析取范式与合取范式40页PPT

合集下载

析取范式与合取范式ppt

析取范式与合取范式ppt

000
1
001
1
010
1
011
1
100
1
101
1
110
0
111
1
0
1
1
1
0
1
1
1
1
1
1
1
0
0
1
1
p(qr)与(pq)r等值, 但与(pq)r不等值
5
基本等值式
双重否定律 AA
幂等律
AAA, AAA
交换律
ABBA, ABBA
结合律
(AB)CA(BC)
(AB)CA(BC)
分配律
A(BC)(AB)(AC)
24
主析取范式与主合取范式
主析取范式:由极小项构成得析取范式 主合取范式:由极大项构成得合取范式
例如,n=3, 命题变项为p, q, r时, (pqr)(pqr) m1m3 就是主析取范式 (pqr)(pqr) M1M5 就是主合取范式
定理2、7 任何命题公式都存在着与之等值得主析取范式与 主合取范式, 并且就是惟一得、
同一律, 排中律
(pqr)(pqr)(pqr)(pqr)
m0 m2 m4 m6
分配律
得 (pq)r m0 m2 m4 m5 m6
可记作
(0,2,4,5,6)
28
实例(续)
(2) (pq)r (pr)(qr)
pr p0r
同一律
p(qq)r
矛盾律
(pqr)(pqr) 分配律
M1M3 qr (pp)qr
AB (AB)(BA) AB AB AB (AB) (AB) AB (AB) AB (A)B AB
16

析取范式与合取范式42页PPT

析取范式与合取范式42页PPT

谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
析取范式与合取范式

6、黄金时代是在我们的前面、心急吃不了热汤圆。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。

简单析取式和简单合取式

简单析取式和简单合取式
0
0 由∏小到大用∏表示 1 1
1
1 0 0
展开成极大项 1 1 1 0 1 1 1 0 1
0
0
0
1
1 0 1
∏表示合取
1
1
1
1
0
1
1
1
1
1
1
1
一个简单合取式是矛盾
p∧┐p∧q是矛盾式
式,当且仅当它同时含一 个命题变项及其否定。
上页
范 式 ---- 析取范式和合取范式
析取范式: 仅由有限个简单合取式构成的析取式 A=(p∧┐q∧r)∨(┐p∧q)∨(q∧┐q)
析取范式的对偶
合取范式: 仅由有限个简单析取式构成的合取式 A*=(p∨┐q∨r)∧(┐p∨q)Байду номын сангаас(q∨┐q)
极大项 在n个变元的简单析 取式中,若每个变元与其否 定不同时存在,而二者之一 必出现且仅出现一次,这种 析取式就叫做极大项 ┐p∨q∨┐r
0 0 0 0 1 1
1
1
1
1
0
1
M6
M7
范 式 ---- 求主析取范式
求p∧q ∨r的主合取范式 解 (p∧q)∨r 求出合取范式
(P∨r)∧(q∨r) (P∨(q∧┐q)∨r)∧((p∧┐p)∨q∨r) (P∨q∨r)∧(P∨┐q∨r)∧(p∨q∨r)∧(┐p∨q∨r) 000 ∧010 ∧ 000 ∧ 011 (p∨r)∧(q∨r) p q r M 0 ∧ M2 ∧ M3 0 0 0 0 0 0 ∏(0,2,3) 0 0 1 1 1 1
p∨(q∧┐r)
(交换律和吸收律)
上页
范 式 ---- 主范式
主析取范式概念

简单析取式和简单合取式(最全版)PTT文档

简单析取式和简单合取式(最全版)PTT文档

0 1 1 0 0 ∑(2,4,5,6,B7) B∧1B∧(pi∨┐pi)(B∧pi)∨(B∧┐pi)
范 式 ---- 析取式和合取式 A*(┐p,┐q,┐r) ┐p∧(q∨┐r) ┐A*(p,q,r)
∨(p∨┐p)∧(q∧┐r) (p∧q∧r)∨(p∧q∧┐r)
1 0 0 1 0 合取对范偶式式的为析(3)将重复出现的命题变项、矛盾式
(消去第一个→)
┐(┐(p∨q)∨r)∨p
(消去第一个→)
┐((┐p∧┐q)∨r)∨p ((┐┐p∨┐┐q)∧┐r)∨p ((p∨q)∧┐r)∨p
求合取范式 ((p∨q)∧┐r)∨p
(p∨q∨p)∧(┐r∨p) 求 析(p取∨范q)式∧(┐r∨p) (((交p∨换q律)∧和┐等r幂)∨律p) (p∧┐r)∨(q∧┐r)∨p
求p∧q ∨r的主合取范式
0 0 0 0 解

