高考技巧大全之高中数学黄金解题模板:专题10 函数图像的判断

合集下载

第10讲 函数的图像(解析版)2021届新课改地区高三数学一轮专题复习

第10讲 函数的图像(解析版)2021届新课改地区高三数学一轮专题复习
解析:(1)作函数 y=2x 的图象关于 x 轴对称的图象得到 y=-2x 的图象,再将图象向上平移 2 个单位,可 得 y=2-2x 的图象.如图 1;
(2)因为 y=log1[3(x+2)]=-log3[3(x+2)]=-log3(x+2)-1.
3
所以可以先将函数 y=log3x 的图象向左平移 2 个单位,可得 y=log3(x+2)的图象,再作图象关于 x 轴对称的

f (x) (1)x , g(x) 2(1)x
3
3
(1)x 3 1
2
(1)x
3
(
1
log
)
1 3
1 2
3
( 1 ) x log3 3
2
知,
f
(x)
向右移动
log3
2
个单位可得到
g
(x)
,故选项
D
正确;
故选: ABD .
5、.已知函数
f(x)=|log3x|,实数
m,n
满足
0<m<n,且
f(m)=f(n),若
3
m
ln x,x≥1, 6、(一题两空)(2019·吉林调研改编)设函数 f(x)= 1-x,x<1,则 f(f(0))=________,若 f(m)>1,则实数 m
的取值范围是________.
【答案】0 (-∞,0)∪(e,+∞)
ln x,x≥1, 【解析】f(f(0))=f(1)=ln 1=0.如图所示,可得 f(x)= 1-x,x<1的图象与直线 y=1 的交点分别为(0,1),
【答案】B
1-x2≥0, 【解析】(1)由 |x|≠0 且|x|≠1,得-1<x<0 或 0<x<1,

高中数学函数像与性质解题技巧

高中数学函数像与性质解题技巧

高中数学函数像与性质解题技巧高中数学是一门重要的学科,其中函数一直以来都是考试中的重点内容之一。

掌握函数的像与性质解题技巧,不仅有助于提高解题速度,还能培养学生的思维能力和逻辑思维能力。

一、函数的像与性质在学习函数的过程中,我们常常遇到求函数的像和研究函数的性质的问题。

函数的像是指函数的自变量取某个值时,函数应变量所对应的值。

而函数的性质则是描述函数的特点和规律。

二、像的求解技巧在解题过程中,我们可以利用一些技巧来求函数的像。

首先,我们可以通过函数的图像来判断函数的像。

例如,对于一元二次函数y=ax²+bx+c,我们可以观察抛物线的开口方向和顶点位置来判断函数的像。

如果a>0,抛物线开口向上,顶点是函数的最小值,反之则是最大值。

其次,我们可以利用函数的定义域来进行求解。

例如,对于有理函数f(x)=1/(x-1),我们知道分母不能为0,所以定义域为x≠1。

因此,当x=1时,f(x)没有意义,不存在像。

最后,我们还可以通过函数的方程来求解像。

例如,对于指数函数y=2ˣ,当x=3时,我们可以将x代入函数方程中计算y的值,即y=2³=8。

所以x=3时,y的像是8。

三、性质的研究技巧研究函数的性质有助于我们深入理解函数的规律,并更好地应用于解题中。

首先,我们可以通过图像研究函数的增减性。

例如,对于正比例函数y=kx中,当k>0时,函数是增函数,当k<0时,函数是减函数。

其次,我们可以利用函数的导数来研究函数的性质。

例如,对于求解函数的最值问题,我们可以通过导数的符号变化来判断函数的最值点。

如果函数的导数在某一点的左侧为正,右侧为负,则该点是函数的极大值点。

反之,如果导数在某一点的左侧为负,右侧为正,则该点是函数的极小值点。

最后,我们还可以利用函数的定义来研究函数的性质。

例如,对于奇偶函数的研究,我们可以通过函数方程来判断函数的奇偶性。

如果f(-x)=-f(x),则函数是奇函数;如果f(-x)=f(x),则函数是偶函数。

高考数学:专题10 函数图像的判断(解析版)

高考数学:专题10 函数图像的判断(解析版)

【高考地位】函数图像作为高中数学一个“重头戏”,是研究函数性质、方程、不等式重要武器,已经成为各省市高考命题一个热点。

在高考中经常以几类初等函数图像为基础,结合函数性质综合考查,多以选择、填空题形式出现。

【方法点评】方法一 特值法使用情景:函数()f x 解析式已知情况下解题模板:第一步 将自变量或者函数值赋以特殊值;第二步 分别一一验证选项是否符合要求; 第三步 得出结论.例1 函数x x x y sin cos +=图象大致为( )【答案】C考点:函数图像【点评】特值法是解决复杂函数图像问题方法之一,其将复杂问题简单化,且操作性简单可行。

