值与临界值的大小关系,以决定是否拒绝零假设。

如果卡方值大于临界值,则表明两个变量之间存在关联关系,否则则没有。

总的来说,列联表的卡方检验是一种非常有用的分析方法,可用于检验和探究两个分类变量之间的关系。

但需要注意的是,在进行分析时要对数据进行严格的筛选和处理,以确保结果的准确性。

行乘列表和卡方检验-empowerstats

行乘列表和卡方检验-empowerstats

行乘列表和卡方检验行乘列表(列联表)用于分析分类数据,是观测数据按两个分类变量取值的交叉分布,如下卡方检验卡方检验是用于检验两个分类变量是相互关联还是彼此独立。

无效假设是两变量相互独立(不相关)。

在这种假设下,计算每个格子的期望频数,上表中N11的期望频数为:E11= R1×C1/N,然后比较实际观察值和期望值,计算卡方值。

X2值的计算公式为: X2=∑(Oi - Ei)2/Ei其中:Oi = 实际观察频数;Ei= 理论期望频数;n = 表中格子数Χ2 = Pearson's 统计值, 近似服从Χ2分布如果Χ2值的概率小于5%,则拒绝无效假设,说明两个变量显著相关的。

Fisher精确检验Fisher精确检验计算精确P值。

卡方检验仅仅是一个近似法,因为样本分布只是近似等于理论的卡方分布。

当样本量很小时或格子数据分布非常不均衡时,近似法就不适用了,此时应采用确切概率法计算精确P值。

当样本量很大或数据平衡性好时,精确P值计算很困难。

配对四格表的卡方检验比较两二分类变量(如两个诊断试验诊断结果)结果对称性,用配对四格表卡方检验。

如根两指标结果一致的格子是a、d,不一致的是b、c。

检验b与c 的差异,即检验两个结果哪个阳性率高。

卡方计算公式:X2=(b-c)2/(b+c),当b+c较小时(< 40),宜用线性校正,公式改为:X2=(|b-c|-1)2/(b+c)本模块可给出多个行变量与多个列变量,自动对行变量与列变量进行一一组合进行分析。

如果给出的行变量数与列变量数相同,如勾选按顺序配对分析,则对每个行变量与相应顺序的列变量组合进行分析,不做交叉组合。

例1,DEMO数据比较不同性别的文化程度分布是否不同,输入界面:输出结果:1 : Education * SEX卡方检验。

2.2 列联表的卡方检验

2.2 列联表的卡方检验

列联表的卡方检验
1.超几何分布(hypergeometric distribution)
产品抽样检查中经常遇到一类实际问题,假定在件产品中有件不合格品,即不合格率。

在产品中随机抽件做检查,发现件不合格品的概率为。

通常称这个随机变量服从超几何分布。

个有疗效的人,在个使用试验药的人中发现有个有疗效的受试者数服从超几何分布。

当样本量充分大时,服从正态分布。

3.卡方统计量和Pearson卡方统计量

如果卡方统计量比较大,说明单元格的实际值和期望值相差较大,即列联表两变量独立的原假设不成立。

4.SAS code和输出结果
data respire;
input treat $ outcome $ count;
datalines;
placebo f 16
placebo u 48
test f 40
test u 20
;
proc freq;
weight count;
tables treat*outcome / chisq EXPECTED;
run;
卡方统计量对应“Mantel-Haenszel Chi-Square” ,Pearson卡方统计量对应“Chi-Square”。

