广东省广州市荔湾区十五校2016届九年级下质量检测(一模)联考数学试题含答案
2016届九年级中考一模数学试题(扫描版)

学校:班级:教师: 科目:得分:2015-2016年初三数学一模参考答案题号 1 2 3 4 5 6 7 8 9 10 答案B D C C D C A A B B题号11 12 13答案2)1(-ab 5 33712132=+++xxxx题号14 15 16答案所填写的理由需支持你填写的结论. 如:③,理由是:只有③的自变量取值范围不是全体实数预估理由需包含统计图提供的信息,且支撑预估的数据. 如:6.53 ,理由是:最近三年下降趋势平稳四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式316431=-⨯++-……………………4分43=-.………………………5分解不等式①,得10≤x.………………………2分解不等式②,得7>x.………………………3分∴原不等式组的解集为107≤<x.………………………4分∴原不等式组的所有整数解为8,9,10.………………………5分19.解:原式4312222-++-+-=xxxxx………………………3分32-+=xx.………………………4分∵250x x+-=,∴52=+xx.∴原式=532-=..………………………5分20.证明:∵ 90BAC ∠=︒,∴ 90BAD DAC ∠+∠=︒. ∵ AD BC ⊥, ∴ 90ADC ∠=︒.∴ 90DAC C ∠+∠=︒.∴ BAD C ∠=∠. ………………………2分 ∵ DE 为AC 边上的中线, ∴ DE EC =.∴ EDC C ∠=∠. .………………………4分 ∴ BAD EDC ∠=∠. ………………………5分21.解:设小博每消耗1千卡能量需要行走x 步.………………………1分由题意,得xx 90001012000=+ . ………………………3分 解得 30=x . ………………………4分 经检验,30=x 是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC BD =,AB ∥DC .∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC BE =.∴ BD BE =. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形ABCD 为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分A23. 解:(1)∵(6,)P m 在直线y x =-上,∴6m =-. ………………………1分∵(6,6)P -在双曲线k y x =上, ∴6(6)6k =⨯-=-. ………………………2分图1 图2(2) ∵y x =-向上平移b (0b >)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴(,0),(0,)A b B b . ………………………3分作QH ⊥x 轴于H ,可得△HAQ ∽△OAB .如图1,当点Q 在AB 的延长线上时,∵2BQ AB =,∴3===ABAQ OA HA OB HQ . ∵OA OB b ==, ∴3HQ b =,2HO b =.∴Q 的坐标为(2,3)b b -.由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,Q 的坐标为(2,)b b -.由点Q 在双曲线6y x=-上,可得3b =综上所述,1b =或b = ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙O 的切线,∴90CBO ∠=︒.∵AO 平分BAD ∠,∴12∠=∠.∵OA OB OD ==,∴1=4=2=5∠∠∠∠.∴BOC DOC ∠=∠.∴△BOC ≌△DOC .∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE DE =,∴AE DE =.∴34∠=∠. ………………………3分∵124∠=∠=∠,∴123∠=∠=∠.∵BE 为⊙O 的直径,∴90BAE ∠=︒.∴123430∠=∠=∠=∠=︒.………………………4分∴90AFE ∠=︒ .在Rt △AFE 中,∵3AE =,︒=∠303,∴AF = ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) 2.4(120%) 2.88⨯+=.2015年中国内地动画电影市场票房收入前5名的票房成绩统计表………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分m=-;………………………1分26. (2) ①60n=;………………………2分②11(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)224=-+-y mx mx m2(21)4=-+-m x x2=--.m x(1)4-.………………………2分∴点A的坐标为(1,4)(2)①由(1)得,抛物线的对称轴为x=1.∵抛物线与x轴交于B,C两点(点B在点C左侧),BC=4,∴ 点B 的坐标为 (1,0)-,点C 的坐标为 (3,0).………………………3分∴ 240m m m ++-=.∴ 1m =.∴ 抛物线的解析式为223y x x =--.……4分② 由①可得点D 的坐标为 (0,3)-.当直线过点A ,D 时,解得1k =-.………5分当直线过点A ,C 时,解得2k =. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分28. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵︒=∠=90,BAC AC AB ,∴︒=∠=∠45ACB B ,︒=∠+∠9021.∵射线BA 、CF 的延长线相交于点G ,∴︒=∠=∠90BAC CAG .∵四边形ADEF 为正方形,∴︒=∠+∠=∠9032DAF ,AF AD =.∴31∠=∠.∴△ABD ≌△ACF .…………………3分∴︒=∠=∠45ACF B .∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) 10GE =.…………………5分思路如下: a . 由G 为CF 中点画出图形,如图2所示. b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由2=AB ,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙O 的限距点不存在;点N 关于⊙O 的限距点存在,坐标为(1,0).………………………2分②∵点D 的坐标为(2,0),⊙O 半径为1,DE ,DF 分别切⊙O 于点E ,点F ,∴切点坐标为13()22,,13()22,-.……………3分 如图所示,不妨设点E 的坐标为13()2,,点F 的坐标为13()2,-,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则13'()2E --,,13'()2F -,. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与''E F 的交点'P 满足2'1≤≤PP ,故点P 关于⊙O 的限距点存在,其横坐标x 满足112x -≤≤-.………5分 Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙O 的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙O的限距点存在,其横坐标x =1.综上所述,点P关于⊙O的限距点的横坐标x的范围为112x-≤≤-或x=1.……………………6分(2)问题1:9.………………8分问题2:0 < r < 16.………………7分节日热闹:盛况空前普天同庆欢聚一堂人声鼎沸人山人海欢呼雀跃欢声雷动熙熙攘攘载歌载舞成语中的反义词:藕断丝连转危为安左顾右盼阴差阳错争先恐后冬暖夏凉大同小异轻重缓急天南地北舍本逐末红旗招展火树银花灯火辉煌张灯结彩锣鼓喧天金鼓齐鸣看:盯瞧瞅瞟瞥望睹观赏窥顾盼端详注视鸟瞰浏览张望阅览欣赏观赏月光:皎洁的月光明亮的月光清冽的月光清幽的月光朦胧的月光柔和的月光惨淡的月光凄冷的月光月光如水月光如雪月光如银希望:期望盼望渴望奢望指望中国:中华华夏九州四海神州大地长城内外大江南北读书和学习:如饥似渴学而不厌学无止境学以致用博览群书博学多才学海无涯得表扬:得意扬扬洋洋得意神采飞扬心花怒放乐不可支喜上眉梢春风得意眉开眼笑受批评:心灰意冷垂头丧气郁郁寡欢心灰意懒一蹶不振建筑:金碧辉煌玲珑剔透古色古香庄严肃穆庭院幽深巍然耸立绿瓦红墙描龙绣凤气势磅礴栩俯瞰窥视探望远眺审视环顾扫视瞻仰左顾右盼瞻前顾后袖手旁观先睹为快望眼欲穿东张西望屏息凝视目不转睛比喻手法成语:星罗棋布鳞次栉比玉洁冰清蚕食鲸吞狐朋狗友狼吞虎咽锦衣玉食打比方成语:如醉如梦如泣如诉如火如荼如饥似渴如兄似弟如胶似漆如花似锦如狼似虎死:去世逝世长眠安息千古永别永诀与世长辞遇难牺牲捐躯殉职夭折圆寂羽化驾崩朋友:伙伴同伴旅伴伴侣战友密友故友好友挚友新朋好友良师益友梅花:腊梅墨梅素梅冰肌玉骨疏影横斜暗香浮动清香远溢幽香沁人小溪:波纹粼粼清澈见底终年潺潺柳树:垂柳青青婀娜多姿依依多情万千气象:晚霞朝晖红霞满天霞光万道闲云迷雾云雾缭绕星光灿烂晓风残月月凉如水月色朦胧花儿好看:绚丽烂漫妖艳素雅争奇斗艳鲜艳夺目花蕾满枝琼花玉叶色彩斑斓花团锦簇灿如云锦花儿好闻:芬芳幽香芳香浓郁清香四溢香气袭人沁人心脾清香袅袅香气扑鼻香飘十里日子:丰衣足食太平昌盛日出而作日入而息守望相助走兽:四肢轻快互相追逐连蹦带跳小巧玲珑乖巧驯良扬蹄飞奔腾空跃起庞然大物生龙活虎威风凛凛月淡风清月明星稀皓月当空栩如生造型逼真琼楼玉宇布局合理亭台楼阁历史悠久中西合璧龙腾虎跃。
