乙酰水杨酸的合成综述
乙酰水杨酸合成研究进展

然而,阿司匹林的合成并非易事,需要经过多步复杂的化学反应。本次演示将 综述近年来乙酰水杨酸合成的研究进展。
传统的合成方法
传统的乙酰水杨酸合成方法主要涉及两步反应:水杨酸(Salicylic acid) 与乙酰氯(Acetyl chloride)的酰化反应以及副产物氯化氢的处理。首先, 水杨酸与乙酰氯在有机溶剂中反应生成乙酰水杨酰氯。
一、乙酰水杨酸的合成
乙酰水杨酸的合成主要采用水杨酸和醋酐反应的化学反应。首先,水杨酸和醋 酐在浓硫酸催化下形成水杨酸乙醋。然后,通过加入浓氨水作为碱,中和多余 的酸,最后得到乙酰水杨酸。
化学反应式如下: C6H4(OH)COOH + CH3(COO) → C6H4(OH)CH2COOCH3 + H2O
研究发现,一些金属离子和微生物可以作为催化剂用于乙酰水杨酸的合成。例 如,采用金属离子催化剂可以显著提高反应速率和产物的纯度。此外,某些微 生物也可以作为生物催化剂用于乙酰水杨酸的合成,具有反应条件温和、产物 易于分离纯化等优点。以借鉴其他领域的技术来改进乙酰水杨酸的合成方 法。例如,采用超声波技术可以加速反应速率和提高产物的纯度;采用激光技 术也可以实现反应条件的优化和产物质量的提高。
3、环保和安全性的考虑:对改进方法中使用的催化剂、溶剂等进行分析,评 估其对环境的影响和安全性。
4、工艺可行性和经济性评估:综合考虑改进方法的工艺复杂性、设备要求、 成本等因素,评估其可行性和经济性。
参考内容二
乙酰水杨酸,也被称为阿司匹林,是一种历史悠久的解热镇痛药。自其1899年 合成以来,阿司匹林已成为世界上最广泛使用的药物之一。本次演示将详细介 绍乙酰水杨酸的合成方法及其在医疗和科研中的应用。
二、乙酰水杨酸的应用
乙酰水杨酸的合成方法

乙酰水杨酸的合成方法
乙酰水杨酸的合成方法
一、主要原料
乙醇、水酸、碳酸氢钠。
二、主要步骤
1、将乙醇、水酸及碳酸氢钠混合均匀;
2、将药液放入反应釜中,置于加热装置内控制温度,加热至145℃;
3、反应结束后,将液体冷却至室温,浓缩反应液以得到乙酰水
杨酸晶体;
4、将晶体过滤,洗涤干净,烘干,存放在阴凉干燥处,可得到
所需的乙酰水杨酸。
三、安全措施
1、操作时应穿安全服;
2、应注意反应温度控制,防止反应失控;
3、在操作过程中,应注意安全,避免发生意外情况;
4、反应完毕后,应注意将反应液过滤,洗涤干净,烘干,存放
在阴凉干燥处。
乙酰水杨酸的制备实验报告

乙酰水杨酸的制备实验报告在这个实验中,我们要探讨乙酰水杨酸的制备过程。
说起这个化合物,很多人可能会想到它的亲密朋友——阿司匹林,确实,它就是阿司匹林的化学名,常用来缓解疼痛和消炎,几乎是每家药箱里的“常驻嘉宾”。
准备开始之前,先理清一下思路,实验的目的就是通过简单的化学反应,把水杨酸和乙酸酐结合起来,最终得到我们要的乙酰水杨酸。
首先,我们需要一些基础材料。
水杨酸,这可是我们要的主角,必须保证它的纯度。
接着,乙酸酐是反应中的助力,帮助水杨酸转化成乙酰水杨酸。
还有一些催化剂,比如浓硫酸,帮助反应顺利进行。
说到这里,大家可能会想,这些材料都能在化学实验室里找到,简单吧?不过可别小看了这些材料,每一种都需要小心使用,特别是浓硫酸,真是危险的“玩意儿”,使用的时候要佩戴好护目镜和手套,安全第一。
