大学物理热力学基础1
大学物理第8章:热力学基础

说明:A. 准静态过程为理想过程
弛豫时间 ( ):系统的平衡态被 破坏后再恢复到新的平衡态所需 要的时间。
气缸
B.一个热力学过程为准静态过程的必要条件为过程 所经历的时间大于驰豫时间 t 如:若气缸缸长 L 101 (m ),则 103 ~ 104 ( s ) 若活塞以每秒几十次的频率运动时, 每移动一次经 1 tt 时 t 10 ( s ) ,则满足 , C.准静态过程可以用宏观参量图给予表示
讨论: (1) n=0, 等压过程,Cp=CV+R ,过程方程: T/V=C4; (2) n=1, 等温过程,CT = , 过程方程: pV=C5; (3) n= , 等体过程, CV =iR/2 , 过程方程: p/T=C6; (4) n= , 绝热过程,CQ=0, 过程方程:
pV C1 , TV
RdT
由 pV=RT 于是得
C CV
pdV
pdV+Vdp=RdT
R pdV (1 ) Vdp 0 C CV dp R dV (1 ) 0 p C CV V
令
R 1 n —多方指数 C C V
21
dp dV n 0 p V
完成积分就得多方过程的过程方程:
V1
V2
i ( p2V2 p1V1 ) 2
只与始末状态有关
M i RT 2
( if
c const )
Q cM (T2 T1 )
与过程有关
特点
与过程有关
对微小过程:dQ=dE + dA
M i dQ RdT pdV 2
14
例题 8-2 如图所示,一定量气体经过程abc吸热 700J,问:经历过程abcda吸热是多少? 解 Q= E2-E1 + A i 过程abc : 700= Ec -Ea+ Aabc= ( pcVc paVa ) Aabc
大学物理热力学基础

大学物理热力学基础热力学是物理学的一个分支,它研究热现象中的物理规律,包括物质的热性质、热运动和热转化。
在大学物理课程中,热力学基础是物理学、化学、材料科学、工程学等学科的基础课程之一。
热力学基础主要涉及以下几个方面的内容:1、热力学第一定律热力学第一定律,也称为能量守恒定律,是指在一个封闭系统中,能量不能被创造或消除,只能从一种形式转化为另一种形式。
这个定律说明,能量在传递和转化过程中是守恒的,不会发生质的损失。
2、热力学第二定律热力学第二定律是指热量只能从高温物体传递到低温物体,而不能反过来。
这个定律说明,热量传递的方向是单向的,不可逆的。
这个定律对于理解能源转换和利用具有重要意义。
3、热力学第三定律热力学第三定律是指绝对零度下,物质的熵(表示物质混乱度的量)为零。
这个定律说明,在绝对零度下,所有物质的分子和原子都处于静止状态,没有热运动,因此熵为零。
这个定律对于理解物质在低温下的性质和行为具有重要意义。
4、理想气体状态方程理想气体状态方程是指一定质量的气体在恒温条件下,其压力、体积和密度之间的关系。
这个方程对于理解气体在平衡状态下的性质和行为具有重要意义。
5、热容和焓热容和焓是描述物质在加热和冷却过程中性质变化的物理量。
热容表示物质吸收或释放热量的能力,焓表示物质在恒温条件下加热或冷却时所吸收或释放的热量。
这两个物理量对于理解和分析热现象具有重要意义。
大学物理热力学基础是物理学的重要分支之一,它为我们提供了理解和分析热现象的基本理论工具。
通过学习热力学基础,我们可以更好地理解能源转换和利用的原理,为未来的学习和职业生涯打下坚实的基础。
在无机化学的领域中,化学热力学基础是理解物质性质、反应过程和能量转换的重要工具。
本篇文章将探讨化学热力学的基础概念、热力学第一定律、热力学第二定律以及热力学第三定律。
一、化学热力学的基础概念化学热力学是研究化学反应和相变过程中能量转换的科学。
它主要涉及物质的能量、压力、温度和体积等物理量之间的关系。
大学物理第十三章(热力学基础)部分习题及答案

第十三章热力学基础一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;4、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
5、什么是熵增加原理?答:一切不可逆绝热过程中的熵总是增加的,可逆绝热过程中的熵是不变的。
把这两种情况合并在一起就得到一个利用熵来判别过程是可逆还是不可逆的判据——熵增加原理。
