第2讲 圆锥曲线的方程与性质
2014高考数学一轮高强优化课件:圆锥曲线的定义、方程与性质

1.已知 F1,F2 为双曲线 C:x2-y2=2 的左、右焦点,点 P 在 C 上,|PF1|=2|PF2|,则 cos∠F1PF2= 1 A. 4 3 B. 5 3 C. 4 4 D. 5 ( )
解析:因为 c2=2+2=4,所以 c=2,2c=|F1F2|=4,由题 意可知|PF1|-|PF2|=2a=2 2,|PF1|=2|PF2|,所以|PF2| = 2 2 , |PF1| = 4 2 , 由 余 弦 定 理 可 知 cos ∠ F1PF2 = 4 22+2 22-42 3 = . 4 2×4 2×2 2 答案:C
x 2y 点坐标为(2,0),所以上述两点连线的方程为 + p =1.双曲线的 2 3 1 2 1 渐近线方程为 y=± x.对函数 y= x 求导,得 y′=px.设 3 2p 1 3 3 M(x0,y0),则px0= ,即 x0= p,代入抛物线方程得,y0= 3 3 1 x 2y 3 2 p p.由于点 M 在直线 + p =1 上,所以 p+p× =1,解得 p 6 2 6 6 4 4 3 = = . 3 3
答案:C
1.圆锥曲线的定义、标准方程与几何性质
名称 椭圆 |PF1|+|PF2|= 2a(2a>|F1F2|)
x2 y2 + =1(a> a2 b2 b>0)
双曲线 ||PF1|-|PF2||= 2a(2a<|F1F2|)
x2 y2 2- 2=1(a>0, a b b>0)
抛物线 |PF|=|PM|点F
x2 y2 (2)(2013· 福建高考)椭圆 Γ: 2+ 2=1(a>b>0)的左、右焦 a b 点分别为 F1,F2,焦距为 2c,若直线 y= 3(x+c)与椭圆 Γ 的 一个交点 M 满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等 于________.
2021高考数学二轮专题训练2.52课时突破解析几何高考小题第2课时圆锥曲线的方程与性质课件2021

直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,
且d1+d2=6,则双曲线的方程为( )
A. x 2 y 2 =1
4 12
C. x 2 y 2 =1
39
B. x 2 y 2 =1
12 4
D. x 2 y 2 =1
93
【解析】选C.因为双曲线的离心率为2,所以 c
n
2a
在Rt△MPF2中,|MF2|2=|PF2|2-|PM|2=m2-n2,
在Rt△MF1F2中,
|MF2|2=|F1F2|2-|MF1|2=(2c)2-(2n)2=4c2-4n2,
所以m2-n2=4c2-4n2,即16a2+3×4a2=4c2,
所以
c
2
=7,所以离心率e=
a2
c =2 . 7
y2
=1(m>0)的两个焦点,若C上存在点M满足MF1⊥MF2,则
实数m的取值范围是( )
A.
0,1 2
C.
0,1 2
∪(2,+∞)
B.[2,+∞)Leabharlann D.1 2,1
∪(1,2]
【解析】选C.分椭圆的焦点在x轴上和y轴上两种情况讨论.
①若焦点在x轴上,即m>1,当M为短轴的端点时,∠F1MF2取最大值,要使MF1⊥MF2,则
所以m2=1,所以 13
n n
> >
00,,所以-1<n<3.
若双曲线的焦点在y轴上,则双曲线的标准方程为 n y 3 2m 2m x 22n1, 即 n m 3 2m n 2 > > 0 0 , ,
即n>3m2且n<-m2,此时n不存在.
人教A版高中同步学考数学选修1精品课件 模块复习课 第2课时 圆锥曲线的定义、标准方程与简单几何性质