接下来的步骤就是准备反应。
我们把一定量的水杨酸放进一个干燥的反应瓶里,随后加入适量的乙酸酐。
这时,整个实验室的气氛开始变得紧张,感觉像是马上要上演一场化学的魔术表演。
然后,加入几滴浓硫酸,用力摇晃一下,让所有的成分充分混合。
这个过程可能有点慢,但一定要耐心等待,化学反应可不是一蹴而就的。
通常需要加热一段时间,反应温度控制在一定范围,这样可以确保我们的反应顺利进行。
当反应完成后,我们会得到一个黄色的液体,看起来有点神秘,但千万别被它的外表迷惑。
接下来,我们要把这个液体冷却,然后用水冲洗,分离出固体产物。
这个时候,看到白色的固体沉淀,心里真是一阵欢喜,仿佛看到了胜利的曙光。
接着,我们还需要用乙醇对其进行洗涤,去除杂质,这一步骤可是至关重要的。
最终的产物就是我们梦寐以求的乙酰水杨酸了。
在整个实验过程中,不仅是化学反应在进行,自己的情绪也随着实验的进展而起伏,看到那白色的结晶,仿佛经历了一场从无到有的蜕变。
这种感觉真是妙不可言。
说到底,化学实验不仅仅是一些复杂的反应式,更多的是一种探索和发现的乐趣。
最后,实验完成后,我们还需要对产物进行纯度检测,常用的方法是熔点测定。
实验1 乙酰水杨酸的合成实验报告

实验1 乙酰水杨酸的合成实验目的:掌握由酸酐作为酰基化试剂和醇反应制备酯的方法;巩固普通蒸馏、抽滤、重结晶等基本操作、学习应用显微镜熔点仪测定熔点的方法。
实验原理:乙酰水杨酸即阿司匹林(Aspirin),是19世纪末合成成功的一种具有解热止痛、治疗感冒作用的药物,至今仍被广泛使用。
制备乙酰水杨酸一般以水杨酸(邻羟基苯甲酸)和乙酸酐为原料,通过酯化反应进行。
生产中所用的水杨酸可以由从植物冬青树中提取的冬青油(主要成分为水杨酸甲酯)水解得到。
这两种原料在制备出乙酰水杨酸的同时,水杨酸分子之间也可以发生缩合反应,生成少量的聚合物。
反应式如下:仪器、材料及试剂:仪器:锥形瓶、普通蒸馏装置、抽滤装置、小烧杯、水浴。
材料及试剂:水杨酸、乙酸酐、饱和碳酸氢钠水溶液、1%FeCl3溶液、乙酸乙酯、浓硫酸、浓盐酸。
实验步骤:1.乙酸酐蒸馏:量取乙酸酐30mL加入50mL的圆底烧瓶中进行普通蒸馏,收集137-140℃的馏分备用。
2.乙酰水杨酸制备:方法一:在125mL锥形瓶中加入2g(0.014mol)水杨酸、5.4g(5mL,0.05mol)新蒸乙酸酐和5滴浓硫酸,旋摇锥形瓶使水杨酸全部溶解后,在水浴上加热5-10min (水浴温度70-80℃)后进行冷却。
冷却至室温,既有乙酰水杨酸结晶析出。
然后加入50 mL水,将混合物继续在冰水浴中冷却使结晶完全。
抽滤,结晶用少量冷蒸馏水洗涤,抽干后将粗产物转移至表面皿上,自然晾干,产物约1.8g。
方法二:在50mL圆底烧瓶中,加入7.0g (0.050mol)干燥的水杨酸和10mL (0.100mol)新蒸的乙酸酐,再加10滴浓硫酸,充分摇动至水杨酸全部溶解,水浴加热,保持瓶内温度在70℃(为什么?)左右,维持20min,并时常摇动。
稍冷后,在不断搅拌下倒入100mL冷水中,用冷水浴冷却15min,抽滤,冰水洗涤,得乙酰水杨酸粗品。
