泰州市高港实验学校2015-2016年七年级上期中数学试题含答案
江苏省泰州市泰兴实验中学2015-2016学年七年级(上)期中数学试卷(解析版)

2015-2016学年江苏省泰州市泰兴实验中学七年级(上)期中数学试卷一、选择题:(2分×10=20分)1.﹣4的绝对值是()A.4 B.﹣4 C.2 D.±42.比b小﹣3的数是()A.﹣b+3 B.b+3 C.b﹣3 D.﹣b﹣33.下列方程中,是一元一次方程的是()A.﹣x+2y=3 B.x2﹣3x=6 C.x=0 D.=14.下列各组中的两项,不是同类项的是()A.﹣x2y与2yx2B.2πR与π2R C.﹣m2n与D.23与325.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1076.下面的说法中,正确的是()A.若ac=bc,则a=b B.若﹣x=1,则x=2C.若|x|=|y|,则x=y D.若,则x=y7.在一张挂历上,任意圈出同一列上的三个数的和不可能是()A.4 B.33 C.51 D.278.下列各式①m ②x+2=7 ③2x+3y ④a>3 ⑤中,整式的个数有()A.1个 B.2个 C.3个 D.4个9.若a<0,b>0,用|a|与|b|表示a与b的差是()A.|a|﹣|b|B.|b|﹣|a|C.﹣(|a|+|b|)D.|a|+|b|10.如图,某计算装置有一数据输入口A和一运算结果的输出口B,如表是小明输入的一些数据和这些数据经该装置计算后输出的相应结果:按照这个计算装置的计算规律,若输入的数是10,则输出的数是()A.21 B.29 C.99 D.101二、填空题(2分×8=16分)11.相反数等于它本身的数是.12.已知多项式x﹣3xy m+1+x3y﹣3x4﹣1是五次多项式,则m=.13.已知:|x﹣y﹣3|+(a+b+4)2=0,则代数式﹣3x+3y+a+b的值是.14.一位同学在写字的时候不慎将一滴墨水滴在数轴上,根据图中的数据,判断墨迹盖住的整数之和为.15.一根铁丝的长为6a+5b,剪下其中的一部分围成一个长为a,宽为b的长方形,则这根铁丝还剩下.16.体育课上全班学生进行了百米测验.达标成摘为18秒,下面为第一小组8名学生的成绩录.其中“+”号表示成绩大于18秒.“﹣”号表示成绩小于18秒这一组学生的平均成绩为秒.17.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“8cm”分别对应数轴上的﹣3和x,那么x的值为.18.如果有4个不同的正整数m、n、p、q满足(m﹣2015)(n﹣2015)(p﹣2015)(q﹣2015)=4,那么m+n+p+q等于.三、解答题:19.请写四句话,说明数“零”(0)的数学特性.(例:0是绝对值最小的数.例句除外)20.计算:(1)﹣3﹣(﹣)+(﹣6)+1;(2)(﹣125)÷5.(3)(﹣2)3+(﹣3)×[﹣22﹣(﹣1)](4)(﹣1)2005﹣(﹣﹣)×24.21.化简或求值:(1)已知:多项式A=2x2﹣xy,B=x2+xy﹣6,求:①4A﹣B;②当x=1,y=﹣2时,4A﹣B的值.(2)已知a,b,c在数轴上的位置如图所示,化简:|a+c|﹣|a+b|+|c﹣b|.22.解方程:(1)20﹣2x=﹣x﹣1(2).23.学校体育室有两个球筐,已知甲筐内的球比乙筐内球的个数的2倍还多4只.现进行如下操作:第一次,从甲筐中取一只球放入乙筐;第二次,又从甲筐取出若干球放入乙筐,这次取出的球的个数是第一次移动后乙筐内球的个数的两倍.若设乙球筐内原来有a只球(1)请你填写下表(用含a的代数式表示)(2)根据以上表格,化简后可知甲球筐内最后还剩下个球.(3)若最后乙球筐内有球18只,请求a的值.24.某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)当有n张桌子时,两种摆放方式各能坐多少人?(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌为什么?25.如图,数轴上有A、B、C、D四个点,分别对应的数为a、b、c、d,其中A,B两点与表示﹣9的点均相距一个单位,且点A在点B的左边,(c﹣16)2+|d﹣20|=0.(1)求a、b、c、d的值;(2)若A、B两点都以6个单位长度/秒的速度向右匀速运动,同时C、D两点都以2个单位长度/秒的速度向左匀速运动,在运动t秒后,将数轴折叠,使点A 与点B重合,此时点C与点D恰好也重合,求t的值.(3)在(2)的条件下,A、B、C、D四个点继续运动,当点B运动到点D的右侧时,问是否存在时间t,使B与C的距离是A与D的距离的4倍?