式(-p-∧--q)求∨主(r析1取)范求式 A的析取范式A’
0
0 0 1 0 (1)求A的析取范式A’
任何命题公式的主析取范式都是存在的,并且是唯一的。
0
求命题公式(( p∨q)→r)→p 的主析取范式。
解:((p∨q)→r)→p
p∨(q∧┐r)
N个变元可构成(22n)个若极A小’项的某简单合取式B中不含命题变项
p∧┐q∧r
N个变元可构成2n 个极小项
p
q
r
记 作
0 0 0 m0
0 0 1 m1
0 1 0 m2
0 1 1 m3
1 0 0 m4
1 0 1 m5
1 1 0 m6
1 1 1 m7
范 式 ---- 求主析取范式
p q r 范

2.2 析取范式与合取范式ppt课件

2.2 析取范式与合取范式ppt课件
3
如,p, ┐q 等为一个文字构成简单析取式, p∨┐p,┐p∨q 等为2个文字构成的简单析取式, ┐p∨┐q∨r, p∨┐q∨r 等为3个文字构成的简单析取
式.
注意
① 一个文字既是简单析取式,又是简单合取式. ② 为方便起见,有时用 A1, A2 ,L As 表示 s 个简单
析取式或 s 个简单合取式.
(p→q) r ((p∧┐q)∨r)∧(┐p∨q∨┐r) (p∧┐q∧┐p)∨(p∧┐q∧q)∨(p∧┐q∧┐r)
∨(r∧┐p)∨(r∧q)∨(r∧┐r)
(p∧┐q∧┐r)∨(┐p∧r)∨(q∧r)
15
在以上演算中,从第二步到第三步是利用矛盾律 和同一律。另外,第二步和第三步结果都是析取范式, 这正说明命题公式的析取范式是不唯一的。同样,合 取范式也是不唯一的。
37
2.重言式与矛盾式的主合取范式 ① 矛盾式无成真赋值,因而矛盾式的主合取范
式含2n 个极大项. (n为公式中命题变项个数) ② 重言式无成假赋值,因而主合取范式不含任
设 Ai (i 1,2,L , s) 为简单的析取式,则 A A1 A2 L As 为合取范式.
9
2 、范式的性质 定理2.2
(1)一个析取范式是矛盾式当且仅当它的每个简单 合取式都是矛盾式.
(2)一个合取范式是重言式当且仅当它的每个简单 析取式都是重言式.
10
定理2.3 (范式存在定理)任一命题公式都存在 着与之等值的析取范式与合取范式。
例2.8 求公式 (p→q) ↔ r主析取范式和主合取范式.
解:(1)求主析取范式. 在例2.7中已给出的公式的析取范式,即
(p→q)r (p∧┐q∧┐r)∨(┐p∧r)∨(q∧r)
在此析取范式中,简单合取式┐p∧r,q∧r都 不是极小项。下面分别求出它们派生的极小项。

析取范式与合取范式教案.ppt

析取范式与合取范式教案.ppt

公式 pq pq
pq pq
p,q形成的极小项与极大项
极小项 成真赋值
00 01 10 11
名称
m0 m1 m2 m3
极大项
公式 成假赋值
pq
00
pq 0 1
pq 1 0
pq 1 1
名称
M0 M1 M2 M3
定理2.6 设mi 与Mi是由同一组命题变项形成的极小项和极 大项, 则
mi Mi , Mi mi
最新.课件
26
实例
例1(续) 求(pq)r 的主析取范式与主合取范式
解 (1) (pq)r (pq)r
pq (pq)1
同一律
(pq)(rr)
排中律
ቤተ መጻሕፍቲ ባይዱ (pqr)(pqr)
分配律
m4m5 r (pp)(qq)r
同一律, 排中律
(pqr)(pqr)(pqr)(pqr)
m0 m2 m4 m6

p q p q pq (pq) pq (pq)(pq)
00 1 1 0
1
1
1
01 1 0 1
0
0
1
10 0 1 1
0
0
1
11 0 0 1
0
0
1
结论: (pq) (pq)
最新.课件
4
真值表法(续)
例2 判断下述3个公式之间的等值关系:
p(qr), (pq)r, (pq)r 解 p q r p(qr) (pq)r (pq)r
定理2.1 下述联结词集合都是完备集:
(1) S1={, , , , } (2) S2={, , , } (3) S3={, , } (4) S4={, } (5) S5={, } (6) S6={, }