3.乙酰水杨酸的精制与纯化:方法一:将粗产物转移至100 mL烧杯中,搅拌下加入25 mL饱和碳酸氢钠溶液,加完后继续搅拌几分钟,直至无二氧化碳气泡产生,然后过滤,用5-10 mL水冲洗漏斗后,合并滤液,倒入预先盛有有4-5 mL浓盐酸和10 mL水配成的溶液的烧杯中,搅拌均匀,既有乙酰水杨酸沉淀析出。
乙酰水杨酸的合成综述

南京航空航天大学乙酰水杨酸合成综述课程名:有机合成原理学号:061120132姓名:胡建军完成日期:2013年11月30日摘要乙酰水杨酸又称阿司匹林,是常用的解热镇痛药和抗风湿类药,近年来它的新用途不断被发现,作为治疗和预防心脑血管疾病的药物被广泛应用于临床。
乙酰水杨酸通常以水杨酸和乙酸酐反应来合成,用浓硫酸或浓磷酸作催化剂。
该方法需加热搅拌1.5~2h,反应速率较慢,产率仅为74.0%~80.0%,且易发生水杨酸双分子脱水生成其酸酐的副反应,使用的浓酸催化剂对生产设备也有较强的腐蚀性。
文献也有以固体氢氧化钠、无水碳酸钠作催化剂的报道,但此类催化剂催化效果均欠佳,因而寻找新的催化剂已成为人们研究的新课题[1]。
关键字:乙酰水杨酸合成现状综述引言基于传统乙酰水杨酸和合成的不利因素,笔者对乙酰水杨酸的合成的现状通过查阅各类期刊文献进行总结后进行整理成此文,以供读者参考,文中主要讲诉并讨论了以下几种目前还正在研究中的合成方法:1.超声辐射分子碘催化乙酰水杨酸。
2.对甲苯磺酸催化合成乙酰水杨酸。
3.负载型杂多酸催化合成乙酰水杨酸。
4.稀土氯化物催化合成乙酰水杨酸。
超声辐射分子碘催化合成超声波作为一种新的能量形式,用于有机合成诱发反应的发生,不仅可以改善反应条件、加快反应速度和提高反应产率,还可以使一些常规不能进行或很难进行的反应得以顺利进行。
同时反应条件简单,无污染环境,对设备的要求也比较低,可以说是一个非常不错的方法。
本法以碘分子为催化剂,在一定功率的超声波下催化水杨酸和乙酸酐反应生成乙酰水杨酸。
其中研究人员分别对超声辐射时间,超声输出功率,原料的配比,和催化剂用量对反应的影响进行了研究,最终他们得出结论认为在乙酸酐:水杨酸:催化剂=100:50:1,超声功率300w,时间为15min时具有较高的产率[1]。
研究中所采用的控制变量法得出的结论也令人可信,但是仔细观察还是会发现一些不足之处。
例如:在对超声输出功率进行研究的时候选择的超声辐射时间是有上一次研究中的得出的最佳时间,但是可想而知的是每一个功率应该有可能对应了一个最佳的超声时间,而研究功率的时候限定死了超声时间是不是显得有点不够严谨?与此法类同的是刘鸿等人选择的是在微波中利用分子筛作为催化剂催化反应的进行[5],两者相比的共同之处在于看中了分子催化剂的高比表面积以及超声和微波提供的高效率环境,都取得了较好的结果。
乙酰水杨酸的合成及表征

实验四 乙酰水杨酸的合成及检测(4学时)阿司匹林为解镇痛药,用于治疗伤风、感冒、头痛、发烧、神经痛、关节痛及风湿病等。
近年来,又证明它具有抑制血小板凝聚的作用,其治疗范围又进一步扩大到预防血栓形成,治疗心血管疾患。
阿司匹林化学名为2-乙酰氧基苯甲酸,化学结构式为:阿司匹林为白色针状或板状结晶,mp.135~140℃,易溶乙醇,可溶于氯仿、乙醚,微溶于水。