2016年广东省初中毕业生学业考试数学模拟试卷(一)及答案

机密★启用前2016年广东省初中毕业生学业考试模拟考试(一)数 学 试 卷说明:1.全卷共6页,满分为100分,考试用时为120分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑. 1.下面有理数中,最大的数是 A.21B.0C.-1D.-32.﹣的倒数的相反数等于A .﹣2B .C .﹣D .23.2015年春节“黄金周”某市接待游客总数为833100人次,833100用科学记数法表示为A .0.833×106B .83.31×105C .8.331×105D .8.331×1044. 一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这五个数据的众数和中位数分别是A .9,8B .9,7C .8,9D .9,9 5.(﹣2x 2)3的结果是A .﹣2x 5B .﹣8x 6C .﹣2x 6D .﹣8x 56.若关于y 的一元二次方程ky 2﹣7y ﹣7=0有实根,则k 的取值范围是A .k >﹣B .k≥﹣且k ≠0C .k≤﹣D .k >﹣且k≠07.三角形两边的长分别是4和10,则此三角形第三边的长可能是 A.5 B.6 C.11 D.168.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5. 从中随机摸出一个小球,其标号大于2的概率为A.15B.25C.35D.459.如右下图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,ABP∆的面积为y,若y关于x的图象如图所示,则ABC∆的面积是A.10B.16C.18D.2010.如题10图,、是⊙O的两条互相垂直的直径,点从点O出发,沿的路线匀速运动,设(单位:度),那么与点运动的时间(单位:秒)的关系图是二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.12.不等式组的解集是.故答案为:﹣1<x≤2.13.如右图,正方形ABCD中,M,N分别为BC,CD的中点,连接AM,AC交BN与点E,F,则EF : FN的值是__________.14.点A(﹣2,3)关于x轴的对称点A′的坐标为.15.如图,半圆的直径10=AB,P为AB上一点,点C,D为半圆的三等分点,则图中阴影部分的面积等于.图1图216.如果记y==f (x ),并且f (1)表示当x=1时y 的值,即f (1)==;f ()表示当x=时y 的值,即f ()==,那么f (1)+f (2)+f ()+f (3)+f()+…+f(n )+f ()= .(结果用含n 的代数式表示,n 为正整数). 三、解答题(一)(本大题共3小题,每小题6分,共18分)170114cos301)()2-+- .18、先化简,再求值:1)111(2-÷-+a aa ,其中.3-=a19.从△ABC(CB <CA )中裁出一个以AB 为底边的等腰△ABD,并使得△ABD 的面积尽可能大.(1)用尺规作图作出△ABD.(保留作图痕迹,不要求写作法、证明) (2)若AB=2,∠CAB=30°,求裁出的△ABD 的面积.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴某市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~10;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1500名考生中,考试成绩评为“B”的学生大约有多少名?(2)如果第一组只有一名是女生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.21.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.22.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴上,顶点C在y轴上,D 是BC的中点,过点D的反比例函数图象交AB于E点,连接DE.若OD=5,tan∠COD=.(1)求过点D的反比例函数的解析式;(2)求△DBE的面积;(3)x轴上是否存在点P使△OPD为直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.24. AB,CD是⊙O的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作BF⊥AD,垂足为点F,直线BF交直线CD于点G.(1)如图1,当点E在⊙O外时,连接BC,求证:BE平分∠GBC;(2)如图2,当点E在⊙O内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO并延长交AD于点H,若BH平分∠ABF,AG=4,tan ∠D=,求线段AH的长.25.如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD 于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?2016年广东省初中毕业生学业考试模拟考试(一)数学试卷参考答案及评分说明一、选择题(本大题共10小题,每小题3分,共30分)二、填空题(本大题6小题,每小题4分,共24分) 11. 11 . 12.﹣1<x≤213.答案:试题分析:设EF=x ,FN=y ,正方形ABCD 的边长为a ,根据正方形的性质、M 、N 分别为BC 、CD 的中点及勾股定理即可得到关于x 、y 、a 的方程组,从而求得结果. 设EF=x ,FN=y ,正方形ABCD 的边长为a ,由题意得,解得则EF:FN 的值是 .点评:正方形的性质的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.1415.答案:16.答案:三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解:原式=1231-=-……………4分3323121-+-=-……………6分18.解:原式 =aa a a a a 1)1)(1(1)1)(1(-⋅-++-+……………3分=aa a a a 1)1)(1(2-⋅-+……………4分 =1+a a…………………………5分 把3-=a 代入上式,得23133=+--……………6分 19.【考点】作图—复杂作图.【分析】(1)直接利用线段垂直平分线的性质作出AB 的垂直平分线,交AC 于点D ,进而得出△ABD ;(2)利用锐角三角形关系得出DE 的长,进而利用三角形面积求法得出答案. 【解答】解:(1)如图所示,△ABD 即为所求............................2分(2)∵MN 垂直平分AB ,AB=2m ,∠CAB=30°,∴AE=1m ,……………3分则tan30°==,……………4分 解得:DE=.……………5分故裁出的△ABD 的面积为:×2×=(m 2).……………6分【点评】此题主要考查了复杂作图以及线段垂直平分线的性质与作法、三角形面积求法、锐角三角函数关系等知识,熟练应用线段垂直平分线的性质是解题关键四、解答题(二)(本大题共3小题,每小题7分,共21分) 20. 解:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);……1分 则第五组人数为:50﹣4﹣8﹣20﹣14=4(名); 根据题意得:考试成绩评为“B ”的学生大约有:×1500=420(名); ……………3分如图:……………4分(2)画树状图得:……………7分点评: 此题考查了树状图法与列表法求概率的知识以及直方图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)证明:∵ 四边形ABCD 是矩形∴ CD AB =, ︒=∠=∠90C A ............................1分 由折叠可得 CD ED =, ︒=∠=∠90C E∴ ED AB =, ︒=∠=∠90E A ............................2分 又∵ EFD AFB ∠=∠∴ ABF ∆≌EDF ∆............................3分(2)解: 四边形BMDF 是菱形。
2015-2016学年第一学期荔湾区期末初三统考试卷数学科附答案