若存在,求时间t;若不存在,请说明理由.2015-2016学年江苏省泰州市泰兴实验中学七年级(上)期中数学试卷参考答案与试题解析一、选择题:(2分×10=20分)1.﹣4的绝对值是()A.4 B.﹣4 C.2 D.±4【考点】绝对值.【分析】绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【解答】解:根据绝对值的性质,得|﹣4|=4.故选A.2.比b小﹣3的数是()A.﹣b+3 B.b+3 C.b﹣3 D.﹣b﹣3【考点】列代数式.【分析】比b小﹣3的数即b﹣(﹣3),整理可得.【解答】解:根据题意,得:b﹣(﹣3)=b+3,故选:B.3.下列方程中,是一元一次方程的是()A.﹣x+2y=3 B.x2﹣3x=6 C.x=0 D.=1【考点】一元一次方程的定义.【分析】利用一元一次方程的定义判断即可.【解答】解:是一元一次方程的是x=0,故选C4.下列各组中的两项,不是同类项的是()A.﹣x2y与2yx2B.2πR与π2R C.﹣m2n与D.23与32【考点】同类项.【分析】本题是对同类项定义的考查,同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,所以只要判断所含有的字母是否相同,相同字母的指数是否相同即可.【解答】解:A、本项中的两项,所含的字母相同,并且相同字母的次数也相同,符合同类项的定义,故本选项错误,B、本项中的两项,所含的字母相同,并且相同字母的次数也相同,符合同类项的定义,故本选项错误,C、本项中的两项,所含的字母虽然相同,但是m的次数一个为2,一个为1不相等,不符合同类项的定义,故本选项正确,D、由23=8,32=9,两个自然数,为同类项,故本选项错误,故选C.5.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将210000000用科学记数法表示为:2.1×108.故选:C.6.下面的说法中,正确的是()A.若ac=bc,则a=b B.若﹣x=1,则x=2C.若|x|=|y|,则x=y D.若,则x=y【考点】等式的性质;绝对值.【分析】根据等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式;互为相反数的两个数绝对值相等进行分析即可.【解答】解:A、若ac=bc,当c≠0,则a=b,故此选项错误;B、若﹣x=1,则x=﹣,故此选项错误;C、若|x|=|y|,则x=y,x+y=0,故此选项错误;D、若,则x=y,故此选项正确;故选:D.7.在一张挂历上,任意圈出同一列上的三个数的和不可能是()A.4 B.33 C.51 D.27【考点】列代数式.【分析】因为挂历上同一列的数都相对于前一个数相差7,所以设第一个数为x,则第二个数、第三个数分别为x+7、x+14,求出三数之和,发现其和为3的倍数,对照四选项即可求解.【解答】解:设圈出的第一个数为x,则第二数为x+7,第三个数为x+14,∴三个数的和为:x+(x+7)+(x+14)=3(x+7)∴三个数的和为3的倍数由四个选项可知只有A不是3的倍数,故选A.8.下列各式①m ②x+2=7 ③2x+3y ④a>3 ⑤中,整式的个数有()A.1个 B.2个 C.3个 D.4个【考点】整式.【分析】单项式和多项式统称为整式.【解答】解:①m是单项式,属于整式;②x+2=7是方程,不属于整式;③2x+3y是多项式,属于整式;④a>3是不等式,不属于整式;⑤是分式,不属于整式.综上所述,整式的个数是2个.故选:B.9.若a<0,b>0,用|a|与|b|表示a与b的差是()A.|a|﹣|b|B.|b|﹣|a|C.﹣(|a|+|b|)D.|a|+|b|【考点】绝对值;整式的加减.【分析】绝对值的性质:负数的绝对值是它的相反数,正数的绝对值是它本身,0的绝对值是0.【解答】解:∵a<0,b>0,∴|a|=﹣a,|b|=b.∴a=﹣|a|,b=|b|,则a﹣b=﹣|a|﹣|b|=﹣(|a|+|b|).故选C.10.如图,某计算装置有一数据输入口A和一运算结果的输出口B,如表是小明输入的一些数据和这些数据经该装置计算后输出的相应结果:按照这个计算装置的计算规律,若输入的数是10,则输出的数是()A.21 B.29 C.99 D.101【考点】规律型:数字的变化类.【分析】分析表格后,可以得到A和B的关系式:B=A2+1.【解答】解:根据题意和图表可知,当A=1时,B=2=12+1,当A=2时,B=5=22+1,所以A和B的关系是,B=A2+1.当A=10时,B=102+1=100+1=101,所以当输入的数是10时,输出的数是101.故选D.二、填空题(2分×8=16分)11.