【变式演练1】函数()2ln y x x =+图象大致为( )A .B .C .D .【答案】A【解析】试题分析:解:令()2ln y x x =+0=,解得1,1,2--=x ,∴该函数有三个零点,故排除B ;当2-<x 时,02<+x ,2>x ,02ln ln >>∴x ,∴当2-<x 时,()2ln y x x =+0<,排除C 、D .故选A .考点:函数图象.【变式演练2】函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)图象可能为( )【答案】D 【解析】考点:1.函数基本性质;2.函数图象. 【变式演练3】现有四个函数:①②③④图象(部分)如下,则按照从左到右将图象对应函数序号安排正确一组是( )A .④①②③ B.①④③② C.①④②③ D.③④②① 【答案】C【解析】试题分析:因为,所以是偶函数,图象关于轴对称,即与左1图对应,故排除选项A 、D ,因为当时,,故函数图象与左3图对应,故排除选项B ;故选C .【方法点睛】本题考查通过函数解析式和性质确定函数图象,属于中档题;已知函数解析式确定函数图象,往往从以下几方面考虑:定义域(确定图象是否连续),奇偶性(确定图象对称性),单调性(确定图象变化趋势),最值(确定图象最高点或最低点),特殊点函数值(通过特殊函数值排除选项),其主要方法是排除法.考点:1.函数奇偶性;2.函数图象.【变式演练4】函数xe x y )1(2-=图象大致是( )【答案】C 【解析】考点:偶函数图象性质.方法二 利用函数基本性质判断其图像使用情景:函数()f x 解析式已知情况下解题模板:第一步 根据已知函数解析式分析其变化特征如单调性、奇偶性、定义域和值域等;第二步 结合简单基本初等函数图像特征如对称性、周期性等进行判断即可; 第三步 得出结论.例2 函数()(1)ln ||f x x x =-图象大致为( )【答案】A 【解析】考点:1、导数在研究函数单调性中应用;2、函数图像.【思路点睛】本题主要考查了导数在研究函数单调性中应用和函数图像,具有一定综合性,属中档题.其解题一般思路为:首先观察函数表达式特征如0)1(=f ,然后运用导数在研究函数单调性和极值中应用求出函数单调区间,进而判断选项,最后将所选选项进行验证得出答案即可.其解题关键是合理地分段求出函数单调性.【变式演练5】如图,周长为1圆圆心C 在y 轴上,顶点()01A ,,一动点M 从A 开始逆时针绕圆运动一周,记走过弧长AM x =,直线AM 与x 轴交于点()0N t ,,则函数()t f x =图象大致为( )A .B .C .D .【答案】D 【解析】试题分析:由圆对称性可知,动点N 轨迹关于原点对称,且在原点处,21=x ,0=y ;当点M 位于左半圆时,随着弧AM 长递增,t 值递增,且变化由快到慢,由给定图象可知选D . 考点:函数图象.【变式演练6】如图可能是下列哪个函数图象( )A .221xy x =-- B .2sin 41x xy x =+C .ln x y x=D .2(2)xy x x e =- 【答案】D 【解析】考点:函数图象和性质.【变式演练7】如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x 轴直线:(0)l x t t a =≤≤经过原点O 向右平行移动,l 在移动过程中扫过平面图形面积为y (图中阴影部分),若函数()y f x =大致图像如图,那么平面图形形状不可能是( )【答案】C【解析】试题分析:由函数图象可知,几何体具有对称性,选项A ,B ,D ,l 在移动过程中扫过平面图形面积为y ,在中线位置前,都是先慢后快,然后相反.选项C ,后面是直线增加,不满足题意. 考点:函数图象与图形面积变换关系. 【变式演练8】函数()21x f x e-=(e 是自然对数底数)部分图象大致是( )【答案】C 【解析】【变式演练9】函数2ln x x y x=图象大致是( )A .B .C .D .【答案】D 【解析】试题分析:从题设中提供解析式中可以看出1,0±≠x ,且当0>x 时, x x y ln =,由于x y ln 1/+=,故函数x x y ln =在区间)1,0(e 单调递减;在区间),1(+∞e单调递增.由函数图象对称性可知应选D. 考点:函数图象性质及运用.【变式演练10】函数()21cos 1e xf x x ⎛⎫=-⎪+⎝⎭图象大致形状是( ) A . B .C .D .【答案】B 【解析】考点:函数奇偶性及函数图象. 【变式演练11】若函数()2(2)m xf x x m-=+图象如图所示,则m 范围为( )A .(),1-∞-B .()1,2-C .()0,2D .()1,2 【答案】D考点:1.函数奇偶性;2.函数单调性;3.导数应用.【高考再现】1. 【2016高考新课标1卷】函数22xy x e =-在[]2,2-图像大致为(A )(B )(C )(D )【答案】D考点:函数图像与性质【名师点睛】函数中识图题多次出现在高考试题中,也可以说是高考热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中难点,解决这类问题方法一般是利用间接法,即由函数性质排除不符合条件选项.2.【2015高考安徽,理9】函数()()2ax bf x x c +=+图象如图所示,则下列结论成立是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c >(C )0a <,0b >,0c < (D )0a <,0b <,0c <【答案】 C【考点定位】1.函数图象与应用.【名师点睛】函数图象分析判断主要依据两点:一是根据函数性质,如函数奇偶性、单调性、值域、定义域等;二是根据特殊点函数值,采用排除方法得出正确选项.本题主要是通过函数解析式判断其定义域,并在图形中判断出来,另外,根据特殊点位置能够判断,,a b c 正负关系.3.【2015高考新课标2,理10】如图,长方形ABCD 边2AB =,1BC =,O 是AB 中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 函数()f x ,则()y f x =图像大致为( )(D)(C)(B)(A)yπ4π23π4ππ3π4π2π4yyπ4π23π4ππ3π4π2π4yDPCOAx【答案】B【考点定位】函数图象和性质.