2015-2016学年第一学期荔湾区期末初三统考试卷数学科一、选择题(3×10=30)1、不解方程,判别一元二次方程2261x x -=的根的情况是( )A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.无法确定2、如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )3、从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张,下列事件中,必然事件是( ) A.标号小于6 B.标号大于6 C.标号是奇数 D.标号是34、将抛物线23y x =向上平移2个单位,得到抛物线的解析式是( ) A.23y x =-2 B.23y x = C.23(2)y x =+ D.23y x =+25、2012-2013NBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%.下列对科比罚球投篮的说法错误的是( ) A.罚球投篮2次,一定全部命中 B.罚球投篮2次,不一定全部命中C.罚球投篮1次,命中的可能性比较大D.罚球投篮1次,不命中的可能性较小 6、如图是二次函数224y x x =-++的图象,使y ≤4成立的x 的取值范围是( )A.0≤x ≤2B.x ≤0C.x ≥2D.x ≤0或x ≥27、数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O 旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是( ) A.甲 B.乙 C.丙 D.丁8、如图,在圆O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是( ) A.3 B.5 C.15 D.179、如图,AB 是圆O 的直径,BC ,CD ,DA 是圆O 的弦,且BC =CD =DA ,则∠BCD 等于( ) A.100° B.110° C.120° D.135° 10、如图,反比例函数(0)ky x x=>的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 相交于点D 、E,若四边形ODBE 的面积为6,则k 的值为( ) A.4 B.3 C.2 D.1二、填空题(3×6=18)11、设一元二次方程2830x x --=的两个实数根分别为1x 和2x ,则1x +2x =______ 12、二次函数225y x x =+-的顶点坐标是 . 13、已知一个函数的图象与6y x=的图象关于y 轴成轴对称,则该函数的解析式为______. 14、有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁,任意取出一把钥匙去开任意一把锁,一次能打开锁的概率是______.15、如图,点A ,B ,C ,D 分别是圆O 上四点,∠ABD =20°,BD 是直径,那么∠ACB =______16、如图,△ABC 和△A'B'C 是两个完全重合的直角三角板,∠B =30°,斜边长为10cm.三角板A'B'C 绕直角顶点C 顺时针旋转,当点A'落在AB 边上时,CA'旋转所构成的扇形的弧长为______cm. 三、解答题。
2016年广东省初中毕业学业考试数学模拟试卷1及答案

2013年初中毕业生学业考试模拟试题数学说明:1.全卷共 4 页,满分120 分,考试时间 100分钟; 2. 答案务必填写在答卷相应位置上,否则无效。
一、选择题(每小题3分,共30分)1. -31的倒数是( )A -3B 3C -31D 312. 下列运算中,正确的是( )A x 3-x 2=xB (x -y) 2=x 2-y 2C x 2·x 3=x 6D (x 3)2=x 63. 用配方法解方程时,方程x 2-2x -3=0变形正确的是( )A (x -1)2=2B (x -1)2=4C (x -1)2=1D (x -1)2=74. 函数y=21x 中,自变量x 的取值范围是:( )A x > 2B x <2C x ≠ 2D x ≠ -2 5. 不等式2-3x ≥2x -8的非负整数解有:( )A 1 个B 2个C 3个D 4个6. 在围棋盒中有4颗黑色棋子和a 颗白色棋子,随机地取出一颗棋子,如果它是白色棋子的概率是53,则a =( )A 6B 4C 3D 2 7. 如图,已知A B ∥CD,BE 平分∠ABC ,∠CDE =1500,则∠C 的度数是:( ) A 1000 B 1100 C 1200 D 1500 8. 如图,在△ABC 中,∠C =900,AD 是BC 边上的中线,BD =4,AD =25则tan ∠CAD 的值是( ) A 2 B 3 C 5 D 29. 如图,AB 是⊙O 的直径,弦C D ⊥AB ,垂足为E ,如果AB =10,CD =8,那么,sin ∠OCE=( ),A 34B 53C 54D 4310. 如图,两块相同的直角三角形完全重合在一起,∠A =300,AC =10,把上面一块绕直角顶点B 逆时针旋转到△A ′B ′C ′的位置,点C ′在AC 上,A ′C ′与AB 相交于点D ,则C ′D =( ) A 2.5 B 2 C 32 D235二、填空题(每小题4分,共24分) 11.分解因式:2x 2-8=12.化简:x 1-11-x =13.若关于x 的方程ax 2+2 (a+2)x+a=0有实数解,那么实数a 的取值范围是 . 14.不等式组⎩⎨⎧+≤〉-53412x x xx 的解集是 .15.如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠D 的大小是 .16如图,在矩形ABCD 中,AB =3,BC =4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为 .三.解答题(一)(每小题5分,共15分)17.计算:12-(-2013)0+(21)-1 +31- 18.已知一次函数y=2x+1的图象分别与坐标轴相交于A 、B 两点(如图所示)与反比例函数的图象相交于C 点,(1)写出A 、B 两点的坐标; (2)作CD ⊥x 轴,垂足为D ,如果OB 是△ACD是中位线,求反比例函数y=xk(k >0)的关系式.19.尺规作图:已知△ABC ,请用直尺和圆规作出△ABC 的外接圆O.(要求保留作图痕迹,不写作法.)三、解答题(二)(每小题8分,共24分)20.已知甲同学手中藏有三张分别标有数字21、41、1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a 、b, (1)请你用树状图或列表法列出所有可能的结果;(2)现制定这样一个游戏规则,若所选出的a 、b 能使得方程ax 2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜,请问这样的游戏规则公平吗?请你用概率知识解释。
2016年广东广州荔湾区广雅一模数学试卷答案

D.答 案解 析A由立体图形可得它的左视图是选项.A 答 案解 析若代数式的取值范围是( ).B由二次根式有意义的条件可得:,故答案选x −−−−√x ⩽1x ⩾1x =1x ⩾0x ⩾1如图,中,为延长线上一点,且,则△ABC D =120∘∠编辑100∘1的大小关系是 .j i ao s h i .i zh ik an g.co m2018/12/0314.答 案解 析如图所示,边长为的小正方形构成的网格中,半径为的⊙的圆心在格点上,则的正切值等于 .在中,,,∴.∵,∴.11O O ∠AED 12Rt △ABC AC =1AB =2tan ∠ABC ==AC AB 12∠AED =∠ABC tan ∠AED =tan ∠ABC =12EF +BFh i k an g.c om 2018/12/03解得:.故的最小值是.DE =27√EF +BF 27√值代入求值.学生版教师版答案版编辑∴一共有种等可能的结果,两次摸出的球恰好颜色不同的有9∴两次摸出的球恰好颜色不同的概率为j i ao sh i .i zh ik an g.co m2018/12/0322.(1)求的值.答 案解 析(2)将向右平移得到,当的中点在函数()的图像上时,求平移的距离.答 案解 析如图,等边三角形的边长为,边在轴的正半轴上,点在第一象限,函数()的图像交于点,交于点,且为的中点..作轴于.根据题意,得,,∴,,∴,即,设双曲线的解析式是,把代入,得.平移距离为.设的中点是,根据等边三角形的性质和直角三角形的性质得,设点向右平移了个单位长度,则有,代入()中的解析式,∴,∴,∴平移距离为.AOB 4OA x B y =kxx >0BO C AB D D AB k k =33√DE ⊥x E AD =2DE =3√AE =1DE =3√OE =3D (3,)3√y =(k ≠0)kxD (3,)3√k =33√△AOB △A ′O ′B ′O ′B ′y =kxx >02OB M M (1,)3√M a (1+a ,)M ′3√1=3√33√1+aa =22(保留作图痕迹,不写作j i ao s hi .i zh i k j i ao sh i.i zh i 综合运用:在你所作的图中.与⊙的位置关系,并证明你的结论.答 案解 析,,求⊙答 案解 析如图所示:与⊙相切.与⊙相切,理由如下:过点作,垂足为∵,∴ ,∵是的平分线,∴∴与⊙相切..在中,∴,又∵∴∴,∴设⊙的半径为,则在中,根据勾股定理可得解得,∴⊙的半径是.O AB O AB O O OD ⊥AB ∠ACB =90∘OC ⊥BC BO ∠ABC OC =OD AB O 12tan ∠OBC =23103Rt △OBC tan ∠==OD BC OC BC 23∠ADO =∠ACB Rt △ADO ∽Rt △ACB ==AD AC OD BC 23AD =AC =×2323O r Rt △ADO r r =103O 103平分线段,则此时的长为多少.中,, 重合),点在边,将、折叠,使点与三点共线.ABCD AB =4AD =Q AD C P Q B E P F AQ 教师版 答案版j i ao sh zh ik an g.co m2018/12/03/12/03在和中,,∴,∴.设,则,在中,∵,,∴,∴.解得 .∴,②若与在同一直线上,如图,∵≌,≌,∴,∴,∴.综上,的长为或.△AEP △ABC {∠AEP =∠B =90∘∠EAP =∠BAC △AEP ∽△ABC =AP EP ACBCAP =x EP =BP =4−x Rt △ABC AB =4BC =2AC =25√=x4−x 25√2x =5−5√AP =5−5√CE QF △AQP △EQP △CPB △CPE ∴AP =EP =BP 2AP =4AP =2AP 5−5√225.(1) ,点的横坐标为 (上述结果均用含的代数式表示).1.2.答 案解 析(2)连接,过点作直线,与抛物线交于点,点是轴上的一点,其坐标为.