合成路线如下:一、实验目的1.了解酯类的合成方法,熟悉酰化反应的原理和实验操作; 2.掌握有机化合物的纯化机理和基本操作,掌握其纯度的检测方法; 3.了解工业化生产与实验室小试工艺间的区别与联系; 二、实验原理1、合成:原料水杨酸是双官能团化合物,它即是酚又是芳香族羧酸,因此它能进行两种不同的酯化反应。
既可与甲醇反应生成水杨酸甲酯(即冬青油),又可与乙酸酐作用,使水杨酸分子中酚羟基上的氢原子被乙酰基取代,从而得到乙酰水杨酸。
本实验采用将水杨酸和乙酸酐,在少量浓硫酸催化作用下,通过破坏水杨酸分子中羧基与酚羟基间形成的氢键,从而使得乙酰化反应容易完成,其机理式:O O O + CH 3 C OCH 3 C 亲核加成 COOH CH 3 C + O - O C3O O C O -O C CH 3消除COOHO C CH 3O OCOCH 3COOHOH COOH(CH 3CO)2OH 2SO 4CH 3COOH++OCOCH 3COOH2、纯化:由于水杨酸的苯环上既有羟基又有羧基,在反应过程中会形成一种高聚物副产物:可以利用乙酰水杨酸与NaHCO 3反应生成水溶性的钠盐,而高聚物不溶于NaHCO 3溶液的原理,通过过滤将高聚物分离出去。
然后再用酸将乙酰水杨酸沉淀出来,从而达到纯化产品的目的,其反应式如下:3、重结晶:在最终产物中最有可能产生的杂质是水杨酸本身,这是由于乙酰化反应不完全或是产物在分离步骤中发生水解造成的。
因此还可以用乙醇、丙酮或乙酸乙酯对最终产物进行重结晶,从而得到纯度更高的产品——阿司匹林。
实验1 乙酰水杨酸的合成

实验1 乙酰水杨酸的合成实验目的:掌握由酸酐作为酰基化试剂和醇反应制备酯的方法;巩固普通蒸馏、抽滤、重结晶等基本操作、学习应用显微镜熔点仪测定熔点的方法。
实验原理:乙酰水杨酸即阿司匹林(Aspirin),是19世纪末合成成功的一种具有解热止痛、治疗感冒作用的药物,至今仍被广泛使用。
制备乙酰水杨酸一般以水杨酸(邻羟基苯甲酸)和乙酸酐为原料,通过酯化反应进行。
生产中所用的水杨酸可以由从植物冬青树中提取的冬青油(主要成分为水杨酸甲酯)水解得到。
这两种原料在制备出乙酰水杨酸的同时,水杨酸分子之间也可以发生缩合反应,生成少量的聚合物。
反应式如下:仪器、材料及试剂:仪器:锥形瓶、普通蒸馏装置、抽滤装置、小烧杯、水浴。
材料及试剂:水杨酸、乙酸酐、饱和碳酸氢钠水溶液、1%FeCl3溶液、乙酸乙酯、浓硫酸、浓盐酸。
实验步骤:1.乙酸酐蒸馏:量取乙酸酐30mL加入50mL的圆底烧瓶中进行普通蒸馏,收集137-140℃的馏分备用。
2.乙酰水杨酸制备:方法一:在125mL锥形瓶中加入2g(0.014mol)水杨酸、5.4g(5mL,0.05mol)新蒸乙酸酐和5滴浓硫酸,旋摇锥形瓶使水杨酸全部溶解后,在水浴上加热5-10min (水浴温度70-80℃)后进行冷却。
冷却至室温,既有乙酰水杨酸结晶析出。
然后加入50mL水,将混合物继续在冰水浴中冷却使结晶完全。
抽滤,结晶用少量冷蒸馏水洗涤,抽干后将粗产物转移至表面皿上,自然晾干,产物约1.8g。
方法二:在50mL圆底烧瓶中,加入7.0g (0.050mol)干燥的水杨酸和10mL (0.100mol)新蒸的乙酸酐,再加10滴浓硫酸,充分摇动至水杨酸全部溶解,水浴加热,保持瓶内温度在70℃(为什么?)左右,维持20min,并时常摇动。