是
(
)
A.2+ 3
C.2+ 2
B.1+ 2
D.1+ 3
课堂篇探究学习
专题归纳
高考体验
解析:画出双曲线 C1 与抛物线 C2 的图象,过点 P 向抛物线的准线作
垂线,垂足为 E,依题意知|PF1|=|F1F2|=2c,由双曲线的定义得
抛物
的焦点 0, ,
p
p
p
p
2
,0
,准线
,0
,准线
点 0,- 2 ,准线 y=2
线
p
2
2
准线 y=-2
p
p
x=x=
2
2
课前篇自主梳理
知识网络
要点梳理
思考辨析
判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打
“×”.
(1)若m>n>0,则方程mx2+ny2=1表示焦点在x轴上的椭圆.(
)
(2)椭圆的焦点到其一个短轴端点的距离等于长轴长.(
|PF2|=|PF1|-2a=2c-2a,由抛物线的定义得|PE|=|PF2|=2c-2a,由于
|EF1|<|PF2|可得 (2)2 -(2-2)2 <2c-2a,整理得 c2-4ac+2a2>0,即
e2-4e+2>0,从而可求出双曲线 C1 的离心率 e>2+ 2,排除不满足的选
项,可得 e=2+ 3.
(2)抛物线 y2=ax(a≠0)的焦点 F 为
4
,0 ,
圆锥曲线的参数方程与直角坐标方程的性质推导解析

圆锥曲线的参数方程与直角坐标方程的性质推导解析圆锥曲线是数学中常见的一类曲线形状,参数方程和直角坐标方程是描述和推导圆锥曲线性质的两种常用方法。
本文将分析圆锥曲线的参数方程与直角坐标方程的关系,并推导解析圆锥曲线的性质。
一、圆锥曲线的参数方程参数方程是用参数表示曲线上的点,参数通常用t表示,通过给定不同的参数值,可以得到曲线上的一系列坐标。
对于圆锥曲线,其参数方程可以表示为:x = f(t)y = g(t)其中f(t)和g(t)是关于参数t的函数,通过给定不同的参数值t,可以得到曲线上的点坐标(x, y)。
以常见的椭圆为例,椭圆的参数方程为:x = a * cos(t)y = b * sin(t)其中a和b分别是椭圆的长轴和短轴长度。
二、圆锥曲线的直角坐标方程直角坐标方程是使用x和y的关系来描述曲线的方程。
对于圆锥曲线,其直角坐标方程通常可以写成:F(x, y) = 0其中F(x, y)是一个包含x和y的函数,通过令F(x, y)等于零,可以得到曲线上的点坐标。
以椭圆为例,椭圆的直角坐标方程为:(x^2 / a^2) + (y^2 / b^2) = 1其中a和b分别是椭圆的长轴和短轴长度。
三、圆锥曲线的参数方程与直角坐标方程的关系圆锥曲线的参数方程与直角坐标方程是等价的,通过互相转换可以得到相同的曲线信息。
圆锥曲线的参数方程(x = f(t), y = g(t))可以转化为直角坐标方程F(x, y) = 0的形式。
同样地,直角坐标方程F(x, y) = 0也可以转化为参数方程(x = f(t), y = g(t))的形式。
以椭圆为例,可以将椭圆的参数方程(x = a * cos(t), y = b * sin(t))转化为直角坐标方程:((a * cos(t))^2 / a^2) + ((b * sin(t))^2 / b^2) = 1化简后得到:cos^2(t) / a^2 + sin^2(t) / b^2 = 1这正是椭圆的直角坐标方程。
专题六 第2讲 圆锥曲线的方程与性质

