基于刚度特性的车身结构轻量化研究
基于刚度及模态分析的某微型车车身轻量化设计

基于刚度及模态分析的某微型车车身轻量化设计摘?要通过软件建立起某微型车车身的有限元分析模型,并实施刚度及模态分析。
通过分析轻量化前与后的计算成果,对比可得知,轻量化后的车身刚度和模态在接受的预定值内,是可以满足减轻车身质量的要求。
通过试验验证,轻量化的后有限元分析结论与实车的试验结果有较高的一致性。
关键词刚度;模型分析;微型车;轻量化中图分类号 u463 文献标识码 a 文章编号1673-9671-(2012)052-0230-01经研究分析,汽车燃油的耗损量越大,车身的总质量就越重,反之,汽车燃油的耗损量越小,车身的总质量就越轻。
随着人们的经济水平提高,汽车越来越多,如何降低排放量、节约资源是当前研究的热门,所以这需要到轻量化的车身设计。
当前,市面上大部分轿车的车身结构一般是采用的全承载式车身,因承载式的车身担负了全车所有的扭转和弯曲,所以自身的刚度特征具有十分重要的意义。
在车身轻量化的变化中,假如发现车身的刚度有不同程度的降低,必会引起车身门窗、发动机舱口等形态改变,引发玻璃破碎、车门关闭困难等情况的出现。
这时,低刚度出现伴有低频率,导致结构共振、噪声,会影响到人乘坐的舒适性,不同程度的影响整车的能性。
因此,达到车身的轻量化需满足车身的刚度与模态。
文章是组建有关板壳单元为基本单元的车身有限元分析模型,运用有限元的软件分析某微型车车身的前、后轻量化刚度及模态变化,可以更好地为轻量化作指导。
1 有关刚度与模态的基础理论1.1 刚度扭转的理论分析如果车身受对称垂直的重量时,结构处会出现扭转的情况,致使车身扭曲变形,轴之间的角发生扭转。
说明,结构的变形力度是与所受力、结构扭转及刚度相关。
用公式解释为:车身的结构扭转刚度等于扭矩与轴之间的相对扭转角的比。
1.2 刚度弯曲的理论分析从车身的弯曲刚度能够得出:产生垂直力下的车身是纵向扩展力量,表明出车身的弯曲程度,分析车身纵梁的铅垂直力作用的挠度大小,可以看作弯曲的刚度等于车身弯曲的重量与纵向的弯曲最大值之比。
汽车结构的轻量化设计措施分析

AUTOMOBILE DESIGN | 汽车设计时代汽车 汽车结构的轻量化设计措施分析贾朝贝郑州科技学院 河南省郑州市 450000摘 要: 汽车工业要发展,在目前必须要满足环保要求,汽车轻量化设计可实现节能减排,但轻量化设计不是单纯减重,而是要保证安全性能的前提下去减重,因而如何进行轻量化设计值得探索,本文中重点对此进行了分析讨论,探析了目前市面上主流的轻量化设计方法措施,仅供参考。
关键词:汽车 轻量化设计 方法措施轻量化在当前汽车设计制造产业当中是一个比较主流的方向,与新能源车具有相当的地位,在传统发动机技术发展陷入瓶颈,新能源汽车受限于电池的情况下,轻量化成为了一种非常关键的解决手段,通过轻量化来实现节能减排。
但汽车轻量化,不是单纯减轻汽车的重量,而是在减轻重量的同时提升性能,因此分析讨论如何去进行轻量化设计,具有非常典型的价值意义。
1 轻量化设计概述1.1 轻量化产生背景轻量化设计是目前国内外汽车设计制造技术中的主要发展方向之一,与环保和安全具有同等地位,随着人们环保意识增强,汽车工业要发展,必须要走可持续发展道路,而可持续发展显然必须要实现节约资源、减少消耗,对于汽车工业而言,要达到相关要求,已经得到公认的路径包括提高发动机效率、新能源和轻量化。
汽车的节能环保通常情况下是降低油耗或提高燃油效率,降低或者清洁排放尾气。
在提高发动机效率方面,由于传统发动机不管是柴油机还是汽油机,实际上都已经达到了一个相当高的水准,现阶段主要是通过对发动机进行微量调整并利用汽车电子技术来提高发动机的效率,但效果并不是很理想,仅仅只能说达标。
而新能源汽车在环保上的效果最佳,但是问题在于由于电池的限制,新能源车的发展还需要走很长的一段路,而轻量化技术,在保证汽车安全性的基础上去降低汽车的自重来实现能耗的下降,它可以作为提高发动机能效,甚至是新能源车能效的一种基础技术手段,在当前发动机技术、新能源车技术尚未出现巨大突破之前,轻量化将是节能减排的主流技术手段。
车身轻量化系数的决定因素及其优化