6、什么是卡诺循环? 简述卡诺定理?答案:卡诺循环有4个准静态过程组成,其中两个是等温线,两个是绝热线。
卡诺提出在稳度为T1的热源和稳度为T2的热源之间工作的机器,遵守两条一下结论:(1)在相同的高温热源和低温热源之间工作的任意工作物质的可逆机,都具有相同的效率。
(2)工作在相同的高温热源和低温热源之间的一切不可逆机的效率都不可能大于可逆机的效率。
7、可逆过程必须同时满足哪些条件?答:系统的状态变化是无限缓慢进行的准静态过程,而且在过程进行中没有能量耗散效应。
二、选择题1、对于理想气体的内能,下列说法中正确的是( B ):( A ) 理想气体的内能可以直接测量的。
(B) 理想气体处于一定的状态,就有一定的内能。
大学物理热力学基础PPT课件

d Q 微小热量 :
> 0 表示系统从外界吸热; < 0 表示系统向外界放热。
等价
2
精选PPT课件
上页 下页 返回 退出
二、热力学第一定律 (The first law of thermodynamics)
某一过程,系统从外界吸热 Q,对外界做功 W,系 统内能从初始态 E1变为 E2,则由能量守恒:
循环过程
V
1. 热力学第一定律适用于任何系统(固、液、气);
2. 热力学第一定律适用于任何过程(非准静态过程亦 成立)。
6
精选PPT课件
上页 下页 返回 退出
四、 W、Q、E的计算
1.W的计算(准静态过程,体积功)
F
(1)直接计算法(由定义)
系统对外作功,
2
W=1
Fdx
=
2
1
PS
dx
V2
W = PdV
W = 1 P dV =
RT
2
1
dV V
W
RTl nV( 2 ) V1
P1V1
ln(V2 V1
)
P1V1
ln(P1 P2
)
系统吸热全部用来对外做功。
思考:CT ( 等温摩尔热容量)应为多大?
15
精选PPT课件
上页 下页 返回 退出
§7.4 理想气体的绝热过程 (Adiabatic process of the ideal gas)
吸热一部分用于对外做功,其余用于增加系统内能。
14
精选PPT课件
上页 下页 返回 退出
三.等温过程(isothermal process) P
大学物理上册(第五版)重点总结归纳及试题详解第五章热力学基础

⼤学物理上册(第五版)重点总结归纳及试题详解第五章热⼒学基础第五章热⼒学基础⼀、基本要求1.掌握功、热量、内能的概念,理解准静态过程。
2.掌握热⼒学第⼀定律,能分析、计算理想⽓体等值过程和绝热过程中功、热量、内能的改变量。
3.掌握循环过程和卡诺循环等简单循环效率的计算。
4.了解可逆过程和不可逆过程。
5.理解热⼒学第⼆定律及其统计意义,了解熵的玻⽿兹曼表达式及其微观意义。
⼆、基本内容1. 准静态过程过程进⾏中的每⼀时刻,系统的状态都⽆限接近于平衡态。
准静态过程可以⽤状态图上的曲线表⽰。
2. 体积功pdV dA = ?=21V V pdV A功是过程量。
3. 热量系统和外界之间或两个物体之间由于温度不同⽽交换的热运动能量。
热量也是过程量。
4. 理想⽓体的内能2iE RT ν=式中ν为⽓体物质的量,R 为摩尔⽓体常量。
内能是状态量,与热⼒学过程⽆关。
5. 热容定体摩尔热容 R i dT dQ C V m V 2)(,== 定压摩尔热容 R i dT dQ C p mp 22)(,+== 迈耶公式 R C C m V m p +=,, ⽐热容⽐ ,,2p m V mC i C iγ+==6.热⼒学第⼀定律A E Q +?=dA dE dQ +=(微分形式)7.理想⽓体热⼒学过程主要公式(1)等体过程体积不变的过程,其特征是体积V =常量。
过程⽅程: =-1PT 常量系统对外做功: 0V A =系统吸收的热量:()(),21212V V m iQ vC T T v R T T =-=-系统内能的增量:()212V iE Q v R T T ?==-(2)等压过程压强不变的过程,其特征是压强P =常量。
过程⽅程: =-1VT 常量系统对外做功:()()212121V P V A PdV P V V vR T T ==-=-?系统吸收的热量: (),2112P P m i Q vC T v R T T ??=?=+-系统内能的增量: ()212iE v R T T ?=-(3)等温过程温度不变的过程,其特征是温度T =常量。
大学物理 热力学基础A1

理想气体内能: 内能是状态参量
E M M
mol
i 2
RT
T 的单值函数。