当,,三点在同一直线上时,求抛物线的解析式.答 案解 析如图,已知抛物线(,是常数,且)与轴分别交于点、(点位于点的左侧),与轴的负半轴交于点,点的坐标为.∵抛物线过点,∴,∴,∵抛物线与轴分别交于点、(点位于点的左侧),∴与是一元二次方程的两个根,∴,∴,即点的横坐标为..∵抛物线与轴的负半轴交于点,∴当时,,即点坐标为.设直线的解析式为,∵,∴,y =+bx +c 12x 2b c c <0x A B A B y C A (−1,0)b =B c +c12−2cy =+bx +c 12x 2A (−1,0)0=×+b ×(−1)+c 12(−1)2b =+c 12y =+bx +c 12x 2x A (−1,0)B (,0)x B A B −1x B +bx +c =012x 2−1⋅=x B 212=−2c x B B −2c BC A AE //BC y =+bx +c 12x 2E D x (2,0)C D E y =−x −212x 232y =+bx +c 12x 2y C x =0y =c C (0,c )BC y =kx +c B (−2c ,0)−2kc +c =0学生版 教师版答案版编辑j i ao s hi .i z hi k an g .co m 2018/j i ao sh i.i zh ika ng .c om2018/12/03(3)在()条件下,点是轴下方的抛物线上的一个动点,连接,,设所得的面积为.1求的取值范围.答 案解 析2若的面积为整数,则这样的共有 个.∵,∴,∴直线的解析式为.∵,∴可设直线得到解析式为,∵点的坐标为,∴,解得,∴直线得到解析式为.由,解得,,∴点坐标为.∵点坐标为,点坐标为,∴直线的解析式为.∵,,三点在同一直线上,∴,∴,∴(与矛盾,舍去),,∴,∴抛物线的解析式为..设点坐标为.∵点的坐标为,点坐标为,点坐标为,∴,,直线的解析式为.分两种情况:(Ⅰ)当时,.∵,∴;(Ⅱ)当时,过点作轴于点,交于点.∴点坐标为,∴,∴,∴当时,,∴.综上可知.c ≠0k =12BC y =x +c 12AE //BC AE y =x +m 12A (−1,0)×(−1)+m =012m =12AE y =x +1212⎧⎩⎨⎪⎪⎪⎪y =+(+c )x +c 12x 212y =x +1212{=−1x 1=0y 1{=1−2c x 2=1−c y 2E (1−2c ,1−c )C (0,c )D (2,0)CD y =−x +c c2C D E 1−c =−×(1−2c )+c c22+3c −2=0c 2=c 112c <0=−2c 2b =+c =−1232y =−x −212x 2322P x P B P C △P BC S S 0<S <5P (x ,−x −2)12x 232A (−1,0)B (4,0)C (0,−2)AB =5OC =2BC y =x −212−1<x <00<S <S △ACB =AB ⋅OC =5S △ACB 120<S <50<x <4P PG ⊥x G CB F F (x ,x −2)12PF =PG −GF=−(−x −2)+(x −2)12x 23212=−+2x 12x 2S =+S △PFC S △PFB =PF ⋅OB 12=(−+2x )×41212x 2=−+4xx 2=−+4(x −2)2x =2=4S 最大值0<S ⩽40<S <5△P BC S △P BC 学生版 教师版答案版编辑。
2015~2016学年度第二学期九年级质量检测(一)数学试题参考答案

2015~2016学年度第二学期九年级质量检测(一)数学试题参考答案及评分标准(注:若有其他正确答案请参照此标准赋分)一、选择题(本大题共8个小题,每小题2分,共16分)二、填空题(本大题共8个小题,每小题3分,共24分) 9.3.12×10610.6元,6元(没有单位也可) 11. 13m <12. 22.5-x -15≥15×10% 或%1015155.22≥--x13. ①③④ 14.6 15. 22或111 16. 24031 三、解答题(本大题共2个小题,每小题6分,共12分) 17. 解:方法1:原式=(1)(1)11x x x x x x -⎡⎤--÷⎢⎥++⎣⎦=1(1)1(1)x x x x x x +⎡⎤--⋅⎢⎥+-⎣⎦=11x x x x +--=22(1)1(1)(1)x x x x x x --=--(或21x x-). ……………5分 当2x =-时,原式=111(1)(2)(21)6x x ==--⨯--.……………………………6分方法2:原式=2(1)11x x x x x x -⎡⎤--÷⎢⎥++⎣⎦=22(1)(1)111xx x x x x x x⎡⎤-++-⋅⎢⎥++-⎣⎦ =222(1)11x x x x x x ⎡⎤--+⋅⎢⎥+-⎣⎦=2111x x x x +⋅+-=21x x-(或1(1)x x -). ……………………………5分 当2x =-时,原式=22111(2)(2)6x x ==----. ……………………………6分18.(1)作图如下:(注:不写结论不扣分)则四边形AEMF 为所求作的菱形. ……………………………2分 说明:作图方法不唯一,如:可作边BC 的垂直平分线. (2)由作图知,∠BAM=∠CAM ,又∵△ABC 是等腰三角形, ∴BM=CM ,∵E 、F 是AB 、AC 的中点,∴AE=12AB, AF=12AC . ∴EM 、FM 是△ABC 的中位线. ∴EM ∥AC ,MF ∥AB .∴四边形AEMF 是平行四边形. ∵AB=AC, ∴AE=AF .∴四边形AEMF 为菱形. ……………………………6分四、解答题(本大题共2个小题,每小题7分,共14分) 19.解:(1)20,20-2-3-4-5-4=2(个). 补图正确……………………2分(2)4100%=20%20⨯. 360°×20%=72°.所以圆心角的度数为72°. ……4分(3)平均每班患流感人数为122233445564420x ⨯+⨯+⨯+⨯+⨯+⨯==(人).则45个班中共有45×4=180(人).答:估计该校此次患流感的人数为180人. …………………………………7分20. 解:(1)用列表法列出两次抽出的数字的所有可能结果如下:第1次第2次-1 -2 1 2M E FBCA 第18题图第19题图2名 1名 4名 3名 5名 抽查班级患流感人数条形统计图班级个数65 4 3 2 1 0图2第22题图 B A D 10m C ……………………………4分(2)由(1)得,所有可能出现的结果共16种,每种情况出现的可能性相同,其中点P 落在双曲线xy 2=上的情况有4种,分别是(-1,-2)、(-2,-1)、(1,2)、(2,1), 所以点P 落在双曲线x y 2=上的概率是=16441. ……………………………7分21.解:(1)设这项工程规定的时间为x 天,则314xx x +=+. ……………………4分 解得x =12.经检验:x =12是原方程的解.答:规定的工期是12天. …………………………6分 (2)选择方案3. 理由如下:方案1付款:2.8×12=33.6(万元). 方案2:耽误工期,不符合要求; 方案3付款:2.8×3+2×12=32.4(万元).答:方案3节省工程款. …………………………8分 22. 解:不需要砍掉.理由如下:根据题意,在Rt △ABC 中,∵∠ABC=90°,∠CAB=45°,CB=10,∴tan45°=ABBC. ∴AB=10. ………………… 2分在Rt △BCD 中,∵∠CDB=37°,CB=10,∴tan37°=BDBC. ……………4分∴340=BD . ……………5分 ∴AD =BD -AB =31010340=-. ……………………6分 ∵310+3=319<9, 所以离原坡脚9m 处的大树不需要砍掉.……………………8分 六、解答题(本大题共2个小题,每小题8分,共16分) 23.(1)证明:∵AD 平分∠EAC ,-1 (-1,-1) (-2,-1) (1,-1) (2,-1) -2 (-1,-2) (-2,-2) (1,-2) (2,-2) 1 (-1,1) (-2,1) (1,1) (2,1) 2(-1,2)(-2,2)(1,2)(2,2)∴∠EAD=∠DAC.∵四边形AFBC内接于圆,∴∠FBC=180°-∠FAC.∵∠DAC=180°-∠FAC,∴∠DAC=∠FBC.∵∠EAD=∠FAB=∠FCB,∴∠FBC=∠FCB. ……………………4分(2)解:∵AB是圆的直径,∴∠ACB=∠ACD= 90°.∵∠D=30°,∴∠DAC=60°.…………………5分∵AD平分∠EAC,∴∠EAC=∠DAC=120°.∴∠BAC=180°-∠EAC=60°.∵BC=3,sin∠BAC= sin 60°=BC,AB∴…………………8分24.解:(1)由题意得y=20+2(x-1),即y=2x+18 (1≤x≤10). …………………2分(2)由题意知,当y=28时,18+2x=28,解得x=5. ……………………3分当1≤x≤5时,W=(1400-1000)×(18+2x),即W=800x+7200. ………………………4分∵800>0,W随着x的增大而增大,∴当x=5时,W最大值=11200;………………………5分当5<x≤10时,W =(1400-1000)×(2x+18)-20×[(2x+18)-28] (2x+18),即W=-80x2+480x+10800. ………………………6分将这个函数配方,得W =-80(x-3)2+11520,∴当x=3时,W最大=11520,但x=3不在5<x≤10之内,由函数图象的开口向下,当x≥3时,W随x的增大而减小,在5<x≤10之内时当x=6时,W最大=-80(6-3)2+11520=10800. ……7分∵11200>10800,∴第5天时该厂获得利润最大,最大利润为11200元.………………………8分七、解答题(本题共10分)25.