相反数等于它本身的数是0.【考点】相反数.【分析】根据相反数的性质,相反数等于它本身的数只能是0.【解答】解:相反数等于它本身的数是0.12.已知多项式x﹣3xy m+1+x3y﹣3x4﹣1是五次多项式,则m=3.【考点】多项式.【分析】先观察多项式的各项,再确定每项的次数,最高次项的次数就是多项式的次数.【解答】解:∵多项式x﹣3xy m+1+x3y﹣3x4﹣1是五次多项式,∴1+m+1=5,解得:m=3.故答案为:3.13.已知:|x﹣y﹣3|+(a+b+4)2=0,则代数式﹣3x+3y+a+b的值是﹣13.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:由题意得,x﹣y﹣3=0,a+b+4=0,解得x﹣y=3,a+b=﹣4,则﹣3x+3y+a+b=﹣3(x﹣y)+(a+b)=﹣3×3﹣4=﹣13,故答案为:﹣13.14.一位同学在写字的时候不慎将一滴墨水滴在数轴上,根据图中的数据,判断墨迹盖住的整数之和为1.【考点】数轴.【分析】结合数轴写出墨迹盖住的整数,再进一步根据有理数的加法法则求和.【解答】解:根据数轴,知墨迹盖住的整数是﹣3,﹣2,1,2,3.所以它们的和是1.故答案为1.15.一根铁丝的长为6a+5b,剪下其中的一部分围成一个长为a,宽为b的长方形,则这根铁丝还剩下4a+3b.【考点】列代数式.【分析】根据题意列出代数式即可.【解答】解:长方形的周长为2(a+b),所以这个铁丝剩下:(6a+5b)﹣2(a+b)=4a+3b,故答案为:4a+3b16.体育课上全班学生进行了百米测验.达标成摘为18秒,下面为第一小组8名学生的成绩录.其中“+”号表示成绩大于18秒.“﹣”号表示成绩小于18秒这一组学生的平均成绩为﹣0.2秒.【考点】正数和负数.【分析】根据平均数的定义即可求解.【解答】解:平均成绩是:(﹣1+0.8﹣1.2﹣0.1+0+0.5+0﹣0.6)=﹣0.2(秒).故答案是:﹣0.2.17.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“8cm”分别对应数轴上的﹣3和x,那么x的值为5.【考点】数轴.【分析】根据数轴得出算式x﹣(﹣3)=8﹣0,求出即可.【解答】解:根据数轴可知:x﹣(﹣3)=8﹣0,解得x=5.故答案为:5.18.如果有4个不同的正整数m、n、p、q满足(m﹣2015)(n﹣2015)(p﹣2015)(q﹣2015)=4,那么m+n+p+q等于8060.【考点】有理数的乘法.【分析】根据有理数的乘法运算法则判断出4的算式,然后列式计算即可得解.【解答】解:∵正整数m、n、p、q是4个不同的正整数,∴(m﹣2015)(n﹣2015)(p﹣2015)(q﹣2015)=(﹣1)×1×(﹣2)×2=4,∴(m﹣2015)+(n﹣2015)+(p﹣2015)+(q﹣2015)=﹣1+1﹣2+2=0,∴m+n+p+q=2015×4=8060.故答案为:8060.三、解答题:19.请写四句话,说明数“零”(0)的数学特性.(例:0是绝对值最小的数.例句除外)【考点】有理数.【分析】根据题意可以写出零的数学特性,本题得以解决.【解答】解:零既不是整数也不是负数;零小于正数,大于负数;零不能做分母;零是最小的非负数.20.计算:(2)(﹣125)÷5.(3)(﹣2)3+(﹣3)×[﹣22﹣(﹣1)](4)(﹣1)2005﹣(﹣﹣)×24.【考点】有理数的混合运算.【分析】(1)将分母相同的两个数,和为整数的两个数,分别结合为一组求解.(2)先将带分数分拆成一个整数与一个真分数的和的形式,然后在计算中巧妙运用分配律使计算更简便(3)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;本题有括号,要先做括号内的运算.(4)应用分配律进行计算【解答】解:(1)﹣3﹣(﹣)+(﹣6)+1;=﹣3++(﹣6)+1=[(﹣3)+(﹣6)]+[ +1]=(﹣10)+2=﹣8(2)(﹣125)÷5=(﹣125﹣)×=﹣125×﹣×=﹣25﹣=(3)(﹣2)3+(﹣3)×[﹣22﹣(﹣1)]=﹣8+(﹣3)×(﹣4+1)=﹣8+(﹣3)×(﹣3)=﹣8+(+9)=1=﹣1﹣(×24﹣﹣)=﹣1﹣(18﹣4﹣9)=﹣1﹣5=﹣621.化简或求值:(1)已知:多项式A=2x2﹣xy,B=x2+xy﹣6,求:①4A﹣B;②当x=1,y=﹣2时,4A﹣B的值.(2)已知a,b,c在数轴上的位置如图所示,化简:|a+c|﹣|a+b|+|c﹣b|.【考点】绝对值;数轴.【分析】(1)①原式去括号合并得到最简结果,把x与y的值代入计算即可求出值,②把x与y的值代入计算即可求出值;(2)本题利用实数与数轴的关系解答.