车身轻量化系数的决定因素及其优化车身轻量化是汽车行业寻求提高燃油效率、减少碳排放、提高汽车实力和其它有益性能的方法。
车身轻量化对于汽车制造商而言非常重要,在汽车工业中,车身重量是影响燃油经济性的主要因素之一,因此,减少车身重量可以减少燃油消耗,从而减少汽车对环境的污染,促进汽车产业的生态环境。
本文将讨论车身轻量化系数的决定因素及其优化。
车身轻量化是一个复杂的过程,主要涉及的因素包括材料、结构、设计以及性能等方面。
材料在车身轻量化过程中发挥着重要作用。
常见的车身材料包括钢、铝、镁合金、碳纤维强化复合材料等。
钢材作为一种重要的车身材料,应用十分广泛。
钢材密度较大,但强度高,应力应变性能良好,发挥优异的冲击吸能能力。
近年来,许多汽车制造商开始采用轻量化的铝合金材料,用于车身、发动机、传动系等部位的生产。
相对钢及铝合金材料,镁合金具有更轻、更坚硬的优势,但其成本较高、加工难度和腐蚀问题等也要加以考虑。
碳纤维材料以其高强度、高韧性、轻量化等优势成为轻量化领域的重头戏。
除了材料的选择外,车身的结构设计对于轻量化也非常重要。
对于车身结构的设计,可能会影响车身的重量、车辆的稳定性及安全性能。
因此,改善车身结构的设计,是实施车身轻量化战略的关键之一。
例如,在组件结构中使用成角型部分可以提高刚性,从而减少材料用量;在加大壳体折叠强度的基础上采用薄壁结构可以提高车体的强度和弹性模量;在车身前面板采用混杂玻璃纤维增强塑料、聚酰亚胺环氧树脂、热塑性树脂等这些轻量化材料也是降低车身重量的常用手段。
优化车身轻量化系数的策略在许多方面都由于第一手成本的额外支付而遭受了挑战。
然而,车身轻量化不仅仅是在材料成本中获得的所需成本的回报,更意味着在未来更广泛的方面可以提高乘客舒适性和保证车辆出行的安全性。
因此,制定一个可行的轻量化策略,使成本、性能和质量三者的平衡得到最大化。
总的来说,车身轻量化需要综合考虑各个因素,以制定一种可行的方案。
浅谈汽车车身结构轻量化