【名师点睛】本题考查函数图像与性质,表面看觉得很难,但是如果认真审题,读懂题意,通过点P 运动轨迹来判断图像对称性以及特殊点函数值比较,也可较容易找到答案,属于中档题.4.【2015高考北京,理7】如图,函数()f x 图象为折线ACB ,则不等式()()2log 1f x x +≥解集是( )A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C【解析】如图所示,把函数2log y x =图象向左平移一个单位得到2log (1)y x =+图象1x =时两图象相交,不等式解为11x -<≤,用集合表示解集选C【考点定位】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,体现了数形结合思想.【名师点睛】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,本题属于基础题,首先是函数图象平移变换,把2log y x =沿x 轴向左平移2个单位,得到2log (y x =+2)图象,要求正确画出画出图象,利用数形结合写出不等式解集.5.【2014年.浙江卷.理7】在同意直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=图像可能是( )答案: D考点:函数图像.【名师点睛】本题主要考查了函数指数与对数函数图像和性质,属于常见题目,难度不大;识图常用方法:(1)定性分析法:通过对问题进行定性分析,从而得出图象上升(或下降)趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量计算来分析解决问题;(3)函数模型法:由所提供图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.6. 【2014福建,理4】若函数log (0,1)a y x a a =>≠且图像如右图所示,则下列函数图像正确是( )13OxyDC BAy=log a (-x)y=(-x)ay=x ay=a -x-1-3113OO OO1y x1xy1xyxy【答案】B 【解析】考点:函数图象.【名师点睛】本题主要考查函数图像识别问题及分析问题解决问题能力,求解此题首先要根据图像经过特殊点,确定参数值,然后利用函数单调性确定正确选项,解决此类问题要重视特殊点及单调性应用.【反馈练习】1. 【2017届河北武邑中学高三上周考8.14数学试卷,文5】函数111y x =--图象是( )【答案】B 【解析】试题分析:将1y x =-图象沿x 轴向右平移1个单位得到11y x =--图象,再沿y 轴向上平移1个单位得到111y x =--图象.故选B . 考点:函数图象平移变换.2. 【2017届广东华南师大附中高三综合测试一数学试卷,文10】函数2ln xy x=图象大致为( )A .B .C .D .【答案】B3. 【2017届广东佛山一中高三上学期月考一数学试卷,理6】函数22x y x -=图象大致是( )【答案】A 【解析】试题分析:当1x <-时,22x x <,即220x x -<,排除C 、D ,当3x =时,322310y =-=-<,排除B ,故选A .考点:函数图象.4. 【2016-2017学年山西榆社中学高一10月月考数学试卷,理7】已知函数()f x 定义域为[],a b ,函数()y f x =图象如图甲所示,则函数(||)f x 图象是图乙中( )【答案】B 【解析】考点:函数图象与性质.5. 【2016-2017学年河北徐水县一中高一上月考一数学试卷,理5】下列图中,画在同一坐标系中,函数2y ax bx =+与y ax b =+(0a ≠,0b ≠)函数图象只可能是( )【答案】B【解析】试题分析:()2f x ax bx =+图象是抛物线,()g x ax b =+图象是直线.A 选项()f x 开口向上,说明0a >,直线应斜向上,故A 错误.D 选项()f x 开口向下,说明0a <,直线应斜向下,故D 错误. C 选项()f x 图象不过原点,错误.故选B. 考点:函数图象与性质.6. 【2017届河北武邑中学高三上周考8.14数学试卷,理9】已知函数()y f x =大致图象如图所示,则函数()y f x =解析式应为( )A .()ln x f x e x =B .()ln(||)xf x ex -=C .()ln(||)xf x e x = D .||()ln(||)x f x e x = 【答案】C 【解析】考点:函数性质.7. 【2017届湖南长沙长郡中学高三上周测十二数学试卷,文8】函数22()(44)log x x f x x -=-图象大致为( )【答案】A 【解析】试题分析:因为22()(44)log x x f x x -=-,()2222()(44)log (44)log x x x x f x x x f x ---=-=--=-,所以22()(44)log x x f x x -=-是奇函数,排除B 、C ,又因为0x →时,0y →,所以排除D ,故选A.考点:1、函数图象;2、函数奇偶性.8. 【2017届重庆市第八中学高三上适应性考试一数学试卷,理10】如图1,圆O 半径为1,A 是圆上定点,P 是圆上动点,角x 始边为射线OA ,终边为射线OP ,过点P 作直线OA 垂线,垂足为M ,将点M 到直线OP 距离与O 到M 距离之和表示成x 函数()f x ,则()y f x =在[]0,π上图象大致是( )A .B .C .D .【答案】B 【解析】考点:函数实际应用.9.【 2017届河南新乡一中高三9月月考数学试卷,文7】设曲线2()1f x x =+在点(,())x f x 处切线斜率为()g x ,则函数()cos y g x x =部分图象可以为( )【答案】A 【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A .考点:1、函数图象及性质;2、选择题“特殊值”法.10. 【2017届湖北襄阳五中高三上学期开学考数学试卷,文6】已知函数)(x f 是定义在R 上增函数,则函数1|)1(|--=x f y 图象可能是( )A .B .C .D .【答案】B 【解析】考点:函数图象,图象变换.。