E = E 2- E 1 只取决于系
内能的增量
统的始末状态,而与过程无关。
注意:一个内能可以对应多个状态
系统内能改变的两种方式: 做功 热传递
1、 功是能量传递与转化的量度。 功是过程量而非态函数。两个平衡态之间可经历 不同的准静态过程,系统所做的功不同。 2、热量是系统与外界存在温度差而传递的能量
摩尔数为M/Mmol的理想气体在等压过程中吸收的 M 热量 M Q C PT dQ P C P dT
M
mol
M
mol
Q
i 2 2
A
三、比热容比
CP ( i 2 1 )R i2 2 R
CV
i 2
R
(摩尔热容比) 定义比热容比 :
C
P
CV
1 . 33 i 2 1 . 40 i 1 . 67
V2
PdV
V1
P
A
PdV
V1
功的大小等于
P~V 图上过程曲线 P=P(V)下的面积。 功与过程路径有关。
V1
PdV
B
V2
V1
0
V
对比沿着不同路径从状态A到B所做的功
•公式适用条件:
• (1)准静态过程
(2)外界压力保持恒定情况下的非准静态过 程,此时P应理解为外界压强。
如:气体的自由膨胀过程中,系统对 外作的功A=0
Q acb A cb
例题: 一定量的理想气体经历acb过程时吸 热500J, 则经历acbda过程时吸热为? P(105Pa) (A) -1200J d (B) 700J 4 a
大学物理热力学基础-准静态过程-功-热量内能
如果其中有一个状态为非平衡态,则此过程不是准静 态过程。如果系统进行的速度过快,系统状态发生变 化后,还未来得及恢复新的平衡态,系统又发生了变 化,则该过程也不是准静态过程。
例如:气缸活塞压缩的速
度过快,气体的状态发生
变化,还来不及恢复,P、
F
V、T 无确定关系,则此过
程为不是准静态过程。
3
PA
量为0。 dT 0 2.过程方程 PV C
恒 温 源 T
P 1
P1
3.过程曲线
4.功 A V2 PdV V1
P2 o V1
T
2 V2 V
17
由理想气体状态方程
P m RT
V
RT
V
A V2 RT dV RT V2 dV
V1
V
V V1
等温过程的功
A RT ln V2 m RT ln V2
m RT ln P1
P2
19
三、等压过程
1.过程特点
系统的压强不变 dP 0
P
2.过程曲线
3.内能增量
E m i RT
2
1
2
P
4.功 压强不变
o
V1
V2 V
A
V2 V1
PdV
P
V2
V1
dV
P (V2 V1 )
PV
20
5.热量
QP E A
m
14
热力学第一定 律在等值过程
中的应用
15
一、等容过程
1.过程特点
V
系统的体积不变 dV = 0
系统对外做功为0 dA = 0 2.过程曲线
大学物理《热力学基础》
热力学第二定律的实验验证
卡诺循环实验
通过比较可逆卡诺循环和不可逆卡诺循环的效率, 证明了热力学第二定律的正确性。
焦耳实验
通测量热量和功之间的转换关系,证明了热力 学第二定律的正确性。
热辐射实验
通过测量不同温度下物体的辐射能,证明了熵增 加原理的正确性。
05 热力学的应用
热机效率的提高
热机效率的概念
热力学第二定律定义
熵增原理
热力学第二定律的本质
不可能把热从低温物体传到高温物体而不产 生其他影响;不可能从单一热源取热使之完 全转换为有用的功而不产生其他影响;不可 逆热力过程中熵的微增量总是大于零。
在封闭系统中,自发过程总是向着熵 增加的方向进行,即熵增加原理。
揭示了热量传递和做功过程的不可逆 性,是能量耗散和转化过程的宏观规 律。
通过学习热力学基础,学生可以了解热现象的本质和规律,掌握热力学的 分析方法,为后续的物理学习和实际应用打下基础。
热力学的重要性
热力学在能源、化工、材料 、环保等领域有广泛应用, 是解决实际问题的重要工具
。
热力学的基本原理和方法对 于理解其他物理分支(如电 磁学、光学)以及交叉学科 (如生物物理、地球物理)
热力学第二定律的应用
空调制冷原理
利用制冷剂在蒸发器中吸热蒸发而降低温度,再通过冷凝器放出热 量,使室内温度降低。
汽车发动机效率
汽车发动机效率不可能达到100%,因为发动机工作时会产生热量 损失,这些热量无法完全转化为机械功。
热机效率
热机效率不可能达到100%,因为燃料燃烧产生的热量不可能完全转 化为机械功,其中一部分热量会以热量的形式散失到环境中。
THANKS FOR WATCHING
大学物理热力学基础PPT课件