浅谈汽车车身结构轻量化作者:栾子军林超来源:《科学与财富》2018年第34期摘要:轻量化技术已经成为汽车工业发展的重要研究课题之一,如何评价汽车轻量化水平已引起了汽车行业的广泛关注,文章主要对国内的主流的汽车轻量化评价指标作了详细论述。
本文就对汽车车身结构轻量化进行分析。
关键词:汽车车身;结构;轻量化引言车身的轻量化设计,可以保证车身具有良好的刚度性能和均匀合理的受力分布,提高材料的利用率。
在保证汽车安全性的前提下,实现汽车车身结构的轻量化设计,从燃油经济性角度看有重要的现实意义。
1汽车车身轻量化的意义汽车车身轻量化的目的是在确保零部件的强度、刚度的前提下,减轻车身的质量,达到使整车的整备质量降低,以改善汽车的有关性能。
据有关研究资料表明,白车身和车身附件的质量之和几乎占了轿车整备质量的一半,客车车身质量约占汽车总质量的30%~40%。
可见,如使车身质量降下来,可节约大量钢材及其他原材料,使车身或汽车的制造成本大幅度下降。
由于车身质量减轻,作用到悬置及动力系统上的载荷会相应减小,从而使有关总成受力情况得到改善。
如果使整车质量减小10%,则燃油消耗就可以降低8%左右,这将大大节约燃料,同时可使汽车动力性得到提高。
2实现车身轻量化的途径综上所述,车身轻量化对汽车性能的提高及整车质量具有举足轻重的作用,已成为新车开发中最重要的课题之一。
2.1选择合理的总布置总布置设计会对汽车车身的轻量化产生重大影响。
对于同吨位的货车,如果选用平头布置形式代替长头布置形式,使整车的轴距与总长缩短,从而可使车身的质量得以减轻;客车设计时,如采用承载式车身,则可省去笨重的车架而使车身质量减轻;在轿车设计中,若选用发动机前置前轮驱动的布置方式,则长的传动轴及车身地板的中间凸起可以取消,也能使车身达到较好的轻量化效果。
2.2采用合理的汽车造型据统计,车身外板件约占车身总质量的20%,因此合理的外形是车身轻量化的重要因素。
以20世纪50年代红旗轿车CA72型和60年代的CA70型两种车型的前部造型为例,CA72型的前部采用灯筒形前翼子板与前照灯的造型,这对减小空气阻力和质量都不会产生好的效果;而新型红旗轿车采用表面光滑链接,减少了板料的使用量,得到了轻量化的效果。
基于刚度与模态分析的客车结构轻量化研究

【 摘
要】 利用有限元法分析 了某半承载式客车车身骨架的刚度与模态。 在此基础上, 重点以整车状
态下的车 架为研 究对 象, 进行 灵敏 度 分析 , 通过 选择 有效 的设 计 变量 , 满足 刚度和模 态性 能的条件 下 , 在
以整车质量最小为 目标 函数进行 了尺 寸优 化 。最后 通过 对后排五人座椅 处结构的调整 , 优化 了该局部 的 受力模 式 , 进一 步减 少 了该 处的下沉 量 , 得到 了符合设计要 求的改进 方案。
hce k lt te ee rhoj c t d nivt a a s . h nac ri ers l h e s ii il seeo n h sac  ̄eto o e s ii nl i T e odn t t ut o e niv y r s t y ys c g o h e s ft s t t
关键 词 : 扭转 刚度 ; 度 ; 挠 模态 ; 车架 ; 灵敏度分 析
【 btat Te t nsad oe Qn u wt ^ 产 n gabd e t e a u t i i A s c】 h i es n ds 厂 s i ( i er y kl o a cle b u l n r s f m b h t l o s e n r c a einv ibe ae hsntp r r t i t l hetgt ot i i § nl i t p r i s a al oe e厂 mo i z i ̄T a e pi z o it y sh pa d g r t sr c o 0 p m ao r o f m a n so t
;
K y od:os nltfesB n eet nMoeV hc a ;esit aa s e rsT ri asf s;eddfco ; d ;eiermeSnivy nl i w o in l i lf t i y s
基于高强钢的城市客车车身骨架轻量化开发设计

作者简介:张财智(1985—),男,工程师,硕士,主要从事客车结构强度 CAE 分析与 NVH 仿真研究。
58
机电技术
2018 年 2 月
主要把高强钢材料应用到车身骨架的侧围立柱、 顶盖弧杆以及底盘车架结构上。
1.4 车身骨架优化设计
国内外在客车车身骨架优化方面的研究较 多,也取得了较为明显的效果。目前针对车身机 构的轻量化设计,有如下方法:1)尺寸优化。建立 客车车身骨架的有限元模型,以车身的总质量为 优化束条 件进行尺寸优化。2)结构优化。一般是借助于有 限元分析技术,通过结构的拓扑和形状等优化设 计来实现轻量化。3)混合材料车身结构设计。比 如设计一种多结构复合材料车身,利用神经网络 建立车身骨架的优化模型,采用遗传算法进行求 解。4)基于内力优化的车身设计。从构建受力分 析提出一种基于构件内力优化的车身结构轻量化 设计方法[7,8]。
关键词:高强钢;客车;轻量化 中图分类号:U463.82+2 文献标识码:A 文章编号:1672-4801(2018)01-057-04 DOI:10.19508/ki.1672-4801.2018.01.018
节约能源、减少排放是汽车行业急需面对的 问题之一,特别是在商用车领域,由于其燃油消耗 量高、行驶里程更长,其消耗的石油总量远高于其 所占汽车数量比例[1,2]。在客车产业,为了有效解 决节能与环保问题,主要有两条技术路径:一是节 能与新能源汽车技术,即不断提高整车动力总成 的性能(发动机排放水平和传动系统的效率)和大 力发展新能源客车;另一就是轻量化技术,即如何 在保证安全性能的前提下使汽车“瘦身”。这两条 途径其实也是相辅相成的,轻量化技术对于客车 续航里程的提高和整车性能的提高提供了方向。
基于刚度与耐撞性要求的车身结构轻量化研究