高考数学中如何使用函数图像解题

高考数学中如何使用函数图像解题

高考数学中如何使用函数图像解题高考数学是许多学生最为头痛的科目之一,其中数学二的考试难度更是备受关注。

其中,函数图像是高考数学中常被出现的一个重要考点之一。

因此,掌握函数图像的解题方法,对于理解和掌握函数知识点至关重要。

本文将介绍如何在高考数学中使用函数图像解题。

1. 函数概念首先,在介绍函数图像的解题方法之前,我们需要先了解函数的概念。

函数是数学中的一个重要概念,用于描述两个变量之间的关系。

在数学中,通常用f(x) 或y 表示函数,其中x 是自变量,y 或 f(x) 是函数的函数值(也称为因变量)。

函数的定义域是自变量的取值范围,而值域则是函数的所有可能取值的集合。

2. 函数图像的解题方法接下来,我们将介绍函数图像的解题方法。

函数图像通常用来表示函数在平面直角坐标系中的图像。

在解题时,我们可以利用函数图像来判断函数的性质以及求解函数值等问题。

具体而言,函数图像可以帮助我们完成以下任务:(1)判断函数的奇偶性:通过观察函数图像是否关于 y 轴或者原点对称,我们可以判断函数的奇偶性。

如果函数图像关于 y 轴对称,则函数为偶函数;如果函数图像关于原点对称,则函数为奇函数;否则为既非偶函数也非奇函数。

(2)求解函数值:通过函数图像,我们可以读取函数在某个特定的自变量值下的函数值。

这可以帮助我们解决一些求函数值的问题。

(3)确定函数的极值和零点:在函数图像上,函数的极值对应的是函数的最值点,而函数的零点则对应的是函数图像与 x 轴相交的点。

通过观察函数图像,我们可以确定函数在哪些自变量的取值下取到最值,以及函数在哪些自变量取值下为零。

(4)判断函数的单调性:通过观察函数图像上的斜率趋势,我们可以判断函数的单调性。

如果函数图像的斜率单调递增或者单调递减,则函数为单调函数;如果函数图像上既有上升部分又有下降部分,则函数为非单调函数。

(5)求解函数的反函数:函数图像可以帮助我们求解函数的反函数。

具体而言,如果函数图像关于 y = x 对称,则其反函数存在,并且其图像就是原函数图像通过 y = x 对称得到的。

根据函数解析式确认函数图像的技巧

根据函数解析式确认函数图像的技巧

利用函数解析式确认函数图像技巧一:定义域影响函数定义域的限制条件主要有以下五种情况:①分式中的分母不为0②偶次方根下的式子大于等于0③对数函数的真数大于0④0的非正数次方无意义⑤正切函数y=tanx,x≠kπ+π/2(k∈Z)技巧二:奇偶性在函数定义域关于y轴对称的前提下,判断f(x)与f(-x)的关系:如果f(x)+f(-x)=0,则为奇函数,函数图像关于原点对称如果f(x)=f(-x),则为偶函数,函数图像关于y轴对称常见的奇函数有:①f(x)=a‧x n m,(其中m,n均为奇数)②f(x)=A‧sinwx③f(x)=A‧tanwx④f(x)=a x-a-x⑤f(x)=a x−a−xa x+a−x⑥f(x)=log a b−xb+x⑦f(x)=∣ax+b∣-∣ax-b∣常见的偶函数有:①f(x)= a‧x n m,(其中m为奇数,n为偶数)②f(x)=A‧coswx③f(x)=a x+a-x④f(x)=∣ax+b∣+∣ax-b∣奇偶性的四则运算①奇函数+奇函数=奇函数②偶函数+偶函数=偶函数③奇函数×(或÷)奇函数=偶函数④奇函数×(或÷)偶函数=奇函数⑤偶函数×(或÷)奇函数=奇函数⑥偶函数×(或÷)偶函数=偶函数技巧三:特殊值点根据函数表达式,当x取特殊值时(主要是x=0,定义域的端点值或者根据题目的特点得到其他的特殊值),进而得到y的取值或取值范围,从而确定大致的图像位置。

技巧四:极限思想极限思想是分析问题了解决问题的一种数学思想,将一个问题极限化,考虑最极端的情况,忽略过程,得出结果,它是判断函数的图像的一种重要方法,主要将自变量取如下的极限:①x→+∞②x→-∞③x→0+ ④x→0- ⑤x→a+ ⑥x→a-备注:对于⑤⑥中a的取值是视题目中的实际条件而定。