解:(1)①证明:作AH⊥BF,垂足为点H,∵BF⊥BC,第26题图 ∴∠AHB =∠HBC=∠ACB=90°. ∴四边形ACBH 为矩形. ∵AC=BC ,∴四边形ACBH 为正方形.∴AH=BC=AC=BH ,∠CAH=∠DAE=90°. ∴∠CAD=∠HAE=90°-∠CAE . 又∵∠ACD=∠AHE=90°, ∴△ACD ≌△AHE (ASA ).∴AD=AE . ………………………………5分 ②BD+BE=2BC . ………………………………6分 ∵△ACD ≌△AHE , ∴CD=HE .∴BD -BC=BH -BE=BC -BE .∴BD+BE=2BC . ………………………………8分 (2)当D 在BC 边上时,BD+BE=2BC ;当D 在CB 延长线上时,BE -BD=2BC . ………………………………10分 八、解答题(本题共12分)26. 解:(1)由直线y=3x+3可知B 点坐标(0,3),A 点坐标(-1,0),∴AB=10.由C 点坐标(0,1)可得AC =2. ∵∠ADB=∠ABC, ∠BAC=∠BAD , ∴△ABC ∽△ADB . ∴ AB 2=AC•AD .∴AD=52. …………………………1分 如图,过点D 作DM ⊥x 轴于点M , ∵OC ∥MD ,∴OC ACMD AD=. ∴MD=5.∴D 点坐标(4,5) ∵抛物线过点B(0,3),则可设抛物线解析式为y=2ax + 把A (-1,0) D(4,5)代入表达式中,得 3164a b a b -+⎧⎨+⎩,25.2b -⎪=⎪⎩∴所示抛物线表达式为y=215322x x -++. …………………5分 (2) 由已知易得直线AD 的表达式为y=x+1, 可设P (x ,x+1),则H (x ,325x 21-2++x ),第25题图 x y O BA D CM所以PH=215322x x -++-x -1= 825.解得 x 1= x 2=23. ………………7分把x=23代入y=215322x x -++,得y=458.∴点H 的坐标为(23,458). …………………… 9分(3) A '(1,338), ………………10分7322m -≤≤,54588n ≤≤. …………………………12分。
广大附中2015-2016学年中考一模数学试卷含答案
广大附中2015-2016学年初三一模数学测试卷问 卷一、选择题(每题3分,共30分) 1.下列命题中,正确的是( )A .内错角相等B .同位角相等C .对顶角相等D .同旁内角互补 2. 已知12112-=+=b a ,,则a 与b 的关系是( ) A. a b=1B. a =bC. a =-bD. a b=-13. 当k>0时,双曲线xky =与直线kx y -=的公共点有( ) A. 0个 B. 1个 C. 2个 D. 3个 4.有20名同学参加“英语拼词”比赛,他们的成绩各不相同,按成绩取前10名参加复赛. 若小新知道了自己的成绩,则由其他19名同学的成绩得到的下列统计量中,可判断小新能否进入复赛的是( )A .平均数B .极差C .中位数D .方差5. 四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图所示,则他们的体重大小关系是( )A P R S Q >>>B Q S P R >>>C S P Q R >>>D S P R Q >>> 6.如图,圆O 与正方形ABCD 的两边AB 、AD 相切,且DE 与圆O 相切于E 点.若圆O 的半径为5,且AB=11,则DE 的长度为何?( ) A .5B .6C .D .第6题 第8题7.在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是( )A B C D8.如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则tan OBC ∠ 的值为( )A .12BC D9.如图,将一张等腰直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )A .甲<乙,乙>丙B .甲>乙,乙<丙C .甲>乙,乙>丙D .甲<乙,乙<丙10.如图,已知抛物线y 1=﹣2x 2+2,直线y 2=2x +2,当x 任取一值时,x 对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M=y 1=y 2.例如:当x =1时,y 1=0,y 2=4,y 1<y 2,此时M=0.下列判断: ①当x >0时,y 1>y 2; ②当x <0时,x 值越大,M 值越小; ③使得M 大于2的x 值不存在; ④使得M=1的x 值是或.其中正确的是( )A .①②B .①④C .②③D .③④ 二、填空题(每题3分,共18分)11.在实数范围内因式分解:422x y x y -=______________;12.在1-,1,2这三个数中任选2个数分别作为P 点的横坐标和纵坐标,过P 点画双曲线ky x=,该双曲线位于第一、三象限的概率是 ; 13.已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 ;14.劳技课上小敏拿出了一个腰长为8,底边为6的等腰三角形,她想用这个等腰三角形加工成一个边长比是1:2的平行四边形,平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其它顶点均在三角形的边上,则这个平行四边形的较短的边长为 ;15. 如图,在直径为6的半圆»AB 上有两动点M 、N ,弦AM 、BN 相交于点P ,则AP·AM+BP·BN 的值为__________;16.在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:若y ′=,则称点Q 为点P 的“可控变点”.请问:若点P 在函数y =﹣x 2+16(﹣5≤x ≤a )的图象上,其“可控变点”Q 的纵坐标y ′的取值范围是﹣16≤y ′≤16,则实数a 的取值范围是 .三、计算题(本大题共7小题,共102分) 17.(本题10分)计算(1)解方程:23112x x x x -=-+-(2)先化简,再求代数式2122121a a a a a a +-÷+--+的值,其中6tan 602a =- .18. (本题8分)若关于x 的不等式组恰有三个整数解,求实数a 的取值范围.19. (本题10分)如图,在一笔直的海岸线 上有A 、B 两个观察站,A 在B 的正东方向,A 与B 相距2千米.有一艘小船在点P 处,从A 测得小船在北偏西60︒的方向,从B 测得小船在北偏东45︒的方向.(1)求点P 到海岸线 的距离;(2)小船从点P 处沿射线AP 的方向航行一段时间 后到达点C 处,此时,从B 点测得小船在北偏西15︒的方向.求点C 与点B 之间的距离.(注:答案均保留根号) 20.(本题10分)扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项. (1)每位考生有 选择方案;(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.21.(本题12分)如图,一次函数b x k y +=1的图像经过)0,1(),2,0(B A -两点,与反比例函数xk y 2=的图像在第一象限内的交点为M ,若△OBM 的面积为2. (1)求一次函数和反比例函数的表达式;(2)在x 轴上是否存在点P ,使AM ⊥MP ?若存在,求出点P 的坐标;若不存在,说明理由.22. (本题12分)如图,AB 是⊙O 的直径,点C 是⊙O上一点,AD 与过点C 的切线垂直,垂足为点D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分∠ACB ,交AB 于点F ,连接BE . (1)求证:AC 平分∠DAB ; (2)求证:PC =PF ;(3)若4tan 3ABC ∠=,AB =14,求线段PC 的长. 23.(本题12分)在平面直角坐标系xoy 中,一次函数334y x =+的图象是直线l 1,l 1与x 轴、y 轴分别相交于A 、B 两点.直线l 2过点C (a ,0)且与直线l 1垂直,其中a >0.点P 、Q 同时从A 点出发,其中点P 沿射线AB 运动,速度为每秒4个单位;点Q 沿射线AO 运动,速度为每秒5个单位.(1)写出A 点的坐标和AB 的长;(2)当点P 、Q 运动了多少秒时,以点Q 为圆心,PQ 为半径的⊙Q 与直线l 2、y 轴都相切,求此时a 的值.CPO F ADBA C 北B 东P24.(本题14分)在Rt △ABC 中,∠ACB =90°,tan ∠BAC =12. 点D 在边AC 上(不与A ,C 重合),连结BD ,F 为BD 中点. (1)若过点D 作DE ⊥AB 于E ,连结CF 、EF 、CE ,如图1. 设CF kEF =,则k = ; (2)若将图1中的△ADE 绕点A 旋转,使得D 、E 、B 三点共线,点F 仍为BD 中点,如图2所示.求证:BE -DE =2CF ;(3)若BC =6,点D 在边AC 的三等分点处,将线段AD 绕点A 旋转,点F 始终为BD中点,求线段CF 长度的最大值.25.(本题14分) 在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在射线AC 上滑动,且与射线AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii )取BC 的中点N ,连接,NP BQ .试探究PQNP BQ+是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.(奥班课改班)广大附中2015-2016学年初三一模数学测试卷参考答案一、选择题1-5CBACD 6-10BCCDD二、填空题11、2x y(x x;12、13;13、15o或75o;14、2411或125;15、36;16、a=17.(1)1x=…………………………….….….3分检验…………………………………….4分无解…………………………………….5分(2)原式=12a+……………………………….3分2a=………………………………4分原式分18.解3x+5a+4>4(x+1)+3a,得x<2a,∴不等式组的解集为﹣<x<2a.………………………………4分∵关于x的不等式组恰有三个整数解,∴2<2a≤3,………………………………6分解得1<a≤.………………………………8分19.解:(1)作PD⊥AB于点D,设PD=x,由题意可知∠PBA=45︒,∠PAB=30︒,∴BD=x,,∵AB=2,∴2x=,∴1x==,………………………………4分∴点P到直线AB的距离是1)千米。