大学物理 I 曹颖
8
15. 3 热力学第一定律、等值过程的应用 一、等容过程 气体容积保持不变 (dV = 0 ) 等容过程中的功 A = 0 (dV = 0) 等容过程内能
i RdT dE M (微小过程) 2 i M E 2 R(T2 T1 ) (有限过程)
内能仅与始末态温度有关。
3)循环过程的功: 正 循 环 A 0 净 A净~净面积 逆 循 环 A净 0 V
2018年10月7日星期日
大学物理 I 曹颖
22
热机:利用工作物质,不断地把热转化为功的装 置。其循环为正循环。A净> 0
高温热源 Q1
系统
A
(工作原理示意图)
Q2
低温热源
水 水蒸汽 废汽 水
' ' ' Q1 E1 A1 A2 A1 0 ' ' ' Q3 E3 A3 A2 A3 0
' A1
' A2
' A3
放热过程。 吸热过程。
2018年10月7日星期日
大学物理 I 曹颖
21
15. 6 循环过程 卡诺循环
一、循环过程 (系统)从某态经历一系列变化过程又回 到初态的(周而复始的)过程。 P b P-V 图上为一闭合曲线。 1)特性: E 0 a c 2)循环过程有正、逆之分。
内
i
ki
i
pi
对于理想气体,忽略分子间的作用 ,则
m i 平衡态下气体内能: E RT M2
2018年10月7日星期日
E理 Ek=E (T )
大学物理 I 曹颖
大学物理-热力学基础-课件
Wa
CV m (T2
T1)
p1V1 p2V2
1
本题用 Wa E 计算较方便
关键用绝热方程
T2
T1
( V1 V2
)
1
先求出 T2
p
p2
2 T2
T2' T1
Q0
p2'
2'
p1
TC
T1
1
o V2 V2' V1 10 V1 V
18.
*四. 多方过程 — 实际过程( 满足 PV n C)
绝热 n = ( CPm / CVm )
等温 n = 1 等压 n = 0
W p1V1 p2V2 n 1
满足 E CV (T2 T1)
Q Cn (T2 T1)
等体 n = ∞
p
可以证明
n= n=∞
n=1
Cn
(
n
n 1
)CV
n=0
o
V
19.
13 – 5 循环过程 卡诺循环
一. 循环过程
1. 特点 E 0 W = Q ( 热功转换 )
1
2
W
(2)热一定律 dQP dE PdV
o V1
V2 V
QP
E
V2 PdV
V1
v
i 2
R(T2
T1 )
P(V2
V1 )
7.
2.摩尔定压热容 CPm
1mol
:
CPm
dQp dT
理论值:
CPm
dE pdV dT
CVm
R
i2R 2
(近似)
实验值:查表 (精确)
QP
dQP
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dV 0, 系统对外作负功;
dV 0, 系统不作功。
第7页/共62页
2、体积功的图示
P
A V2 PdV V1
A
由积分意义可知,
功的大小等于p—V
PdV
图上过程曲线p(V) 下的面积。
V1 PdV
V1
B
不同曲线所围面积不同 0 V1
V2
V
功与过程的路径有关——功是过程量。
第8页/共62页
A V2 PdV V1 第9页/共62页
定量计算。(28岁) 英 焦耳,工业管理家,精确求出热功
当量的关系。(25岁) 德 赫姆霍兹,生理学家。多方面论证
了能量转化和守恒定律。(32岁)
第11页/共62页
一、 热力学第一定律(1942年迈耶提出)
Q=E+A
系统吸的 热 收量
内 能 增 量
系 统作 对功 外
包括热现象 的能量守恒
P、V、T
Vc
0 22.4
1 1.013 105 22.4 103
22.7 102 ( J )
Qacb Acb
第19页/共62页
b
44.8
V(l)
7-3 气体的摩尔热容量
一、热容与摩尔热容的定义: 热容量:系统在某一无限小过程中吸收热量dQ与温
度变化dT的比值称为系统在该过程的热容量(C)
dQ
C dT
表示升高1K所吸收的热量
J K 1
单位质量的热容量叫比热容。 C MC比 J K 1 kg1
摩尔热容量:1 mol 物质的热容量(Cm)
M C Mmol Cm
1mol 物质温度升高1K时所吸收的热量。
第20页/共62页
J K 1 mol 1
二、理想气体的摩尔热容量
2、热量传递可以改变系统的内能 热量是过程量
使系统的状态改变,传热和作功是等效的。
3、功与热量的物理本质不同 .