针对极限思想判断函数的取值时,首先判断函数式的正负,再判断大小。

高考函数专题_函数图像.doc

高考函数专题_函数图像.doc

函数图像作图:1. 步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2. 图象变换法作图(对于需要掌握的基本初等函数或者已知部分图像的函数)(1)平移变换【变化是针对自变量的】(2)对称变换①y =f (x )――→关于x 轴对称y = ; ②y =f (x )――→关于y 轴对称y = ; ③y =f (x )――→关于原点对称y = ;④y =a x (a >0且a ≠1)――→关于y =x 对称y = . (3)翻折变换①y =f (x )――→保留x 轴上方图象将x 轴下方图象翻折上去y = . ②y =f (x )――→保留y 轴右边图象,并作其关于y 轴对称的图象y =(4)伸缩变换①y =f (x ) y = .②y =f (x )――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y = .【练习】作函数图象1.分别画出下列函数的图象:(1)y =|lg x |; (2)y =2x +2; (3)y =x 2-2|x |-1; (4)y =x +2x -1.2. 作出下列函数的图象:(1)y =|x -2|(x +1);(2)y =10|lg x |.3.函数f (x )=1+log 2x 与g (x )=21-x 在同一直角坐标系下的图象大致是( )【图像题的几点依据】(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.函数图象的应用:5 已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.6 (2011·课标全国)已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y=|lg x|的图象的交点共有() A.10个B.9个C.8个D.1个7直线y=1与曲线y=x2-|x|+a有四个交点,则a的取值范围是________.高考中和函数图象有关的题目主要的三种形式一、已知函数解析式确定函数图象二、函数图象的变换问题典例:若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为()三、图象应用典例:讨论方程|1-x|=kx的实数根的个数.【练习题】一、选择题(每小题5分,共20分)1.把函数y=(x-2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是() A.y=(x-3)2+3 B.y=(x-3)2+1C.y=(x-1)2+3 D.y=(x-1)2+1答案 C解析函数y=(x-2)2+2的图象向左平移1个单位,将其中的x换为x+1,得到函数y=(x-1)2+2的图象;再向上平移1个单位,变成y=(x-1)2+3的图象.2.若函数f(x)=log a(x+b)的大致图象如图,其中a,b(a>0且a≠1)为常数,则函数g(x)=a x+b的大致图象是()答案 B解析由f(x)=log a(x+b)的图象知0<a<1,0<b<1,则g(x)=a x+b为减函数且g(x)的图象是在y=a x图象的基础上上移b个单位,只有B 适合.3.(2011·陕西)设函数f(x)(x∈R)满足f(-x)=f(x),f(x+2)=f(x),则y=f(x)的图象可能是()答案 B解析 由于f (-x )=f (x ),所以函数y =f (x )是偶函数,图象关于y 轴对称,所以A 、C 错 误;由于f (x +2)=f (x ),所以T =2是函数y =f (x )的一个周期,D 错误.所以选B. 4. (2012·北京)函数f (x )=x 12-⎝⎛⎭⎫12x的零点的个数为 ( )A .0B .1C .2D .3 答案 B解析 将函数零点转化为函数图象的交点问题来求解. 在同一平面直角坐标系内作出y 1=x 12与y 2=⎝⎛⎭⎫12x 的图象如图所 示,易知,两函数图象只有一个交点. 因此函数f (x )=x 12-⎝⎛⎭⎫12x 只有1个零点.二、填空题(每小题5分,共15分) 5. 已知下列曲线:以及编号为①②③④的四个方程:①x-y=0;②|x|-|y|=0;③x-|y|=0;④|x|-y=0.请按曲线A、B、C、D的顺序,依次写出与之对应的方程的编号________.答案④②①③解析按图象逐个分析,注意x、y的取值范围.6. 如图所示,正四棱柱ABCD—A1B1C1D1中,AA1=2,AB=1,M,N分别在AD1,BC上移动,始终保持MN∥平面DCC1D1,设BN=x,MN=y,则函数y=f(x)的图象大致是________.答案③解析过M作ME⊥AD于E,连接EN.则BN=AE=x,ME=2x,MN2=ME2+EN2,即y2=4x2+1,y2-4x2=1 (0≤x≤1,y≥1),图象应是焦点在y轴上的双曲线的一部分.7. (2011·北京)已知函数f (x )=⎩⎪⎨⎪⎧2x , x ≥2,(x -1)3, x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________. 答案 (0,1)解析 画出分段函数f (x )的图象如图所示,结合图象可以看出,若f (x )=k 有两个不同的实根,也即函数y =f (x )的图象与y =k 有两个不同的交点,k 的 取值范围为(0,1). 三、解答题(共25分)8. (12分)已知函数f (x )=x1+x.(1)画出f (x )的草图;(2)指出f (x )的单调区间. 解(1)f (x )=x 1+x =1-1x +1,函数f (x )的图象是由反比例函数y =-1x 的图象向左平移1个单位后,再向上平移1个单位得到,图象如图所示. (2)由图象可以看出,函数f (x )有两个单调递增区间: (-∞,-1),(-1,+∞).9. (13分)已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+ax,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.解 (1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上,即2-y =-x -1x +2,∴y =f (x )=x +1x (x ≠0).(2)g (x )=f (x )+ax =x +a +1x ,g ′(x )=1-a +1x 2.∵g (x )在(0,2]上为减函数,∴1-a +1x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,∴a +1≥4,即a ≥3,故a 的取值范围是[3,+∞).【练习题2】一、选择题(每小题5分,共15分)1. (2012·厦门模拟)函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则y =f (x +1)的图象大致是 ( )答案 B解析 将f (x )的图象向左平移一个单位即得到y =f (x +1)的图象. 2. 函数y =f (x )与函数y =g (x )的图象如图则函数y=f(x)·g(x)的图象可能是()答案 A解析从f(x)、g(x)的图象可知它们分别为偶函数、奇函数,故f(x)·g(x)是奇函数,排除B项.又g(x)在x=0处无意义,故f(x)·g(x)在x=0处无意义,排除C、D两项.3.(2011·课标全国)函数y=11-x的图象与函数y=2sin πx (-2≤x≤4)的图象所有交点的横坐标之和等于() A.2 B.4 C.6 D.8答案 D解析令1-x=t,则x=1-t.由-2≤x≤4,知-2≤1-t≤4,所以-3≤t≤3.又y=2sin πx=2sin π(1-t)=2sin πt.在同一坐标系下作出y =1t和y =2sin πt 的图象.由图可知两函数图象在[-3,3]上共有8个交点,且这8个交点两两关于原点对称. 因此这8个交点的横坐标的和为0,即t 1+t 2+…+t 8=0.也就是1-x 1+1-x 2+…+1-x 8=0,因此x 1+x 2+…+x 8=8.二、填空题(每小题4分,共12分)4. (2012·课标全国改编)当0<x ≤12时,4x <log a x ,则a 的取值范围是________. 答案 ⎝⎛⎭⎫22,1 解析 易知0<a <1,则由函数y =4x 与y =log a x 的大致图象知,只需满足log a 12>2,解得 a >22,∴22<a <1. 5. 用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为________.答案 6解析f(x)=min{2x,x+2,10-x}(x≥0)的图象如图.令x+2=10-x,得x=4.当x=4时,f(x)取最大值,f(4)=6.6.设b>0,二次函数y=ax2+bx+a2-1的图象为下列之一,则a的值为________.答案-1解析本题考查二次函数的图象与性质,先根据条件对图象进行判断是解题的关键.因为b>0,所以对称轴不与y轴重合,排除图象①②;对第三个图象,开口向下,则a<0,对称轴x=-b2a>0,符合条件,图象④显然不符合.根据图象可知,函数过原点,故f(0) =0,即a2-1=0,又a<0,故a=-1.三、解答题(13分)7.已知函数y=f(x)的定义域为R,并对一切实数x,都满足f(2+x)=f(2-x).(1)证明:函数y=f(x)的图象关于直线x=2对称;(2)若f(x)是偶函数,且x∈[0,2]时,f(x)=2x-1,求x ∈[-4,0]时f (x )的表达式.(1)证明 设P (x 0,y 0)是函数y =f (x )图象上任一点,则y 0=f (x 0),点P 关于直线x =2的对称点为P ′(4-x 0,y 0). 因为f (4-x 0)=f [2+(2-x 0)]=f [2-(2-x 0)]=f (x 0)=y 0,所以P ′也在y =f (x )的图象上,所以函数y =f (x )的图象关于直线x =2对称.(2)解 当x ∈[-2,0]时,-x ∈[0,2],所以f (-x )=-2x -1.又因为f (x )为偶函数,所以f (x )=f (-x )=-2x -1,x ∈[-2,0].当x ∈[-4,-2]时,4+x ∈[0,2],所以f (4+x )=2(4+x )-1=2x +7,而f (4+x )=f (-x )=f (x ),所以f (x )=2x +7,x ∈[-4,-2].所以f (x )=⎩⎪⎨⎪⎧ 2x +7,x ∈[-4,-2],-2x -1,x ∈[-2,0].。