广东省2016届九年级中考模拟试卷(一)数学试题解析(解析版)
一、选择题(本大题10小题.每小题3分,共30分)1.下列各数中,与3互为相反数的是()A.13B.﹣3 C.3﹣1D.﹣13【答案】B【解析】试题分析:根据只有符号不同的两个数互为相反数,可得﹣3与3互为相反数,故B正确;故选:B.考点:相反数2.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.5 B.6 C.7 D.8【答案】B考点:由三视图判断几何体3.下列运算正确的是()A.x3+x2=x5B.x3﹣x2=x C.x3•x﹣2=x﹣5D.x3÷x2=x【答案】D【解析】试题分析: A、不是同底数幂的乘法指数不能相加,故A错误;B、不是同底数幂的除法指数不能相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、同底数幂的除法底数不变指数相减,故D正确;故选:D.考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、负整数指数幂4.若x,y为实数,且,则(xy)2015的值为()A.1 B.﹣1 C.4 D.﹣4 【答案】B【解析】试题分析:根据非负数的性质得x+4=0,y﹣4=0,解得x=﹣4,y=4,则(xy)2015=﹣1.故选:B.考点:非负数的性质5.如图,AB∥CD,EC⊥CD于C,CF交AB于B,已知∠2=29°,则∠1的度数是()A.58° B.59° C.61° D.62°【答案】C【解析】试题分析:延长DC到F,根据垂直的性质得到∠DCE=90°,根据余角的性质得到∠3=61°,根据平行线的性质由AB∥CD,可得∠1=∠361°.故选C.考点:平行线的性质6.在社会实践活动中,某中学对甲、乙,丙、丁四个超市三月份的苹果价格进行调查.它们的价格的平均值均为3.50元,方差分别为S甲2=0.3,S乙2=0.4,S丙2=0.1,S丁2=0.25.三月份苹果价格最稳定的超市是()A.甲 B.乙 C.丙 D.丁【答案】C【解析】试题分析:根据题意知它们的价格的平均值均为3.50元,方差分别为S甲2=0.3,S乙2=0.4,S丙2=0.1,S丁2=0.25,∴S乙2>S甲2>S丁2>S丙2,∴三月份苹果价格最稳定的超市是丙;故选C.考点:方差7.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20° B.30° C.35° D.40°【答案】B【解析】试题分析:根据全等三角形的性质得到∠ACB=∠A′C′B′,然后根据角的和差计算得∠BCB′=30°.故选:B.考点:全等三角形的性质8.用配方法解一元二次方程x2﹣6x=﹣5的过程中,配方正确的是()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=4 D.(x﹣3)2=4【答案】D【解析】试题分析:先把方程两边都加上9,然后把方程左边写成完全平方的形式即可.即x2﹣6x+9=4,(x ﹣3)2=4. 故选D .考点:解一元二次方程-配方法9.如图是一个3×2的长方形网格,组成网格的小长方形长为宽的2倍,△ABC 的顶点都是网格中的格点,则cos∠ABC 的值是( )A .23B .25C .35D .45【答案】D【解析】试题分析:如图,由6块长为2、宽为1的长方形,可得∠D=90°,AD=3×1=3,BD=2×2=4,因此在Rt△ABD中,=5,因此可得cos∠ABC=45BD AB =. 故选D .考点:锐角三角函数10.若mn <0,则正比例函数y=mx 与反比例函数在同一坐标系中的大致图象可能是( )A .B .C .D .【答案】B【解析】试题分析:根据mn <0,可得m 和n 异号,所以:当m>0时,n<0,此时正比例函数y=mx经过第一、三象限,反比例函数图象在二、四象限,没有符合条件的图象;当m<0时,n>0,此时正比例函数y=mx经过第二、四象限,反比例函数图象经过一、三象限,B符合条件.故选B.考点:1、反比例函数的图象;2、正比例函数的图象二、填空题(本大题6小题.每小题4分.共24分)11.化简:a ba b b a+--= .【答案】1 【解析】试题分析:先将第二项变形,使之分母与第一项分母相同,然后再进行计算.a ba b b a+--=a ba b--=1.考点:分式的加减法12.我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个月,行程约380 000 000公里抵达火星轨道并定位.将380 000 000公里用科学记数法可表示为公里.【答案】3.8×108考点:科学记数法—表示较大的数13.八边形的内角和等于度.【答案】1080°【解析】试题分析: n边形的内角和可以表示成(n-2)•180°,代入公式就可以求出内角和(8-2)×180°=1080°.考点:多边形内角与外角14.如图,A(2,1),B(1,﹣1),以O为位似中心,按比例尺1:2,把△AOB放大,则点A的对应点A′的坐标为.【答案】(4,2)或(﹣4,﹣2)【解析】试题分析:根据位似的性质,以O为位似中心,按比例尺1:2,把△AOB放大,可得点A的对应点A′的坐标为(2×2,2×1)或(﹣2×2,﹣2×1),即(4,2)或(﹣4,﹣2).考点:1、位似变换;2、坐标与图形性质15.如图,直线y1=k1x+b和直线y2=k2x+b分别与x轴交于A(﹣1,0)和B(3,0)两点.则不等式组k1x+b >k2x+b>0的解集为.【答案】0<x<3【解析】试题分析:当x=﹣1时,y1=k1x+b=0,则x>﹣1时,y1=k1x+b>0,当x=3时,y2=k2x+b=0,则x<3时,y2=k2x+b>0,因为x>0时,y1>y2,所以当0<x<3时,k1x+b>k2x+b>0,即不等式组k1x+b>k2x+b>0的解集为0<x<3.考点:一次函数与一元一次不等式16.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是.1-【解析】试题分析:连接D′C,∵绕顶点A顺时针旋转45°,∴∠D′CE=45°,∵ED′⊥AC,∴∠CD′E=90°,,﹣1,∴正方形重叠部分的面积是12×1×1﹣12﹣1)﹣1)﹣1.考点:1、正方形的性质;2、旋转的性质三、解答题(本大题3小题,每小期6分.共18分)17.解不等式组:4801132xx x-⎧⎪+⎨-⎪⎩<<.【答案】﹣4<x<2【解析】试题分析:分别求出不等式组中两个一元一次不等式的解集,然后根据同大取大,同小取小,大小小大取中间,大大小小无解的法则,即可求出原不等式组的解集.试题解析:4801132xx x-⎧⎪+⎨-⎪⎩<<解不等式4x﹣8<0,得x<2;解不等式1132x x +-<,得2x+2﹣6<3x,即x >﹣4,所以,这个不等式组的解集是﹣4<x <2.考点:解一元一次不等式组18.先化简,再求值:()2221211x x x x xx -+÷+--,其中【答案】3x 【解析】试题分析:先把分子分母因式分解和把除法运算化为乘法运算,然后约分后进行同分母的加法运算,再把x 的值代入计算即可.试题解析: ()2221211x x x x x x -+÷+-- =()()()()2111211x x x x x x x +--⋅++- =12x x+ =3x ,当时,原式. 考点:分式的化简求值19.如图,A 是∠MON 边OM 上一点,AE∥ON.(1)在图中作∠MON 的角平分线OB ,交AE 于点B ;(要求:尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)中,过点A 画OB 的垂线,垂足为点D ,交ON 于点C ,连接CB ,将图形补充完整,并证明四边形OABC 是菱形.【答案】(1)作图见解析(2)证明见解析【解析】试题分析:(1)角平分线的作法:用圆规以顶点为圆心,任意长为半径画一个弧(要保证有两个交点,不要太小),再以刚才画出的交点为顶点,以大于第一次的半径为半径画弧(左右各画一个弧),再取两道弧的交点,并连接这个交点的一开始最上面的顶点,这就是角平分线.(2)本题可根据“一组邻边相等的平行四边形是菱形”,先证明OABC是个平行四边形,然后证明OA=AB 即可.试题解析:(1)如图,射线OB为所求作的图形.(2)证明:∵OB平分∠MON,∴∠AOB=∠BOC.∵AE∥ON,∴∠ABO=∠BOC.∴∠AOB=∠ABO,AO=AB.∵AD⊥OB,∴BD=OD.在△ADB和△CDO中∵ABD COD BD ODADB CDO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB≌△CDO,AB=OC.∵AB∥OC,∴四边形OABC是平行四边形.∵AO=AB,∴四边形OABC是菱形.考点:1、菱形的判定;2、全等三角形的判定四、解答题(二)(本大题3小题.每小兹7分,共21分)20.