【解答】解:(1)①∵A=2x2﹣xy,B=x2+xy﹣6,∴4A﹣B=8x2﹣4xy﹣x2﹣xy+6=7x2﹣5xy+6;②当x=1,y=﹣2时,原式=7+10+6=23;(2)原式=3x2y﹣2xy2+2xy﹣3x2y﹣2xy=﹣2xy2,当x=3,y=﹣时,原式=﹣.(2)解:由数轴上点的位置得:a<b<0<c,|a|>|c|则b﹣a>0,a+b<0,c﹣b>0所以,|a+c|﹣|a+b|+|c﹣b|=﹣(a+c)﹣[﹣(a+b)]+(c﹣b)=﹣a﹣c+a+b+c﹣b=0.22.解方程:(1)20﹣2x=﹣x﹣1(2).【考点】解一元一次方程.【分析】(1)通过移项、合并同类项以及化系数为1来求x的值;(2)先去分母,然后通过移项、合并同类项以及化系数为1来求x的值.【解答】解:(1)20﹣2x=﹣x﹣1,﹣2x+x=﹣1﹣20,﹣x=﹣21,x=21;(2),24x+54﹣15x+75=30+30x,24x﹣15x﹣30x=30﹣75﹣54.﹣21x=99,x=﹣.23.学校体育室有两个球筐,已知甲筐内的球比乙筐内球的个数的2倍还多4只.现进行如下操作:第一次,从甲筐中取一只球放入乙筐;第二次,又从甲筐取出若干球放入乙筐,这次取出的球的个数是第一次移动后乙筐内球的个数的两倍.若设乙球筐内原来有a只球(1)请你填写下表(用含a的代数式表示)(2)根据以上表格,化简后可知甲球筐内最后还剩下1个球.(3)若最后乙球筐内有球18只,请求a的值.【考点】列代数式;一元一次方程的应用.【分析】(1)根据题意可以将表格补充完整;(2)根据表格中的数据可以得到第二次后甲筐的球数;(3)令3a+3=18,可以求得a的值.【解答】解:(1)由题意可得,甲筐原来有:(2a+4)个球,乙筐原来有a个球,第一次移动后,甲筐有:2a+4﹣1=(2a+3)个球,乙筐有:(a+1)个球,第二次移动后,甲筐有:2a+3﹣2(a+1)=1个球,乙筐有:(a+1)+2(a+1)=(3a+3)个球,故答案为:2a+4,2a+3,a+1,1,3a+3;(2)由表格可知,化简后甲筐内最后还剩下1个球,故答案为:1;(3)由题意可得,3a+3=18,解得,a=5,即a的值是5.24.某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)当有n张桌子时,两种摆放方式各能坐多少人?(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌为什么?【考点】规律型:图形的变化类.【分析】能够根据桌子的摆放发现规律,然后进行计算判断.【解答】解:(1)第一种中,只有一张桌子是6人,后边多一张桌子多4人.即有n张桌子时是6+4(n﹣1)=4n+2.第二种中,有一张桌子是6人,后边多一张桌子多2人,即6+2(n﹣1)=2n+4.(2)中,分别求出两种对应的n的值,或分别求出n=25时,两种不同的摆放方式对应的人数,即可作出判断.打算用第一种摆放方式来摆放餐桌.因为,当n=25时,4×25+2=102>98当n=25时,2×25+4=54<98所以,选用第一种摆放方式.25.如图,数轴上有A、B、C、D四个点,分别对应的数为a、b、c、d,其中A,B两点与表示﹣9的点均相距一个单位,且点A在点B的左边,(c﹣16)2+|d﹣20|=0.(1)求a、b、c、d的值;(2)若A、B两点都以6个单位长度/秒的速度向右匀速运动,同时C、D两点都以2个单位长度/秒的速度向左匀速运动,在运动t秒后,将数轴折叠,使点A 与点B重合,此时点C与点D恰好也重合,求t的值.(3)在(2)的条件下,A、B、C、D四个点继续运动,当点B运动到点D的右侧时,问是否存在时间t,使B与C的距离是A与D的距离的4倍?若存在,求时间t;若不存在,请说明理由.【考点】一元一次方程的应用;数轴;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)根据非负数的性质,及相反数的定义,可得出a、b、c、d的值;(2)要使折叠后点A与点B重合,此时点C与点D恰好也重合,则必须满足条件:AC=BD,由此可得出t的值;(3)分两种情况:①点A运动到点D的左边,点B运动到点D的右边,②点A、点B均在点D的右边,然后分别表示出BC、AD的长度,建立方程,求解即可.【解答】解:(1)∵A,B两点与表示﹣9的点均相距一个单位,且点A在点B 的左边,∴a=﹣10,b=﹣8,∵(c﹣16)2+|d﹣20|=0,∴c﹣16=0,d﹣20=0,可得:c=16,d=20;(2)经时间t时,A的值为6t﹣10,B的值为6t﹣8,C的值为16﹣2t,D的值为20﹣2t,根据题意,得:﹣10+6t﹣(16﹣2t)=﹣8+6t﹣(20﹣2t),解得:t=.