高考数学难点突破难点10 函数图象

高考数学难点突破难点10 函数图象

函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.●难点磁场(★★★★★)已知函数f (x )=ax 3+bx 2+cx +d 的图象如图,求b 的范围.●案例探究[例1]对函数y =f (x )定义域中任一个x 的值均有f (x +a )=f (a -x ),(1)求证y =f (x )的图象关于直线x =a 对称;(2)若函数f (x )对一切实数x 都有f (x +2)=f (2-x ),且方程f (x )=0恰好有四个不同实根,求这些实根之和命题意图:本题考查函数概念、图象对称问题以及求根问题.属★★★★★级题目. 知识依托:把证明图象对称问题转化到点的对称问题.错解分析:找不到问题的突破口,对条件不能进行等价转化.技巧与方法:数形结合、等价转化.(1)证明:设(x 0,y 0)是函数y =f (x )图象上任一点,则y 0=f (x 0),又f (a +x )=f (a -x ),∴f (2a -x 0)= f [a +(a -x 0)]=f [a -(a -x 0)]=f (x 0)=y 0,∴(2a -x 0,y 0)也在函数的图象上,而2)2(00x x a +-=a ,∴点(x 0,y 0)与(2a -x 0,y 0)关于直线x =a 对称,故y =f (x )的图象关于直线x =a 对称.(2)解:由f (2+x )=f (2-x )得y =f (x )的图象关于直线x =2对称,若x 0是f (x )=0的根,则4-x 0也是f (x )=0的根,由对称性,f (x )=0的四根之和为8.[例2]如图,点A 、B 、C 都在函数y =x 的图象上,它们的横坐标分别是a 、a +1、a +2.又A 、B 、C 在x 轴上的射影分别是A ′、B ′、C ′,记△AB ′C 的面积为f (a ),△A ′BC ′的面积为g (a ).(1)求函数f (a )和g (a )的表达式;(2)比较f (a )与g (a )的大小,并证明你的结论.命题意图:本题考查函数的解析式、函数图象、识图能力、图形的组合等.属★★★★★级题目.知识依托:充分借助图象信息,利用面积问题的拆拼以及等价变形找到问题的突破口. 错解分析:图形面积不会拆拼.技巧与方法:数形结合、等价转化.解:(1)连结AA ′、BB ′、CC ′,则f (a )=S △AB ′C =S 梯形AA ′C ′C -S △AA ′B ′-S △CC ′B =21(A ′A +C ′C )=21(2++a a ), g (a )=S △A ′BC ′=21A ′C ′·B ′B =B ′B =1+a . 0)11121(21)]1()12[(21)122(21)()()2(<++-+++=-+-+-+=+-++=-a a a a a a a a a a a a g a f ∴f (a )<g (a ).●锦囊妙计1.熟记基本函数的大致图象,掌握函数作图的基本方法:(1)描点法:列表、描点、连线;(2)图象变换法:平移变换、对称变换、伸缩变换等.2.高考中总是以几类基本初等函数的图象为基础来考查函数图象的.题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视.●歼灭难点训练一、选择题1.(★★★★)当a ≠0时,y =ax +b 和y =b ax 的图象只可能是()2.(★★★★)某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y 轴表示离学校的距离,x 轴表示出发后的时间,则适合题意的图形是()二、填空题3.(★★★★★)已知函数f (x )=log 2(x +1),将y =f (x )的图象向左平移1个单位,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y =g (x )的图象,则函数F (x )=f (x )-g (x )的最大值为_________.三、解答题4.(★★★★)如图,在函数y =lg x 的图象上有A 、B 、C 三点,它们的横坐标分别为m ,m +2,m +4(m >1).(1)若△ABC 面积为S ,求S =f (m );(2)判断S =f (m )的增减性.5.(★★★★)如图,函数y =23|x |在x ∈[-1,1]的图象上有两点A 、B ,AB ∥Ox 轴,点M (1,m )(m ∈R 且m >23)是△ABC 的BC 边的中点. (1)写出用B 点横坐标t 表示△ABC 面积S 的函数解析式S =f (t );(2)求函数S =f (t )的最大值,并求出相应的C 点坐标.6.(★★★★★)已知函数f (x )是y =1102+x -1(x ∈R )的反函数,函数g (x )的图象与函数y =-21-x 的图象关于y 轴对称,设F (x )=f (x )+g (x ). (1)求函数F (x )的解析式及定义域;(2)试问在函数F (x )的图象上是否存在两个不同的点A 、B ,使直线AB 恰好与y 轴垂直?若存在,求出A 、B 的坐标;若不存在,说明理由.7.(★★★★★)已知函数f 1(x )=21x -,f 2(x )=x +2,(1)设y =f (x )=⎩⎨⎧∈--∈]1,0[ ),(3)0,1[ ),(21x x f x x f ,试画出y =f (x )的图象并求y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积;(2)若方程f 1(x +a )=f 2(x )有两个不等的实根,求实数a 的范围.(3)若f 1(x )>f 2(x -b )的解集为[-1,21],求b 的值. 8.(★★★★★)设函数f (x )=x +x1的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ).(1)求g (x )的解析表达式;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点坐标;(3)解不等式log a g (x )<log a 29 (0<a <1). 参考答案难点磁场解法一:观察f (x )的图象,可知函数f (x )的图象过原点,即f (0)=0,得d =0,又f (x )的图象过(1,0),∴f (x )=a +b +c ①,又有f (-1)<0,即-a +b -c <0②,①+②得b <0,故b 的范围是(-∞,0)解法二:如图f (0)=0有三根,∴f (x )=ax 3+bx 2+cx +d =ax (x -1)(x -2)=ax 3-3ax 2+2ax ,∴b = -3a ,∵a >0,∴b <0.歼灭难点训练一、1.解析:∵y =b ax =(b a )x ,∴这是以b a 为底的指数函数.仔细观察题目中的直线方程可知:在选择支B 中a >0,b >1,∴b a >1,C 中a <0,b >1,∴0<b a <1,D 中a <0,0<b <1,∴b a >1.故选择支B 、C 、D 均与指数函数y =(b a )x 的图象不符合.答案:A2.解析:由题意可知,当x =0时,y 最大,所以排除A 、C.又一开始跑步,所以直线随着x 的增大而急剧下降.答案:D二、3.解析:g (x )=2log 2(x +2)(x >-2)F (x )=f (x )-g (x )=log 2(x +1)-2log 2(x +2)=log 21441log 441log )2(122222+++=+++=++x x x x x x x x )1(21111log 2->++++=x x x ∵x +1>0,∴F (x )≤41log 211)1(21log 22=++⋅+x x =-2 当且仅当x +1= 11+x ,即x =0时取等号. ∴F (x )max =F (0)=-2.答案:-2三、4.解:(1)S △ABC =S 梯形AA ′B ′B +S 梯形BB ′C ′C -S 梯形AA ′C ′C .(2)S =f (m )为减函数.5.解:(1)依题意,设B (t ,23 t ),A (-t , 23t )(t >0),C (x 0,y 0). ∵M 是BC 的中点.∴20x t +=1,2230y t + =m . ∴x 0=2-t ,y 0=2m -23t .在△ABC 中,|AB |=2t ,AB 边上的高h AB =y 0-23t =2m -3t . ∴S =21|AB |·h AB = 21·2t ·(2m -3t ),即f (t )=-3t 2+2mt ,t ∈(0,1). (2)∵S =-3t 2+2mt =-3(t -3m )2+32m ,t ∈(0,1],若⎪⎪⎩⎪⎪⎨⎧>≤<23130m m ,即23<m ≤3,当t =3m 时,S max =32m ,相应的C 点坐标是(2-3m , 23m ),若3m >1,即m >3.S =f (t )(0,1]上是增函数,∴S max =f (1)=2m -3,相应的C 点坐标是(1,2m -3).6.解:(1)y =1102+x -1的反函数为f (x )=lg x x +-11(-1<x <1).由已知得g (x )=21+x ,∴F (x )=lg x x +-11+21+x ,定义域为(-1,1). (2)用定义可证明函数u =x x +-11=-1+12+x 是(-1,1)上的减函数,且y =lg u 是增函数.∴f (x )是(-1,1)上的减函数,故不存在符合条件的点A 、B .7.解:(1)y =f (x )=⎪⎩⎪⎨⎧∈+--∈-]1,0[,1)0,1[,12x x x x .图略. y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积为(2+2)π.(2)当f 1(x +a )=f 2(x )有两个不等实根时,a 的取值范围为2-2<a ≤1(3)若f 1(x )>f 2(x -b )的解集为[-1,21],则可解得b =235-. 8.(1)g (x )=x -2+41-x .(2)b =4时,交点为(5,4);b =0时,交点为(3,0). (3)不等式的解集为{x |4<x <29或x >6}.。