易错提醒
求圆锥曲线的标准方程时的常见错误 双曲线的定义中忽略“绝对值”致错;椭圆与双曲线中参 数的关系式弄混,椭圆中的关系式为a2=b2+c2,双曲线 中的关系式为c2=a2+b2;圆锥曲线方程确定时还要注意 焦点位置.
跟踪演练1 (1)已知双曲线的渐近线方程为 y=± 22x,实轴长为 4,则该双曲 线的方程为
cos∠AF1B=|AF1|22+|AF|B1F|·|1B|2F-1||AB|2 =4m22+·29mm·23-m9m2=13,
在△AF1F2中, cos∠F1AB=|AF1|22+·|A|AFF1|2·||2A-F|2F| 1F2|2 =4m22+·2mm2·-m 4c2=cos∠AF1B=13,
即 cos∠NMM′=|M|MMN′| |= 55,
所以 cos∠OFA=cos∠NMM′= 55, p
而 cos∠OFA=||OAFF||=
2= 2p2+22
55,解得
p=2.
(2)( 多 选 )(2022·新 高 考 全 国 Ⅱ) 已 知 O 为 坐 标 原 点 , 过 抛 物 线 C : y2 =
对于 B,由选项 A 的分析,知直线 AB 的方程为 y=2 6x-p2, 代入 y2=2px,得 12x2-13px+3p2=0,解得 x=34p 或 x=13p, 所以 xB=13p,所以 yB=- 36p,所以|OB|= x2B+y2B= 37p≠|OF|,故 B 不正确;
对于C,由抛物线的定义及选项A,B的分析, 得|AB|=xA+xB+p=1123p+p=2152p>2p,即|AB|>4|OF|,故 C 正确; 对于 D,易知|OA|= 433p,|AM|=54p,
在抛物线 C 上,射线 FM 与 y 轴交于点 A(0,2),与抛物线 C 的准线交于
2020新课标高考数学二轮课件:第二部分专题五 第2讲 圆锥曲线的定义、方程与性质

)
A.x82-1y02 =1
B.x42-y52=1
C.x52-y42=1
D.x42-y32=1
解析:选 B.法一:由双曲线的渐近线方程可设双曲线方程为x42-y52=k(k>0),即4xk2-5yk2
=1,因为双曲线与椭圆1x22+y32=1 有公共焦点,所以 4k+5k=12-3,解得 k=1,故
(2)不妨设 P 为双曲线 C 右支上一点,由双曲线的定义,可得|PF1|-|PF2|=2a. 又|PF1|+|PF2|=6a,解得|PF1|=4a,|PF2|=2a,又|F1F2|=2c,则|PF2|=2a 最小,所以 ∠PF1F2=30°. 在△PF1F2 中,由余弦定理,可得 cos 30°=|PF1|22+|P|FF11|F|F2|12F-2||PF2|2=162a×2+44ac×2-2c4a2= 23, 整理得 c2+3a2=2 3ac,解得 c= 3a,所以 b= c2-a2= 2a. 所以双曲线 C 的渐近线方程为 y=± 2x.故选 A. 【答案】 (1)C (2)A
[对点训练]
1.(2019·福州模拟)已知双曲线 C:xa22-by22=1(a>0,b>0)的右焦点为 F,点 B 是虚轴的
一个端点,线段 BF 与双曲线 C 的右支交于点 A,若B→A=2A→F,且|B→F|=4,则双曲线
C 的方程为( )
A.x62-y52=1
B.x82-1y22 =1
C.x82-y42=1
p=( )
A.2
B.3
C.4
D.8
解析:选 D.由题意,知抛物线的焦点坐标为p2,0,椭圆的焦点坐标为(± 2p,0),所 以p2= 2p,解得 p=8,故选 D.
3.(一题多解)(2017·高考全国卷Ⅲ)已知双曲线 C:xa22-by22=1 (a>0,b>0)的一条渐近
(统考版)2023高考数学二轮专题复习:圆锥曲线的定义、方程与性质课件