在我市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:该班学生参加各项服务的频数、频率统计表:请根据上面的统计图表,解答下列问题:(1)该班参加这次公益活动的学生共有名;(2)请补全频数、频率统计表和频数分布直方图;(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.【答案】(1)50(2)图见解析(3)180【解析】试题分析:(1)根据总数=频数÷频率进行计算总人数;(2)首先根据各小组的频数和等于总数以及各小组的频率和等于1或频率=频数÷总数进行计算,然后正确补全即可;(3)根据样本中文明劝导员所占的频率来估算总体.试题解析:(1)总人数=4÷0.08=50;(2)环境小卫士的频数为50﹣(4+10+8+12)=16,文明劝导员的频率为10÷50=0.2,补全频率分布直方图:(3)参加文明劝导的学生人数=900×0.2=180人.考点:1、频数(率)分布直方图;2、用样本估计总体;3、频数(率)分布表21.如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.【答案】【解析】试题分析:在图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可. 试题解析:由已知,得∠ECA=30°,∠FCB=60°,CD=90,EF∥AB,CD⊥AB 于点D .∴∠A=∠ECA=30°,∠B=∠FCB=60°.在Rt△ACD 中,∠CDA=90°,tanA=CD AD,∴AD=tan CD A =在Rt△BCD 中,∠CDB=90°,tanB=CD BD,∴DB=tan CD B =∴AB=A.答:建筑物A 、B 间的距离为米.考点:解直角三角形的应用-仰角俯角问题22.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【答案】(1)90(2)甲、乙合作【解析】试题分析:(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.试题解析:(1)设乙队单独完成需x 天. 根据题意,得:160×20+(1x +160)×24=1. 解这个方程得:x=90.经检验,x=90是原方程的解.∴乙队单独完成需90天.答:乙队单独完成需90天.(2)设甲、乙合作完成需y天,则有(160+190)×y=1.解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.考点:分式方程的应用五、解答題(三)(本大题3小题.每小题9分,共27分)23.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.【答案】(1)证明见解析(2)6【解析】试题分析:(1)连接OD,根据圆周角定理求出∠DAB+∠DBA=90°,求出∠CDA+∠ADO=90°,根据切线的判定推出即可;(2)根据勾股定理求出DC,根据切线长定理求出DE=EB,根据勾股定理得出方程,求出方程的解即可.试题解析:(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,已知D为⊙O的一点,∴直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;(2)∵AC=2,⊙O的半径是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,设DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=6,即BE=6.考点:切线的判定与性质24.如图,已知抛物线与x轴交于A(﹣1,0)、E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)9(3)相似【解析】试题分析:(1)易得c=3,故设抛物线解析式为y=ax2+bx+3,根据抛物线所过的三点的坐标,可得方程组,解可得a 、b 的值,即可得解析式;(2)易由顶点坐标公式得顶点坐标,根据图形间的关系可得四边形ABDE 的面积=ABO DFE BOFD SS S ++梯形,代入数值可得答案;(3)根据题意,易得∠AOB=∠DBE=90°,且AO BO BD BE == 试题解析:(1)∵抛物线与y 轴交于点(0,3),∴设抛物线解析式为y=ax2+bx+3(a≠0)根据题意,得30933a b a b -+=⎧⎨++⎩, 解得12a b =-⎧⎨=⎩. ∴抛物线的解析式为y=﹣x2+2x+3;(2)如图,设该抛物线对称轴是DF ,连接DE 、BD .过点B 作BG⊥DF 于点G .由顶点坐标公式得顶点坐标为D (1,4)设对称轴与x 轴的交点为F∴四边形ABDE 的面积=ABO DFE BOFD SS S ++梯形 =12AO•BO+12(BO+DF )•OF+12EF•DF =12×1×3+12×(3+4)×1+12×2×4 =9;(3)相似,如图,=;==∴BD2+BE2=20,DE2=20即:BD2+BE2=DE2,所以△BDE 是直角三角形∴∠AOB=∠DBE=90°,且AO BO BD BE == ∴△AOB∽△DBE.考点:二次函数综合题25.如图,梯形ABCD 中,AD∥BC,∠BAD=90°,CE⊥AD 于点E ,AD=8cm ,BC=4cm ,AB=5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s ,动点P 沿A ﹣B ﹣﹣C ﹣﹣E 的方向运动,到点E 停止;动点Q 沿B ﹣﹣C ﹣﹣E ﹣﹣D 的方向运动,到点D 停止,设运动时间为xs ,△PAQ 的面积为ycm2,(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x=2s 时,y= cm2;当x=92s 时,y= cm2. (2)当5≤x≤14 时,求y 与x 之间的函数关系式.(3)当动点P 在线段BC 上运动时,求出ABCD 4S 15y =梯形时x 的值. (4)直接写出在整个运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.【答案】(1)2;9(2)(2)当5≤x≤9时,y=12x2-7x+652;当9<x≤13时, y=-12x2+192x-35; 当13<x≤14时,y=-4x+56;(3)y=ABCD 4S 15梯形(4)209、619或1019 【解析】试题分析:(1)当x=2s 时,AP=2,BQ=2,利用三角形的面积公式直接可以求出y 的值,当x=92s 时,三角形PAQ 的高就是4,底为4.5,由三角形的面积公式可以求出其解.(2)当5≤x≤14 时,求y 与x 之间的函数关系式.要分为三种不同的情况进行表示:当5≤x≤9时,当9<x≤13时,当13<x≤14时.(3)可以由已知条件求出ABCD S 梯形,然后根据条件求出y 值,代入当5≤x≤9时的解析式就可以求出x 的值.(4)利用相似三角形的性质,相似三角形的对应线段成比例就可以求出对应的x 的值.试题解析:(1)当x=2s 时,AP=2,BQ=2, ∴y=222⨯=2 当x=92s 时,AP=4.5,Q 点在EC 上 ∴y=4.542⨯=9 (2)当5≤x≤9时(如图1)y=ABP PCQ ABCQS S S 梯形﹣﹣ =12(5+x-4)×4-12×5(x-5)-12(9-x )(x-4) y=12x2-7x+652当9<x≤13时(如图2) y=12(x-9+4)(14-x )y=-12x2+192x-35 当13<x≤14时(如图3) y=12×8(14-x ) y=-4x+56;(3)当动点P 在线段BC 上运动时,∵y=ABCD 4S 15梯形 =415×12(4+8)×5=8 ∴8=12x2-7x+652,即x2-14x+49=0,解得:x1=x2=7 ∴当x=7时,y=ABCD 4S 15梯形 (4)设运动时间为x 秒,当PQ∥AC 时,BP=5-x ,BQ=x ,此时△BPQ∽△BAC, 故BP BQ AB BC =,即554x x -=, 解得x=209; 当PQ∥BE 时,PC=9-x ,QC=x-4,此时△PCQ∽△BCE, 故PC CQ BC CE =,即9445x x --=, 解得x=619; 当PQ∥BE 时,EP=14-x ,EQ=x-9,此时△PEQ∽△BAE, 故EP EQ AB AE =,即14954x x --=, 解得x=1019.综上所述x的值为:x=209、619或1019.考点:二次函数综合题。
2016年广东广州荔湾区真光实验初三一模数学试答案
= 1
.
18. 如图,四边形ABC D是正方形,点G是BC 上的任意一点,DE⊥AG于E,BF //DE,交AG 于F .求证:AF
= BF + EF
.
答案 解析
证明见解析. ∵ABC D是正方形,∴AD = AB ,∠BAD = 90∘ . ∵DE⊥AG ,∴∠DEG = ∠AED = 90∘ .∴∠ADE + ∠DAE = 90∘ . 又∵∠BAF
1100
18
/1
进价
2/
03
类别
彩电
冰箱
洗衣机
学生版
教师版
{
2000a + 1600a + 1000(100 − 2a) ⩽ 160000
答案版
100 3
100 − 2a ⩽ a,
编辑
解得
⩽ a ⩽ 37.5
,
∵a为整数, ∴a = 34 ,35,36,37, 即共有四种进货方案. 设商店销售完毕后获得利润为ω元,
= BF + EF
= AE + EF
.
19. “五一”期间,为了满足广大人民的消费需求,某商店计划用160000元购进一批家电.这批家电的进价和售价如下表:
2000
1600
1000
答案
60
台,40台.
(2) 若在现有资金160000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同.且购买洗
.