函数图象的判断(25题)含详细答案

函数图象的判断(25题)含详细答案

函数图象的判断(25题)含详细答案一、选择题1.函数()33xy x x =-⋅的图象大致是()A .B .C .D .2.函数()2111x x x f x ln x x -+⎛⎫= ⎪--⎝⎭的图象大致为()A .B .C .D .3.函数()()||f x xcosx sinx ln x =+的部分图像大致为()A .B .C .D .4.函数2()(1)31x f x cosx =-⋅+的图像大致为()A .B .C .D .5.函数()313ln xf x x x=-的图象可能为()A .B .C .D .6.函数()2sin222x xx xf x -=-的图象大致为()A .B .C .D .7.已知函数()y f x =部分图象如图所示,则函数()f x 的解析式可能为()A .()sin2f x x x =B .()sin f x x x =C .()2sin xf x x=D .()2sin2xf x x=8.“家在花园里,城在山水间.半城山色半城湖,美丽惠州和谐家园......”首婉转动听的《美丽惠州》唱出了惠州的山姿水色和秀美可人的城市环境.下图1是惠州市风景优美的金山湖片区地图,其形状如一颗爱心.图2是由此抽象出来的一个“心形”图形,这个图形可看作由两个函数的图象构成,则“心形”在x 轴上方的图象对应的函数解析式可能为()A .y =B .y =C .y =D .y =9.已知函数e (21)()1x x f x x -=-,则()f x 的大致图象为()A .B .C .D .10.函数()2221x xf x x--=-的图象大致是()A .B .C .D ..11.函数()1f x x sinx x ⎛⎫=-⎪⎝⎭的图象可能为()A .B .C .D .12.函数3e ()e cosxf x x lncosx+=-的图象大致为()A .B .C .D .13.函数()221()22xxx sinx f x -+=+的部分图象大致是()A .B .C .D .14.如图是下列某个函数在区间[]22-,的大致图象,则该函数是()A .()3223312x x x xf x cosx +-=+B .()322331x x xf x x +-=+C .()3221x x xf x sinx x -+=+D .()2251x xf x cosxx -=+15.数学与音乐有着紧密的关联,我们平时听到的乐音一般来说并不是纯音,而是由多种波叠加而成的复合音.如图为某段乐音的图象,则该段乐音对应的函数解析式可以为()A .112323y sinx sin x sin x =++B .112323y sinx sin x sin x=--C .112323y sinx cos x cos x=++D .112323y cosx cos x cos x=++16.函数()211e xf x sinx ⎛⎫=-⎪+⎝⎭的部分图像大致形状是()A .B .C .D .17.函数()e 1e 1x x f x cosx -=⋅+的图象大致为()A .B .C .D .18.函数())f x xln x =的图象大致为()A .B .C .D .19.函数()e ex xy sinxln -=+在区间[]ππ-,上的图象大致为()A .B .C .D .20.已知函数op =>0,≤0,则函数()1y f x =-的图象大致是()A .B .C .D .21.函数()3sin xf x x x=-在[]ππ-,上的图像大致为()A .B .C .D .22.函数3||x sinxy x -=的大致图象是()A .B .C .D .23.函数101()101x x f x sinx -=⋅+在区间ππ22⎡⎤-⎢⎣⎦,上的图象大致为()A .B .C .D .24.已知函数()f x 的图象如图所示,则该函数的解析式可能是()A .()||||22f x sinx cosx sin x =+-B .()||||22f x sinx cosx sin x =-+C .()||||22f x sinx cosx cos x =-+D .()||||22f x sinx cosx cos x=++25.函数()e e 3πsin 242x x f x x -+⎛⎫=⋅- ⎪⎝⎭在[]44-,上的图象大致是()A .B .C .D .答案解析部分1.【答案】B【知识点】函数的图象【解析】【解答】解:函数()33xy x x =-⋅的定义域为R ,()()()()()33x f x x x f x --=---⋅=-,所以函数()33xy x x =-⋅为奇函数,故排除CD 选项,当01x <<时,3x x <,所以()330xy x x =-⋅<再排除A.故答案为:B.【分析】先求函数的定义域,利用函数的奇偶性判处CD 选项,再根据01x <<时,函数值的正负即可排除A.2.【答案】A【知识点】奇偶函数图象的对称性;函数的图象【解析】【解答】解:因为()2111x x x f x ln x x -+⎛⎫= ⎪--⎝⎭,所以101xx+>-,解得:-1<x<1,即函数f(x)的定义域为(-1,1),所以()()2111111111x x x x x x x f x ln ln xln x x x x x --+++⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭,()()()111111x x x f x x ln xln xln f x x x x --+⎛⎫⎛⎫⎛⎫-=--==-= ⎪ ⎪ ++-⎝⎭⎝⎭⎝⎭,所以函数f(x)是偶函数,故排除C 、D 选项;当0<x<1时,则-1<-x<0,1<1+x<2,0<1-x<1,所以111x x +>-,则1ln 01x x +⎛⎫> ⎪-⎝⎭,所以f(x)<0,排除B 选项;故答案为:A.【分析】先求出f(x)的定义域并化简解析式,利用奇偶性排除C 、D 选项,再推导出当0<x<1时,f(x)<0排除B 选项.3.【答案】A【知识点】函数的奇偶性;奇偶函数图象的对称性;函数的图象【解析】【解答】函数()()||f x xcosx sinx ln x =+的定义域为{}|0x x ≠,且()()()()()f x xcos x sin x ln x xcosx sinx lnx f x -=--+--=--=-⎡⎤⎣⎦,所以函数()f x 是奇函数,其函数图象关于()00,对称,所以C 、D 不符合题意;又ππππππ0222222f cos sin ln ln ⎛⎫=-+⋅=> ⎪⎝⎭,所以B 不符合题意;故答案为:A.【分析】利用奇偶函数的定义可判定出函数()f x 是奇函数,再根据奇函数图象的对称性可排除C 、D ;再由π02f ⎛⎫> ⎪⎝⎭可排除B ;进而可得答案.4.【答案】B【知识点】函数的奇偶性;奇函数与偶函数的性质;函数的图象【解析】【解答】2()(1)31x f x cosx =-⋅+,则()f x 的定义域为R ,又()()()2232111313131x x x x f x cos x cosx cosx f x -⎛⎫⨯⎛⎫⎛⎫-=-⋅-=-⋅=-+⋅=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,所以()f x 为奇函数,图象关于原点对称,故排除CD ,当πx =时,()ππ22π=1π-1+03131f cos ⎛⎫-=< ⎪++⎝⎭,故排除A.故答案为:B.【分析】根据题意,先分析函数的奇偶性,排除C 、D ;结合特殊值()πf ,排除A ;综合可得答案.5.【答案】D【知识点】函数的奇偶性;奇函数与偶函数的性质;函数的图象【解析】【解答】函数()313ln x f x x =-定义域为(0)(0)⋃-∞+∞,,,()()()331133ln x ln x f x x x f x -⎛⎫-=--=--=- ⎪-⎝⎭则函数()f x 为奇函数,其图像关于原点中心对称,排除C ;又()3111110313ln f =⨯-=>,排除AB ;故答案为:D【分析】先判断出函数f (x)为奇函数,排除选项C ;再利用特值f (1)>0排除选项A 、B ;进而得到答案.6.【答案】D【知识点】函数的奇偶性;函数的图象【解析】【解答】由()2sin222x x x x f x -=-可得定义域为{|0}x x ≠,因为()()()2sin222x x x x f x f x ---==-,所以()f x 是偶函数,函数图象关于y 轴对称,A ,C 不符合题意;又()2111sin21022f -⨯=>-,B 中图象不符合,D 中图象符合,故答案为:D .【分析】利用函数的奇偶性以及函数值的符号,逐项进行判断,可得答案.7.【答案】D【知识点】分段函数的解析式求法及其图象的作法;函数的图象【解析】【解答】由图象知()[]00πf x x =∈,,有三个零点经验证只有AD 满足,排除BC 选项,A 中函数满足()sin(2)sin2()f x x x x x f x -=--==为偶函数,D 中函数满足()2(2)22()x x f x sin x sin x f x --=-=-=-为奇函数,而图像关于原点对称,函数为奇函数,排除A ,选D .故答案为:D .【分析】由函数图象结合函数零点与函数与x 轴交点横坐标的等价关系,依据奇函数和偶函数的定义、对称性,逐项排除可得答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高考地位】函数图像作为高中数学的一个“重头戏”,是研究函数性质、方程、不等式的重要武器,已经成为各省市高考命题的一个热点。