1.6析取范式与合取范式

1.6析取范式与合取范式

因为m001┐p∧┐q∧r, m010┐p∧q∧┐r, m101p∧┐q∧r 所以选派方案有三种: (1)C去,而A,B都不去;(2)B去,而A,C都不去;(3)A,C同去,而B不去。
例子

例2.13 由公式的主析取范式,求主合取范式: (1)Am1∨m2 (A中含2个命题变项p,q) (2)Bm1∨m2∨m3 (B中含3个命题变项 p,q,r)
再次,在析取范式中不出现如下形式的公式:A∧(B∨C) 在合取范式中不出现如下形式的公式:A∨(B∧C) 利用分配律,可得 A∧(B∨C)(A∧B)∨(A∧C) A∨(B∧C)(A∨B)∧(A∨C)
由以上步骤,可将任一公式化成与之等值的析取范式或合取范式。

求范式可使用如下步骤:


(1)消去联结词→、。 (2)否定号的消去(利用双重否定律)或内移(利用德摩 根律)。 (3)利用分配律:利用∧对∨的分配律求析取范式,∨对 ∧的分配律求合取范式。

上面的定理告诉我们求主范式的步骤:
例子

求(p→q)r的主析取范式和主合取范式。
例子

求p→q的主析取范式和主合取范式。
主范式的用途(1)

1.求公式的成真赋值与成假赋值。 例如: (p→q)r m1∨m3∨m4∨m7 m001∨m011∨m100∨m111
M0∧M2∧M5∧M6 M000∧M010∧M101∧M110
范式的惟一性——主范式


平面上的二次曲线标准方程 一般形式的二次方程难以知道方程所代表的曲线 形状 如果将它化为标准方程,便可知道二次方程所代表 的是圆、椭圆、双曲线或是抛物线了。
极大项和极小项

定义2.4 在含有n个命题变项的简单合取式(简单析取式) 中,若每个命题变项和它的否定式不同时出现, 而二者之一必出现且仅出现一次,且第i个命题变 项或它的否定式出现在从左算起的第i位上(若命 题变项无角标,就按字典顺序排列),称这样的 简单合取式(简单析取式)为极小项(极大项)。

析取范式与合取范式

析取范式与合取范式

析取范式与合取范式析取范式与合取范式合同协议书合同基本信息合同名称:析取范式与合取范式合同协议书合同编号:____________________________签署日期:____________________________合同生效日期:____________________________合同标的:析取范式与合取范式应用及其相关服务合同方信息合同方甲(服务提供方):名称:____________________________地址:____________________________联系电话:____________________________电子邮箱:____________________________合同方乙(服务接受方):姓名:____________________________地址:____________________________联系电话:____________________________电子邮箱:____________________________服务内容服务项目1:析取范式的理论讲解与应用服务项目2:合取范式的理论讲解与应用服务项目3:相关案例分析与实际应用服务项目4:提供相关资料及文献支持服务标准服务标准1:服务内容应涵盖析取范式与合取范式的基本概念、计算方法及应用实例。

服务标准2:提供的材料应为最新的研究成果及学术资料,确保准确性与前瞻性。

服务标准3:服务应包括理论讲解、问题解答及案例分析,确保服务效果。

服务时间与地点服务开始日期:____________________________服务结束日期:____________________________服务地点:____________________________服务时间安排:____________________________费用及支付方式服务费用总额:____________________________费用明细:明细1:____________________________明细2:____________________________支付方式:____________________________支付时间安排:____________________________第一次支付:____________________________第二次支付:____________________________双方责任合同方甲(服务提供方)负责按合同约定提供服务,确保服务质量,并在规定时间内完成服务内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档