稍冷后,在不断搅拌下倒入100mL 冷水中,用冷水浴冷却15min,抽滤,冰水洗涤,得乙酰水杨酸粗品。
3.乙酰水杨酸的精制与纯化:方法一:将粗产物转移至100 mL烧杯中,搅拌下加入25 mL饱和碳酸氢钠溶液,加完后继续搅拌几分钟,直至无二氧化碳气泡产生,然后过滤,用5-10 mL水冲洗漏斗后,合并滤液,倒入预先盛有有4-5 mL浓盐酸和10 mL水配成的溶液的烧杯中,搅拌均匀,既有乙酰水杨酸沉淀析出。
原创乙酰水杨酸的制备

乙酰水杨酸的制备一、摘要:对乙酰水杨酸的药用价值和合成制备实验做了综述;比较了在不同的四种催化剂(硫酸,磷酸,乙酸钠,吡啶)下产率的异同。
二、关键词:阿司匹林;水杨酸;乙酸酐;磷酸三、前言:阿司匹林即乙酰水杨酸 ,又称2-乙酰氧基苯甲酸,是一种常用的退热镇痛药和抗风湿类药。
随着基础和临床研究的发展,越来越多的证据表明阿司匹林可能有许多新的药理作用,在防治心血管疾病方面也有较好的疗效 ,而且服用阿司匹林还能使胆道再次结石的可能性减少 50%,使人患白内障的可能性减少 70% ,对防治乳腺癌、 肺瘤癌、 皮肤癌等也有较好的功效。
随着人们对阿司匹林的需求量日益增加,阿司匹林的大量生产就变得非常重要了。
对于其合成,历史上有不少化学工作者进行了广泛的试验研究,经报道的有以下几种合成方法:酸催化、碱催化、无机氧化物及盐类催化、固体超强酸催化、维生素 C 催化、分子筛催化合成阿司匹林等等。
实验室制乙酰水杨酸主要是采用酸催化和碱催化。
反应式:水杨酸 乙酸酐 乙酰水杨酸 乙酸 (阿司匹林) 水杨酸在酸性条件下受热,还可发生缩合反应,生成少量聚合物。
四、反应机理:水杨酸是一个具有羧基和酚羟基的双官能团化合物,能进行两种不同的酯化反应。
当其羧基与甲醇作用时,生成水杨酸甲酯,俗称科青油 (冬青树的香味成分 )。
如果用乙酸酐作酰化剂,就可与其酚羟基反应生成乙酰水杨酸,即阿司匹林。
1、酸催化合成阿司匹林:以浓硫酸或浓磷酸为催化剂,使水杨酸与乙酸酐发生酰化反应,制取阿斯匹林。
由于水杨酸中的羟基和羧基能形成分子内氢键,O浓H 2SO 4 -O -CCH 3+CH 3COOH COOH COOH CH 3C OH + O CH 3C O O反应必须加热到 150~160 ℃。
不过,加入少量的浓硫酸或浓磷酸、过氧酸等来破坏氢键,反应温度也可降到 60~80 ℃,而且副产物也会有所减少。
五、实验部分1.试剂:水杨酸2.76g(0.02mol)、乙酸酐 8mL(0.08mol)、10%饱和碳酸氢钠溶液40mL、三氯化铁试剂、20%盐酸20mL、浓硫酸2.仪器:三颈瓶(100mL) 、球形冷凝管、减压过滤装置、电炉与调压器、表面皿、水浴锅、温度计(100℃)3. 实验装置(图):六、实验步骤:在100mL干燥锥形瓶中依次加入2.76g水杨酸(0.02mol),8mL乙酸酐(0.08mol)和10滴浓磷酸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京航空航天大学
课程名:有机合成原理
学号:061120132
姓名:胡建军
完成日期:2013年11月30日
摘要
乙酰水杨酸又称阿司匹林,是常用的解热镇痛药和抗风湿类药,近年来它的新用途不断被发现,作为治疗和预防心脑血管疾病的药物被广泛应用于临床。