ik
an
答案
−
1
g. co m
答案 解析
3
设过AB两点的函数解析式为: y = kx + b (k ≠ 0) , 则{
广东省广州荔湾区金道中学中考数学一模考试题 人教新课标版
本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟.注意事项:1.答卷前,考生务必在答题卡第1页上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分) 一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.3-的结果为( * )(A )3 (B )±3 (C )-3 (D )无法确定 2.在函数x y 23-=中,自变量x 的取值范围是( * )(A )23>x (B )23≥x (C )23<x(D )23≤x 3.计算223)3(a a ÷的结果是( * )(A )46a(B )49a(C )49a -(D )39a4.下面各整式能直接运用完全平方公式分解因式的是( * ) (A )92-x(B )962-+x x(C )962++x x (D )9642++x x5.如图,BD 为⊙O 的直径,点A 、C 均在⊙O 上,∠CBD =60°,则∠A 的度数为( * )(A )60° (B )30°(C )45° (D )20°6.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于 ( ) (A )2cm (B )4cm (C )6cm (D )8cm7.某制衣厂要确定一种衬衫不同号码的生产数量,在做市场调查时,该向商家侧重了解这种衬衫不同号码的销售数量的( * ) (A )平均数(B )中位数 (C )众数 (D )极差8.抛物线322++-=x x y 与两坐标轴的交点个数为( * )第5题 第6题DCABE(A )0 (B )1(C )2(D )39. 把半径为10,面积为π60的扇形做成圆锥的侧面,则圆锥的高是( * )(A )10(B )8(C )6(D )410.如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为( * )(A )5:3 (B )3:5 (C )4:3 (D )3:4第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.) 11.当5=x 时,12-x 的值为 .12.若关于x 的一元二次方程082=-+kx x 的一个根是2,则另一个根是__________. 13.若点)1,3(-P 是反比例函数上的一点,则这个反比例函数的解析式为___________. 14.已知两圆的半径分别为6㎝和2㎝,圆心距为4㎝,则这两个圆的位置关系为 . 15.已知点)0,2(A 、)2,0(B 、),1(m C -在同一条直线上,则m 的值为 . 16.如图,在等腰梯形ABCD 中,AD ∥BC ,AB =5,AD =6,BC=12,点E 在AD 边上,且AE :ED =1:2,点P 是AB 边上的一个动点,(P 不与A ,B 重合)过点P 作PQ ∥CE 交BC 于点Q ,设AP=x ,CQ=y ,则y 与x 之间的函数关系是_________________.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)计算 2933x x x --- 18.(本小题满分9分)如图7,点A 、E 、B 、D 在一条直线上,AE =DB ,AC =DF ,AC ∥DF . 求证:BC =EF第16题EDBFCA第18题CF第10题19.(本小题满分10分)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年第二学期初三数学质量检测本试卷分选择题和非选择题两部分,共三大题25小题,共5页,满分150分.考试时间120分钟,可以使用计算器. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在问卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔(除作图外)、圆珠笔和涂改液.不按以上要求作答的答案无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.实数a 的相反数是( ). A. a B. a - C.a1D.||a 2.下列二次根式中,属于最简二次根式的是( ). A .15B .0.5C .5D .503.直线2y x =-不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.抛物线223y x =-的对称轴是( ). A. y 轴B. 直线2x =C. 直线34x =D.直线3x =- 5.将图1所示的图案通过平移后可以得到的图案是( ).6.甲、乙两名同学在参加体育中考前各作了5次投掷实心球的测试,甲、乙所测得的成绩的平均数相同,且甲、乙成绩的方差分别为0.62、0.72,那么( ). A .甲、乙成绩一样稳定 B. 甲成绩更稳定 C.乙成绩更稳定 D.不能确定谁的成绩更稳定 7. 下列函数中,当x>0时,y 值随x 值增大而减小的是( ).A.2x y = B. 1-=x y C. x y 43=D. xy 1= A. B. C. D . 图18.如图,用一个半径为30cm ,面积为300πcm 2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r 为( ).A .5cmB .10cmC .20cmD .5πcm9. 如图,把矩形ABCD 沿EF 对折,若150∠= ,则AEF ∠等于( ). A.115B.130C.120 D.6510. 如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A = 22.5°,OC = 4,CD 的长为( ). A .2 B .4 C .4 D .8二、填空题(本大题共6小题,每小题3分,共18分.) 11. 方程组233x y x y -=⎧⎨+=⎩的解是 .12.用科学记数法表示0.00210,结果是.13.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.14.已知OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为点D 、E ,PD=10,则PE 的长度为 .15.若m ,n 是方程2210x x --= 的解,则223m m n -+ 的值是.16.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是 .三、解答题(本大题共9题,共102分.解答应写出文字说明、证明过程或演算步骤.) 17.(本题满分9分)求不等式组的解,并在数轴上表示出来. ⎩⎨⎧->-->+2423x x第8题 第10题A B C D EF 1第9题 第13题 第16题18.(本小题满分9分)已知:如图,E 、F 分别为矩形ABCD 的边AD 和BC 上的点,AE =CF . 求证:BE =DF .19.(本题满分10分)先化简:aa a a 21)11(2-+÷+,若41<<-a 时, 请代入你认为合适的一个a 值,并求出这个代数式的值.20.(本小题满分10分)如图,ABC ∆的三个顶点都在55⨯的网格(每个小正方形的边长均 为1个单位长度)的格点上.(1)在网格中画出将ABC ∆绕点B 顺时针旋转90°后的△A ′BC ′的图形.(2)求点A 在旋转中经过的路线的长度.(结果保留π)21.(本小题满分12分).某校七年级各班分别选出3名学生组成班级代表队,参加知识竞赛,得分最多的班级为优胜班级,各代表队比赛结果如下:班级 七(1) 七(2) 七(3) 七(4) 七(5) 七(6) 七(7) 七(8) 七(9) 七(10)得分85 90 90 100 80 100 90 80 8590(1)写出表格中得分的众数、中位数;(2)学校从获胜班级的代表队中各抽取1名学生组成“绿色环保监督”小组,小明、小红分别是七(4)班和七(6)班代表队的学生,用列表法或画树状图的方法说明同时抽到小明和小红的概率是多少?22. (本小题满分12分) 如图,在直角坐标系中,O 为坐标原点.已知反比例函数ky x=(k >0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ABCDEF 第18题第20题第22题,且△AOB 的面积为12. (1)求k 和m 的值;(2)求当x ≥1时函数值y 的取值范围.23.(本小题满分12分)广州市体育中考项目改为耐力跑后,某体育用品商场预测某款运动鞋能够畅销,就用16000元购进了一批这款运动鞋,上市后很快脱销,商场又用40000元购进第二批这款运动鞋,所购数量是第一批的2倍,但每双鞋的进价高了10元。
求该款运动鞋第一次进价是多少元?24.(本小题满分14分)如图,正三角形ABC 内接于⊙O ,P 是弧BC 上的一点(P 不与点B 、C 重合),且PC PB <,PA 交BC 于E ,点F 是PC 延长线上的点,PB CF =,13=AB ,4=PA . (1)求证ABP ∆≌ACF ∆; (2)求证AE PA AC ⋅=2; (3)求PB 和PC 的长.25.(本小题满分14分)如图1,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan ∠ACO =31. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由. (3)若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.(4)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.OPFE CBA第24题图1 图2第25题2015-2016学年第二学期初三数学质量检测答案题号 1 23 4 5 6 7 8 910 答案 BCBAABDBAC11.12.3101.2-⨯ 13.5514. 10 15. 4 16.17.(本小题满分9分)解: 由①得 2->x ……………………………………2分 由②得 2<x ……………………………………4分 ∴ 不等式组的解集为 22<<-x ……………………………………7分 把解集在数轴上表示……………………………………9分18.(本题满分9分)证法一:∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°.…………………………………………4分 在△ABE和△CDF中,……………………………………………………5分∵AE CF A C AB CD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE≌△CDF(SAS),……………………8分∴BE=DF(全等三角形对应边相等).…………………………………9分 证法二:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,…………………………………………………3分 又∵AE=CF,∴AD-AE=BC-CF,……………………………5分 即ED=BF,…………………………………………………………………6分 而ED∥BF,∴四边形BFDE为平行四边形………………………………………………8分° °第19题 ∴BE=DF(平行四边形对边相等).……………………………………9分 19.(本小题满分10分) 解:原式=1)2(1+-⋅+a a a a a ……………………………………6分=2-a ……………………………………8分则 当31或=a 时原式=-1或1(写对一个即可) ……………………………………10分20.(本题满分10分)(1)、 (2)∵在ABC ∆中,∠ACB=90°∴22223213AB AC BC =+=+=………7分∵'90ABA ∠=︒ ∴ '9013131802AA l ππ⨯⨯==………10分∴''BC A ∆为所求………4分21.(本小题满分10分)解:(1)众数90,中位数90. …………..4分(2)设七(4)班另外两名学生为A 、B ,七(6)班另外两名学生为a 、b ,据此可画树状图:小红小红ababbaB A 小红小明七(6)班七(4)班…………..8分∴所有可能出现的结果有9种,其中同时抽到小明、小红的结果有1种…………..10分所以同时抽到小明和小红的概率P =91.…………..12分 22. (本小题满分12分)解:(1)∵A (2,m ),∴OB =2,AB =m .…………..1分∴S △AOB =12•OB •AB =12×2×m =12.…………..3分 ∴m =12.…………..4分 ∴点A 的坐标为(2,12).…………..5分A`C`把A (2,12)代入ky x=,得k =1 .…………..7分 (2)∵当x =1时,y =1, 又∵反比例函数y =1x在x >0时,y 随x 的增大而减小.…………..9分 ∴当x ≥1时,y 的取值范围为0<y ≤1. .…………..12分23.(本题满分12分)解:设该款运动鞋第一次进价为x 元,则第二次进价为(x+10)元……………1分依题意得 1600040000210x x ∙=+ ……………………6分 解得 40x = ……………………9分 经检验,40x =是原分式方程的根 ……………………11分答:该款运动鞋第一次进价为40元。