(3)①点A运动到点D的左边,点B运动到点D的右边,此时<t≤,A的值为6t﹣10,B的值为6t﹣8,C的值为16﹣2t,D的值为20﹣2t,AD=20﹣2t﹣(6t﹣10)=30﹣8t,BC=6t﹣8﹣(16﹣2t)=8t﹣24,由题意得:8t﹣24=4(30﹣8t),解得:t=,满足<t≤,②点A、点B均在点D的右边,此时t>,A的值为6t﹣10,B的值为6t﹣8,C的值为16﹣2t,D的值为20﹣2t,AD=6t﹣10﹣(20﹣2t)=8t﹣30,BC=6t﹣8﹣(16﹣2t)=8t﹣24,由题意得,8t﹣24=4(8t﹣30),解得:t=4,满足t>;综上可得存在时间t=或t=4,使B与C的距离是A与D的距离的4倍.2017年3月8日。
2015-2016学年新人教版七年级上期中数学试卷3套(含答案)

2015-2016学年七年级(上)期中数学试卷一一、选择题(本大题共6小题,每小题3分,共18分)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3 D.32.计算(﹣1)2+(﹣1)3=()A.﹣2 B.﹣1 C.0 D. 23.某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃ B.﹣5℃ C.﹣3℃ D.﹣9℃4.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣35.比较的大小,结果正确的是()A.B.C.D.6.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有★个()A.63 B.57 C.68 D.60二、填空题(本大题共8小题,每小题3分,共24分)7.计算﹣2x2+3x2的结果为.8.数轴上两点A、B分别表示数﹣2和3,则A、B两点间的距离是.9.我国“钓鱼岛”周围海域面积约170000km2,该数用科学记数法可表示为.10.定义一种新运算:a⊗b=b2﹣ab,如:1⊗2=22﹣1×2=2,则(﹣1⊗2)⊗3=.11.已知2a﹣b=﹣1,则4a﹣2b+1的值为.12.已知﹣25a2m b与7b3﹣n a4的和是单项式,则m+n的值是.13.对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了x千克,共付款5x元.请你对“5x”再给出另一个实际生活方面的合理解释:.(答案不唯一).14.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为元.三、(本大题共3小题,第15、16小题各5分,第17小题6分,共16分)15.计算:﹣22÷(﹣1)3×(﹣5)16..17.下列代数式中:3+a;;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.单项式:多项式:整式:.四、(本大题共2小题,每小题7分,共14分)18.求代数式2x3﹣5x2+x3+9x2﹣3x3﹣2的值,其中x=.19.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=;②在①的基础上化简:B﹣2A.五、(本大题共2个小题,每小题9分,共18分)20.10月25日,省运会在赣州隆重开幕,社会各界主动献出自己的力量,支持省运会.某一出租车这天上午以体育场为出发点在东西方向免费接送运动员,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣3、﹣6、﹣4、+12.(1)将最后一名运动员送到目的地,出租车离体育场出发点多远?在体育场的什么方向?(2)若每千米耗油a升,那么这一天共耗油多少升?21.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(精确到1cm)(2)在某次案件中,抓获了两可疑人员,一个身高为1.87m,另一个身高1.82m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?六、(本大题共10分)22.(10分)(2014秋•赣县校级期中)小红爸爸上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一二三四五六每股涨跌+4 +4.5 ﹣1 ﹣2.5 ﹣6 +2(1)通过上表你认为星期三收盘时,每股是多少?