乙酰水杨酸通常以水杨酸和乙酸酐反应来合成,用浓硫酸或浓磷酸作催化剂。
该方法需加热搅拌1.5~2h,反应速率较慢,产率仅为74.0%~80.0%,且易发生水杨酸双分子脱水生成其酸酐的副反应,使用的浓酸催化剂对生产设备也有较强的腐蚀性。
文献也有以固体氢氧化钠、无水碳酸钠作催化剂的报道,但此类催化剂催化效果均欠佳,因而寻找新的催化剂已成为人们研究的新课题[1]。
件、加快反应速度和提高反应产率,还可以使一些常规不能进行或很难进行的反应得以顺利进行。
同时反应条件简单,无污染环境,对设备的要求也比较低,可以说是一个非常不错的方法。
本法以碘分子为催化剂,在一定功率的超声波下催化水杨酸和乙酸酐反应生成乙酰水杨酸。
其中研究人员分别对超声辐射时间,超声输出功率,原料的配比,和催化剂用量对反应的影响进行了研究,最终他们得出结论认为在乙酸酐:水杨酸:催化剂=100:50:1,超声功率300w,时间为15min时具有较高的产率[1]。
研究中所采用的控制变量法得出的结论也令人可信,但是仔细观察还是会发现一些不足之处。
例如:在对超声输出功
率进行研究的时候选择的超声辐射时间是有上一次研究中的得出的最佳时间,但是可想而知的是每一个功率应该有可能对应了一个最佳的超声时间,而研究功率的时候限定死了超声时间是不是显得有点不够严谨?与此法类同的是刘鸿等人选择的是在微波中利用分子筛作为催化剂催化反应的进行[5],两者相比的共同之处在于看中了分子催化剂的高比表面积以及超声和微波提供的高效率环境,都取得了较好的结果。
,反应
化剂催化乙酰水杨酸合成的反应。
实验中,首先利用活性炭制得负载型的杂多酸,再以此负载型杂多酸进行了乙酰水杨酸的催化反应,同时还研究了催化剂用量,反应物配比,反应时间和温度对催化的影响,与此还进行了对于催化剂重复使用性的研究,最终得出在水杨酸:乙酸酐=1:1.5,催化剂用量为水杨酸质量5%,在71-75℃中反应15min具有较高的收率[3]。
实验中对影响反应的因素考虑周全,实验方法也是十分的科学严谨,在检验产物的时候不仅精确的检测了产物的存在,而且对其他副产物的排除实验也做得非常到位。
实验最后还对催化剂的重复使用性能进行了研究,也是考虑的十分周全。
实验者还通过实
验来构想了此催化剂的反应机理,也可为读者提供借鉴作用。
此法不失为一种切实可行的方法,如果能够进一步的对于更大剂量的反应进行研究,那么应用于实际生产也就并不遥远了。
在关于杂多酸的催化反应方面,Fatemeh等人则是在实验的基础上在微观上去解释了该催化剂高效的原因,同时还研究了负载型和非负载型的性能差异(包括负载量的大小)以及其微观解释,他们认为有较多的氢离子和多聚结构对反应有着促进作用,还通过实验发现了不同的杂多酸具有不同的催化性能,认为钼杂多酸具有较好的催化能力[6]。
40min,
总结
通过以上的论述,可见对于乙酰水杨酸的合成关键在于新型催化剂的使用,而对于催化剂的选择已经趋向多元化。
但是为了使催化剂能被更好的投入使用,研究者对于催化剂的稳定性,重复使用性,最佳使用条件,成本等的研究还有待进一步的深入。
同时,除了
在实验上取得一些进展外,如果在催化理论上也加以增进,我想势必会对理想催化剂的早日研制成功有所帮助。
参考文献
2006,
2007,。