3 6
4
答案:
x2
(2)[2022·新高考Ⅱ卷]已知直线l与椭圆6 Nhomakorabeay2
+ =1在第一象限交于A,
3
B两点,l与x轴、y轴分别交于M,N两点,且|MA|=|NB|,|MN|=2 3,
x+ 2y-2 2=0
则l的方程为______________.
归纳总结
直线与圆锥曲线关系的求解技巧
18
16
2
x
y2
C. + =1
3
2
答案:B
x2
y2
B. + =1
9
8
2
x
D. +y2=1
2
(2)[2022·贵州毕节模拟预测]如图,唐金筐宝钿团花纹金杯出土于西
安,这件金杯整体造型具有玲珑剔透之美,充分体现唐代金银器制作
的高超技艺,是唐代金银细工的典范之作.该杯主体部分的轴截面可
以近似看作双曲线C的一部分,若C的中心在原点,焦点在x轴上,离
(1)对于弦中点问题常用“根与系数的关系”或“点差法”求解,在
使用根与系数的关系时,要注意使用条件Δ>0,在用“点差法”时,
要检验直线与圆锥曲线是否相交.
(2)椭圆
x2
a2
y2
+ 2
b
=1(a>b>0)截直线所得的弦的中点是P(x0,y0)(y0≠0),
b2 x0
则直线的斜率为- 2 .
a y0
x2
c
a
2c
2a
= 7m,所以C的离心率e= = =
F1 F2
PF1 − PF2
=
7m
7
圆锥曲线的方程与性质

即 c2-2c-3=0,解得 c=-1(舍去)或 c=3.
索引
所以 C1 的标准方程为3x62+2y72 =1, C2的标准方程为y2=12x.
索引
考点整合
///////
1.圆锥曲线的定义 (1)椭圆:|MF1|+|MF2|=2a(2a>|F1F2|); (2)双曲线:||MF1|-|MF2||=2a(2a<|F1F2|); (3)抛物线:|MF|=d(d为M点到准线的距离). 温馨提醒 应用圆锥曲线定义解题时,易忽视定义中隐含条件导致错误.
所以
C
的离心率
e=ac=22ac=|PF|1F|-1F|2P| F2|=
27mm=
7 2.
索引
3.(2021·新高考Ⅰ卷)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为 C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线 方程为__x_=__-__23_______. 解析 法一 由题意易得|OF|=p2,|PF|=p,∠OPF=∠PQF,所以 tan∠OPF
索引
(2)(2021·江南十校联考)已知椭圆 C:xa22+y2=1(a>1)的左、右焦点分别为 F1,F2, 过 F1 的直线与椭圆交于 M,N 两点,若△MNF2 的周长为 8,则△MF1F2 面积的
最大值为( B )
3 A. 2
B. 3
C.2 3
D.3
解析 由椭圆定义|MF1|+|MF2|=|NF1|+|NF2|=2a, 所以△MNF2的周长为|MN|+|MF2|+|NF2|=|MF1|+|NF1|+|MF2|+|NF2|=4a=8. 则 a=2,故 c= a2-1= 3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 圆锥曲线的方程与性质
高考定位 1.圆锥曲线的方程与几何性质是高考的重点,多以选择题、填空题或解答题的第一问的形式命题.2.直线与圆锥曲线的位置关系是命题的热点,尤其是有关弦长计算及存在性问题,运算量大,能力要求高,突出方程思想、转化、化归与分类讨论思想方法的考查.
真 题 感 悟
1.(2020·全国Ⅰ卷)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )
A.2
B.3
C.6
D.9
解析 设A (x ,y ),由抛物线的定义知,点A 到准线的距离为12,即x +p 2=12.
又因为点A 到y 轴的距离为9,即x =9,
所以9+p 2=12,解得p =6.故选C.
答案 C
2.(2020·全国Ⅲ卷)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )
A.⎝ ⎛⎭⎪⎫14,0
B.⎝ ⎛⎭⎪⎫12,0
C.(1,0)
D.(2,0) 解析 将x =2与抛物线方程y 2=2px 联立,
可得y =±2p ,
不妨设D (2,2p ),E (2,-2p ),
由OD ⊥OE ,可得OD →·OE
→=4-4p =0,解得p =1, 所以抛物线C 的方程为y 2
=2x .其焦点坐标为⎝ ⎛⎭⎪⎫12,0.故选B. 答案 B。