(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了1.5‰的手续费,卖出时还需付成交额,1.5‰的手续费和1‰的交易税,如果小红爸爸在星期六收盘时将全部股票卖出,你对他的收益情况怎样评价?2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3 D.3考点:相反数.分析:两数互为相反数,它们的和为0.解答:解:设3的相反数为x.则x+3=0,x=﹣3.故选:C.点评:本题考查的是相反数的概念,两数互为相反数,它们的和为0.2.计算(﹣1)2+(﹣1)3=()A.﹣2 B.﹣1 C.0 D. 2考点:有理数的混合运算;有理数的乘方.分析:此题比较简单.先算乘方,再算加法.解答:解:(﹣1)2+(﹣1)3=1﹣1=0.故选C.点评:此题主要考查了乘方运算,乘方的意义就是求几个相同因数积的运算.注意负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.3.某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃ B.﹣5℃ C.﹣3℃ D.﹣9℃考点:有理数的加减混合运算.专题:应用题.分析:在列式时要注意上升是加法,下降是减法.解答:解:根据题意可列式﹣7+11﹣9=﹣5,所以温度是﹣5℃.故选B.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.4.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3考点:代数式求值;绝对值.专题:计算题.分析:根据a的取值范围,先去绝对值符号,再计算求值.解答:解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选:B.点评:此题考查的知识点是代数式求值及绝对值,关键是根据a的取值,先去绝对值符号.5.比较的大小,结果正确的是()A.B.C.D.考点:有理数大小比较.分析:根据有理数大小比较的方法即可求解.解答:解:∵﹣<0,﹣<0,>0,∴最大;又∵>,∴﹣<﹣;∴.故选A.点评:本题考查有理数比较大小的方法:①正数都大于0,负数都小于0,正数大于一切负数;②两个负数,绝对值大的反而小.6.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有★个()A.63 B.57 C.68 D.60考点:规律型:图形的变化类.专题:规律型.分析:本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.解答:解:根据题意得,第1个图中,五角星有3个(3×1);第2个图中,有五角星6个(3×2);第3个图中,有五角星9个(3×3);第4个图中,有五角星12个(3×4);∴第n个图中有五角星3n个.∴第20个图中五角星有3×20=60个.故选:D.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题(本大题共8小题,每小题3分,共24分)7.计算﹣2x2+3x2的结果为x2.考点:合并同类项.分析:根据合并同类项,系数相加字母和字母的指数不变,可得答案.解答:解:原式=(﹣2+3)x2=x2,故答案为:x2.点评:本题考查了合并同类项,合并同类项,系数相加字母和字母的指数不变.8.数轴上两点A、B分别表示数﹣2和3,则A、B两点间的距离是5.考点:数轴.分析:数轴上两点间的距离:数轴上两点对应的数的差的绝对值.解答:解:根据数轴上两点对应的数是﹣2,3,则两点间的距离是3﹣(﹣2)=5.点评:本题考查数轴上两点间距离的求法:右边点的坐标减去左边点的坐标;或两点坐标差的绝对值.9.我国“钓鱼岛”周围海域面积约170000km2,该数用科学记数法可表示为 1.7×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将170000用科学记数法表示为:1.7×105.故答案为:1.7×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.定义一种新运算:a⊗b=b2﹣ab,如:1⊗2=22﹣1×2=2,则(﹣1⊗2)⊗3=﹣9.考点:有理数的混合运算.专题:新定义.分析:先根据新定义计算出﹣1⊗2=6,然后再根据新定义计算6⊗3即可.解答:解:﹣1⊗2=22﹣(﹣1)×2=6,6⊗3=32﹣6×3=﹣9.所以(﹣1⊗2)⊗3=﹣9.故答案为:﹣9.点评:本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.11.