宏观运动
功 分子热运动
热量
分子热运动
分子热运动
转换 传递
第4页/共62页
二、准静态过程
系统所经历的中间态都无 限接近于平衡态。
砂堆
P-V图上一个点表示
一个 准静态过程
准静态过程中热量的计算
1、热容法
M dQ Mmol CmdT
Q
M M mol
Cm ( T2
T1
)
Cm (摩尔热容):1 mol 物质升高 1K 所吸收的热量
2、利用热力学第一定律
第10页/共62页
7-2 热力学第一定律
法 卡诺,工程师,第一个把热与功联系 起来。(34岁)
德 迈耶,医生,第一个作出热功当量的
态过程。
准静态过程是一种理想的极限。
第5页/共62页
三、准静态过程的功和热量
1、体积功的计算 ➢当活塞移动微小位移dl 时, 系统对外界所作的元功为:
dA Fdl pSdl pdV
dl
p F S pe
光滑
➢系统体积由V1变为V2,系统对外界作总功为:
A dA V2 pdV V1
dV 0, 系统对外作正功;
分子运动论从牛顿力学出发,采用统计方法说 明压强、温度和内能的物理本质。是微观理论。
热力学从能量观点出发,分析、说明热力学系 统热、功转换的关系和条件。是宏观理论。
第1页/共62页
7-1 内能 功和热量 准静态过程
一、内能 功和热量
理想气体内能
Mi
E
RT
M mol 2
是状态量,是状态参量T的单值函数。
P(×105Pa)
(B) 700J
4a
d
(√C) -700J
c
(D) 1000J
1e
思路:Ta
Tb
ΔEab
0 0
1
Qab Wab
Vb PdV 500J
Va
b
4 V(×10-3m3)
Eacbda 0
Qacbda Wacbda
Vb PdV Va PdV 500 1200( J )
Va 第18页/共62V页d
例:有1mol理想气体 (1)a b等温,
(2)a c等容,然后c b等压,
分别计算A与Q。
解:( 1 )
Aab
M M mol
RT lnVb Va
P(atm)
2a
2 1.013 105 22.4 103 ln 2
31.5 102 ( J )
1c
Qab Aab
( 2 )
Acb
Vb PdV
Mmol 2
M M mol
i 2
R(T2
T1 )
M M mol
R(T2 T1 )
等压过程中系统吸收的热量一部分用来增加 系统的内能,一部分用来对外做功。
第16页/共62页
. 3. 等温过程
(1)特征: T=恒量,dT=0
p1 p I
∴ dE=0
(2)计算:
QT AT pdV
p2 O V1
第一定律的符号规定
Q E E2 E1
A
+ 系统吸热 内能增加 系统对外界做功
系统放热 内能减少 外界对系统做功
第14页/共62页
二、热力学第一定律在理想气体等值过程中的应用
V2
依据: Q=E+ PdV
V1
1.等体过程
前提:
(1)特征: dV=0 ∴ dA=0
M
PV
RT
Mmol
p b T2
(2)计算: QV E
.II
V2 V
M RT V2 dV M RT ln V2
M mol
V V1
M mol
V1
M RT ln p1
M mol
p2
等温过程中系统吸收的热量全部转化为对外
做功,系统内能保持不变。
第17页/共62页
一定量的理想气体经历acb过程时吸热
500J, 则经历acbda过程时吸热为?
(A) -1200J
结论:内能是状态量,内能增量只决定于 系统的初态与终态,而与过程无关。
实际气体内能: 所有分子热运动的动能和分子间势能的总和。
是状态参量T、V的单值函数。 第2页/共62页
系统内能改变的两种方式
作功增加物体内能
R 电源
传递热量也可 增加物体内能
第3页/共62页
1、做功可以改变系统的状态 摩擦升温(机械功)、电加热(电功) 功是过程量
Mi
RT
M mol 2
0 a T1 V
Mi
E
RT
M mol 2
等体过程中,外界传给气体的热量全部用来增
加气体的内能,系统对外不作功。
第15页/共62页
2. 等压过程
p
1
2
(1)特征:p=恒量 dP=0
(2)计算:
O V1
V2 V
V2
Qp E PdV E P(V2 V1 )
V1
E M i RT
对于元过程: dQ=dE+dA
对于准静态过程:Q E V2 pdV
V1
得到的=留下的+付出的
第一类永动机 不可能实现。
第12页/共62页
永 动 机 的 设 想 图
第一类永动机:不需要消耗外界提供的能量而不断对 外作功的热机。违反热力学第一定律。
第13页/共62页
Q E A
热力学第一定律 的普遍形式