在高考中经常以几类初等函数的图像为基础,结合函数的性质综合考查,多以选择、填空题的形式出现。

【方法点评】方法一 特值法使用情景:函数()f x 的解析式已知的情况下解题模板:第一步 将自变量或者函数值赋以特殊值;第二步 分别一一验证选项是否符合要求; 第三步 得出结论.例1 函数x x x y sin cos +=的图象大致为( )【答案】C考点:函数的图像【点评】特值法是解决复杂函数的图像问题的方法之一,其将复杂问题简单化,且操作性简单可行。

【变式演练1】函数()2ln y x x =+的图象大致为( )A .B .C .D .【答案】A 【解析】试题分析:解:令()2ln y x x =+0=,解得1,1,2--=x ,∴该函数有三个零点,故排除B ;当2-<x 时,02<+x ,2>x ,02ln ln >>∴x ,∴当2-<x 时,()2ln y x x =+0<,排除C 、D .故选A .考点:函数的图象.【变式演练2】函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( )【答案】D 【解析】考点:1.函数的基本性质;2.函数的图象. 【变式演练3】现有四个函数:①②③④的图象(部分)如下,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .④①②③ B.①④③② C.①④②③ D.③④②① 【答案】C 【解析】 试题分析:因为,所以是偶函数,图象关于轴对称,即与左1图对应,故排除选项A 、D ,因为当时,,故函数的图象与左3图对应,故排除选项B ;故选C .【方法点睛】本题考查通过函数的解析式和性质确定函数的图象,属于中档题;已知函数的解析式确定函数的图象,往往从以下几方面考虑:定义域(确定图象是否连续),奇偶性(确定图象的对称性),单调性(确定图象的变化趋势),最值(确定图象的最高点或最低点),特殊点的函数值(通过特殊函数值排除选项),其主要方法是排除法. 考点:1.函数的奇偶性;2.函数的图象.【变式演练4】函数xe x y )1(2-=的图象大致是( )【答案】C 【解析】考点:偶函数图象的性质.方法二 利用函数的基本性质判断其图像使用情景:函数()f x 的解析式已知的情况下解题模板:第一步 根据已知函数解析式分析其变化特征如单调性、奇偶性、定义域和值域等;第二步 结合简单的基本初等函数的图像特征如对称性、周期性等进行判断即可;第三步 得出结论.例2 函数()(1)ln ||f x x x =-的图象大致为( )【答案】A 【解析】考点:1、导数在研究函数的单调性中的应用;2、函数的图像.【思路点睛】本题主要考查了导数在研究函数的单调性中的应用和函数的图像,具有一定的综合性,属中档题.其解题的一般思路为:首先观察函数的表达式的特征如0)1(=f ,然后运用导数在研究函数的单调性和极值中的应用求出函数的单调区间,进而判断选项,最后将所选的选项进行验证得出答案即可.其解题的关键是合理地分段求出函数的单调性.【变式演练5】如图,周长为1的圆的圆心C 在y 轴上,顶点()01A ,,一动点M 从A 开始逆时针绕圆运动一周,记走过的弧长AM x =,直线AM 与x 轴交于点()0N t ,,则函数()t f x =的图象大致为( )A .B .C .D .【答案】D 【解析】试题分析:由圆的对称性可知,动点N 的轨迹关于原点对称,且在原点处,21=x ,0=y ;当点M 位于左半圆时,随着弧AM 的长递增,t 的值递增,且变化由快到慢,由给定图象可知选D .考点:函数的图象.【变式演练6】如图可能是下列哪个函数的图象( )A .221xy x =-- B .2sin 41x xy x =+C .ln x y x=D .2(2)xy x x e =- 【答案】D 【解析】考点:函数的图象和性质.【变式演练7】如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x 轴的直线:(0)l x t t a =≤≤经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y (图中阴影部分),若函数()y f x =的大致图像如图,那么平面图形的形状不可能是( )【答案】C 【解析】试题分析:由函数的图象可知,几何体具有对称性,选项A ,B ,D ,l 在移动过程中扫过平面图形的面积为y ,在中线位置前,都是先慢后快,然后相反.选项C ,后面是直线增加,不满足题意.考点:函数的图象与图形面积的变换关系. 【变式演练8】函数()21x f x e-=(e 是自然对数的底数)的部分图象大致是( )【答案】C【变式演练9】函数2ln x x y x=的图象大致是( )A .B .C .D .【答案】D 【解析】试题分析:从题设中提供的解析式中可以看出1,0±≠x ,且当0>x 时, x x y ln =,由于x y ln 1/+=,故函数x x y ln =在区间)1,0(e 单调递减;在区间),1(+∞e单调递增.由函数图象的对称性可知应选D.考点:函数图象的性质及运用. 【变式演练10】函数()21cos 1e xf x x ⎛⎫=-⎪+⎝⎭的图象的大致形状是( ) A . B .C .D .【答案】B考点:函数的奇偶性及函数的图象. 【变式演练11】若函数()2(2)m xf x x m-=+的图象如图所示,则m 的范围为( )A .(),1-∞-B .()1,2-C .()0,2D .()1,2 【答案】D考点:1.函数的奇偶性;2.函数的单调性;3.导数的应用.【高考再现】1. 【2016高考新课标1卷】函数22xy x e =-在[]2,2-的图像大致为(A )(B )(C )(D )【答案】D考点:函数图像与性质【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项. 2.【2015高考安徽,理9】函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c > (C )0a <,0b >,0c < (D )0a <,0b <,0c <【答案】C【考点定位】1.函数的图象与应用.【名师点睛】函数图象的分析判断主要依据两点:一是根据函数的性质,如函数的奇偶性、单调性、值域、定义域等;二是根据特殊点的函数值,采用排除的方法得出正确的选项.本题主要是通过函数解析式判断其定义域,并在图形中判断出来,另外,根据特殊点的位置能够判断,,a b c 的正负关系.3.【2015高考新课标2,理10】如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )(D)(C)(B)(A)xyπ4π23π4π22π3π4π2π4yxxyπ4π23π4π22π3π4π2π4yx【答案】BDPCx【考点定位】函数的图象和性质.【名师点睛】本题考查函数的图像与性质,表面看觉得很难,但是如果认真审题,读懂题意,通过点P 的运动轨迹来判断图像的对称性以及特殊点函数值的比较,也可较容易找到答案,属于中档题.4.【2015高考北京,理7】如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是( )A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C【解析】如图所示,把函数2log y x =的图象向左平移一个单位得到2log (1)y x =+的图象1x =时两图象相交,不等式的解为11x -<≤,用集合表示解集选C【考点定位】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,体现了数形结合思想.【名师点睛】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,本题属于基础题,首先是函数图象平移变换,把2log y x =沿x 轴向左平移2个单位,得到2log (y x =+2)的图象,要求正确画出画出图象,利用数形结合写出不等式的解集.5.【2014年.浙江卷.理7】在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )答案:D考点:函数图像.【名师点睛】本题主要考查了函数的指数与对数函数图像和性质,属于常见题目,难度不大;识图常用的方法:(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.6. 【2014福建,理4】若函数log (0,1)a y x a a =>≠且的图像如右图所示,则下列函数图像正确的是( )13OxyDCBAy=log a(-x)y=(-x)ay=x ay=a-x-1-3113O O O O1yx1xy1xyxy【答案】B【解析】考点:函数的图象.【名师点睛】本题主要考查函数图像的识别问题及分析问题解决问题的能力,求解此题首先要根据图像经过的特殊点,确定参数的值,然后利用函数的单调性确定正确选项,解决此类问题要重视特殊点及单调性的应用.【反馈练习】1.【2017届河北武邑中学高三上周考8.14数学试卷,文5】函数111yx=--的图象是()【答案】B【解析】试题分析:将1yx=-的图象沿x轴向右平移1个单位得到11yx=--的图象,再沿y轴向上平移1个单位得到111yx=--的图象.故选B.考点:函数图象的平移变换.2. 【2017届广东华南师大附中高三综合测试一数学试卷,文10】函数2ln xy x=的图象大致为( )A .B .C .D .【答案】B3. 【2017届广东佛山一中高三上学期月考一数学试卷,理6】函数22x y x-=的图象大致是( )【答案】A 【解析】试题分析:当1x <-时,22x x <,即220x x -<,排除C 、D ,当3x =时,322310y =-=-<,排除B , 故选A .考点:函数的图象.4. 【2016-2017学年山西榆社中学高一10月月考数学试卷,理7】已知函数()f x 的定义域为[],a b ,函数()y f x =的图象如图甲所示,则函数(||)f x 的图象是图乙中的( )【答案】B 【解析】考点:函数图象与性质.5. 【2016-2017学年河北徐水县一中高一上月考一数学试卷,理5】下列图中,画在同一坐标系中,函数2y ax bx =+与y ax b =+(0a ≠,0b ≠)函数的图象只可能是( )【答案】B 【解析】试题分析:()2f x ax bx =+图象是抛物线,()g x ax b =+图象是直线.A 选项()f x 开口向上,说明0a >,直线应斜向上,故A 错误.D 选项()f x 开口向下,说明0a <,直线应斜向下,故D 错误. C 选项()f x 图象不过原点,错误.故选B. 考点:函数图象与性质.6. 【2017届河北武邑中学高三上周考8.14数学试卷,理9】已知函数()y f x =的大致图象如图所示,则函数()y f x =的解析式应为( )A .()ln xf x e x = B .()ln(||)xf x ex -=C .()ln(||)x f x e x =D .||()ln(||)x f x e x = 【答案】C 【解析】考点:函数的性质.7. 【2017届湖南长沙长郡中学高三上周测十二数学试卷,文8】函数22()(44)log x x f x x -=-的图象大致为( )【答案】A 【解析】 试题分析:因为22()(44)log x x f x x -=-,()2222()(44)log (44)log x x x x f x x x f x ---=-=--=-,所以22()(44)log x x f x x -=-是奇函数,排除B 、C,又因为0x →时,0y →,所以排除D ,故选A.考点:1、函数的图象;2、函数的奇偶性.8. 【2017届重庆市第八中学高三上适应性考试一数学试卷,理10】如图1,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离与O 到M 的距离之和表示成x 的函数()f x ,则()y f x =在[]0,π上的图象大致是( )A .B .C .D .【答案】B 【解析】考点:函数的实际应用.9.【 2017届河南新乡一中高三9月月考数学试卷,文7】设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为( )【答案】A 【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A .考点:1、函数的图象及性质;2、选择题“特殊值”法.10. 【2017届湖北襄阳五中高三上学期开学考数学试卷,文6】已知函数)(x f 是定义在R 上的增函数,则函数1|)1(|--=x f y 的图象可能是( )A .B .C .D .【答案】B 【解析】考点:函数的图象,图象变换.。

相关文档
最新文档