车身结构 的轻量化 , 减轻质量 9 1g 轻量化效果达 5 4 % 。 .k , .4
关键 词 : 车身 结构 ; 刚度 ; 耐撞 性 ; 持 向量 t i hi g o r Bo y Sr cu e Ba e n S u y o h ih we g tn fCa d tu t r s d o S i n s n a h rhn s q ie ns t f e sa d Cr s wo t ie sRe u r me t f
d p i e p o e s,t e t i k e sa d m ae a o e y p r m ee so u o p n l r p i z d o h r m ie o e— a tv r c s h h c n s n t r lpr p r a a t r fa t a esa e o tmie n t e p o s fme t i t
题 。J 。对 于耐 撞性 能 , 车碰 撞 属 于大 变 形 、 位 整 大
日 吾 J I
tc n q e i u e o c n t c t mo es frp r r n e i d c t r ,t u v i i g t e d f cso u e c mp t t n e h i u s s d t o sr t u mea d l o e f ma c n i ao s h sa od n ee t f g o u a i o h h o
汽车车身静刚度自动化测试系统试验研究

汽车车身静刚度自动化测试系统试验研究智淑亚;高素美;凌秀军【摘要】汽车车身刚度是评价设计可靠性和整车安全性的重要指标.建立了车身静刚度自动化测试系统,以某型轿车为例,基于车身静刚度计算理论,研究车身扭转和弯曲刚度实时检测试验.试验与仿真结果表明,该测试系统不仅可实现全自动化测试,且测试精度高,测试方法和结果可为实现车身轻量化提供一定的参考.【期刊名称】《金陵科技学院学报》【年(卷),期】2016(032)004【总页数】5页(P33-37)【关键词】车身;静刚度;扭转刚度;弯曲刚度;自动化【作者】智淑亚;高素美;凌秀军【作者单位】金陵科技学院机电工程学院,江苏南京211169;金陵科技学院机电工程学院,江苏南京211169;金陵科技学院机电工程学院,江苏南京211169【正文语种】中文【中图分类】U467现代轿车为满足轻量化要求,大多采用承载式车身结构。
承载式车身几乎承载着汽车全部载荷,因此车身应具有足够的刚度。
车身刚度是评价设计可靠性和整车安全性的重要指标。
刚度试验是验证、评价车身刚度的主要途径,而试验数据精度则直接影响车身轻量化程度,如何提高其精度是当前汽车行业研究的重要课题。
本文以长安福特(承载式轿车)为例,采用现代计算机检测与控制技术对车身静刚度进行自动化测试,以为实现车身轻量化提供参考依据。
车身静刚度包括扭转刚度和弯曲刚度。
扭转刚度表示车身在凸凹不平路面上行驶时抵抗斜对称扭转变形的能力,车身结构的扭转刚度为单位扭转角所受的力,其计算模型如图1所示。
扭转刚度计算式为:扭转角计算式为:式中K—扭转刚度/(Nmm·rad-1);T—作用在车身上的扭矩/Nmm;θ—轴间相对扭转角/(°);ΔR—右侧纵梁(或门槛梁)测点的挠度/mm;ΔL—左侧纵梁(或门槛梁)测点的挠度/mm;S—同一截面两测试点间的距离/mm。
通过简支梁偏置加载模型将考察转角转化为考察垂向位移,计算模型如图2所示[1]。