列联表和卡方检验的定义及应用

列联表和卡方检验的定义及应用

列联表和卡方检验的定义及应用概述在统计学中,列联表和卡方检验是重要的分析工具。

列联表是用于比较两个或多个变量之间关系的一种表格形式,而卡方检验则是用于检验这些变量之间是否存在显著的关联性。

本文将介绍列联表和卡方检验的定义、原理和应用。

一、列联表1.1 定义列联表是一种展示两个或多个变量之间关系的二元频数表,用于比较不同组别之间的差异。

它通常由两个或多个分类变量和个体数(或频数)组成。

例如,我们可以用一个列联表来比较男女学生在一个考试中的得分情况,或者比较不同疾病在不同年龄段中的发生情况。

1.2 列联表的应用列联表可以用于研究任何两个或多个变量之间的关系。

它可以帮助我们发现隐藏在数据中的模式,并在研究中提供有关变量之间关系的信息。

列联表还可以用于产生一些其他的统计工具,例如卡方检验和残差分析等。

二、卡方检验2.1 定义卡方检验是一种用于分析列联表数据的统计方法。

它基于一个假设:假设两个变量之间不存在显著的关联性。

如果列联表数据显示这种关联性可能存在,则拒绝这个假设,说明两个变量之间存在显著的关联性。

2.2 卡方检验的原理卡方检验的原理很简单。

它比较观测值和期望值之间的差异,其中期望值是假设两个变量之间不存在关系时的期望结果。

卡方值则是这些差异之和的平方除以期望值的总和,其值越大就意味着观测值与期望值之间的差异越大,显著性水平也越高。

2.3 卡方检验的步骤卡方检验可以分为三个主要步骤。

第一,建立研究假设。

我们需要制定研究假设:H0假设两个变量之间不存在关系,H1假设两个变量之间存在关系。

如果我们无法拒绝H0假设,则可以认为数据中不存在两个变量之间的显著关联性。

第二,计算卡方值。

我们需要计算出卡方值。

从列联表中计算每个单元格的观测值和期望值,然后计算出所有单元格观测值和期望值之间的差异。

将这些差异加起来,并用期望值的总和除以卡方值。

如果卡方值越大,则差异越大,两个变量之间的关系也越显著。

通常,我们需要将卡方值与指定的显著性水平进行比较。

4x4列联表卡方检验步骤 概述及解释说明

4x4列联表卡方检验步骤 概述及解释说明

4x4列联表卡方检验步骤概述及解释说明1. 引言1.1 概述本篇文章旨在介绍和解释4x4列联表卡方检验步骤。

通过对列联表和卡方检验原理的简要概述,我们将详细探讨如何进行4x4列联表卡方检验,并解释各个步骤的含义与目的。

1.2 文章结构本文将按照以下顺序来展开对4x4列联表卡方检验步骤的概述及解释说明:- 引言部分将提供整篇文章的概览,并阐明本文的目的。

- 第2部分将介绍列联表的基本概念,使读者了解什么是列联表及其在数据分析中的应用。

- 接下来,第3部分将对卡方检验原理进行简要介绍,帮助读者理解该统计方法背后的原理及意义。

- 第4部分将详细解释进行4x4列联表卡方检验所需的步骤,包括计算和推导过程。

- 在随后的三个部分(第5部分、第6部分和第7部分),我们将重点介绍该主题下涉及到的三个重要要点,并给出相关子要点以支持我们对这些要点的深入讨论。

- 最后,在结论部分,我们将对前文进行总结,并提供对于4x4列联表卡方检验步骤的应用价值以及未来研究方向的一些观点和建议。

1.3 目的本文的目的是介绍和解释4x4列联表卡方检验步骤。

通过对该统计方法背后的原理、计算过程以及相关要点和子要点的详细阐述,读者将能够全面了解并掌握如何进行4x4列联表卡方检验。

此外,本文还旨在提供给读者一个应用场景下实施该统计方法的指南,并挖掘其在实际数据分析中可能存在的局限性。

希望本文能为读者提供有益而全面的知识,并促进对于该领域的深入研究与讨论。

2. 4x4列联表卡方检验步骤概述及解释说明:2.1 列联表介绍:列联表是一种用于比较两个变量之间关系的交叉分析方法。

它将两个分类变量交叉组合形成一个二维表格,并显示出各个分类变量之间的关系。

在4x4列联表中,有四行和四列,每个单元格表示了两个分类变量之间的交叉频数。

2.2 卡方检验原理简介:卡方检验是一种统计方法,用于确定观察到的频数与期望频数之间是否存在显著差异。

通过比较实际观察到的频数和预期的频数,来判断两个分类变量是否存在相关性。

R×C表卡方检验

R×C表卡方检验

2 =9.60< 2 0.1,6=10.64,P>0.1, 按α=0.0病5水人准中,医不各拒型绝的H构0成,比即不不同能.认为三组
Q Technology limited
1.建立数据文件
Q Tech
在SPSS数据编辑窗,建立数据文件Li8-4.sav。
行变量:“疗法”,Values为:1=“生胃宁素 片”,2=“中药组” ,3=“西药组” ;
Q Technology limited
Q Tech
(3) 2检验
从菜单选择 Analyze→Descriptive
Statistics→Crosstable 指定 Row(s):疗法 Columns(s):疗效 击Statistics按钮选择Chi-square。
Q Technology limited
血压病效果不同。
Q Technology limited
1.建立数据文件
Q Tech
在SPSS数据编辑窗,建立数据文件题18.sav 。
行变量:“组别”,Values为:1=“新复方 ”,2=“降压片” ,3=“安慰剂” ;
列变量:“疗效”,Values为:1=“有效” ,2=“无效;
频数变量:“频数”。
Q Technology limited
2. spss操作过程
Q Tech
(1)在spss中调出数据文件题18.sav (2)频数变量加权。 从菜单选择
Data→Weight Cases 弹出Weight Cases对话框,选择
Weight Cases by框,框内选入“频 数”,即指定该变量为频数变量
Data→Weight Cases 弹出Weight Cases对话框,选择
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档