已知2a﹣b=﹣1,则4a﹣2b+1的值为﹣1.考点:代数式求值.专题:计算题.分析:原式变形后,将已知等式代入计算即可求出值.解答:解:∵2a﹣b=﹣1,∴原式=2(2a﹣b)+1=﹣2+1=﹣1,故答案为:﹣1点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.已知﹣25a2m b与7b3﹣n a4的和是单项式,则m+n的值是4.考点:合并同类项.分析:有题意可知,这两个式子是同类项,再根据同类项的定义可得:2m=4,3﹣n=1.解答:解:由题意可得,2m=4,3﹣n=1.解得,m=2,n=2,∴m+n=4.故答案为:4.点评:此题主要考查同类项的概念,所含字母相同,并且相同字母的指数也相同的项是同类项.13.对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了x千克,共付款5x元.请你对“5x”再给出另一个实际生活方面的合理解释:某人以5千米/时的速度走了x小时,他走的路程是5x千米.(答案不唯一).考点:单项式.专题:开放型.分析:对单项式“5x”,是5与x的积,表示生活中的相乘计算.比如:某人以5千米/时的速度走了x小时,他走的路程是5x千米解答:解:某人以5千米/时的速度走了x小时,他走的路程是5x千米,答案不唯一.点评:本题考查了单项式在生活中的实际意义,只要计算结果为5x的都符合要求.14.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为210或200元.考点:有理数的混合运算.专题:应用题;压轴题;分类讨论.分析:分四种情况讨论:①先付60元,80元,得到50元优惠券,再去买120元的运动鞋;②先付60元,120元,得到50元的优惠券,再去买80元的T恤;③先付120元,得到50元的优惠券,再去付60元,80元的书包和T恤;④先付120元,80元,得到100元的优惠券,再去付60元的书包;分别计算出实际花费即可.解答:解:①先付60元,80元,得到50元优惠券,再去买120元的运动鞋;实际花费为:60+80﹣50+120=210元;②先付60元,120元,得到50元的优惠券,再去买80元的T恤;实际花费为:60+120﹣50+80=210元;③先付120元,得到50元的优惠券,再去付60元,80元的书包和T恤;实际花费为:120﹣50+60+80=210元;④先付120元,80元,得到100元的优惠券,再去付60元的书包;实际花费为:120+80=200元;综上可得:他的实际花费为210元或200元.点评:本题旨在学生养成仔细读题的习惯.三、(本大题共3小题,第15、16小题各5分,第17小题6分,共16分)15.计算:﹣22÷(﹣1)3×(﹣5)考点:有理数的混合运算.分析:先算乘方,再从左到右依次计算除法、乘法.解答:解:原式=﹣4÷(﹣1)×(﹣5)=4×(﹣5)=﹣20.点评:有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.本题要特别注意运算顺序以及符号的处理,如﹣22=﹣4,而(﹣2)2=4.16..考点:有理数的混合运算.专题:常规题型.分析:按照有理数混合运算的顺序,先乘除后加减,有括号的先算括号里面的,并且在计算过程中注意正负符号的变化.解答:解:原式===0答:此题答案为0.点评:有理数的运算能力是很重要的一部分,要熟练掌握.17.下列代数式中:3+a;;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.单项式:0;﹣a;;a2b2多项式:3+a;;3x2﹣2x+1;a2﹣b2整式:3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.考点:整式;单项式;多项式.分析:根据单项式、整式以及多项式进行填空.解答:解:单项式:0;﹣a;;a2b2;多项式:3+a;;3x2﹣2x+1;a2﹣b2;整式:3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.故答案是:0;﹣a;;a2b2;3+a;;3x2﹣2x+1;a2﹣b2;3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.点评:要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.四、(本大题共2小题,每小题7分,共14分)18.求代数式2x3﹣5x2+x3+9x2﹣3x3﹣2的值,其中x=.考点:整式的加减—化简求值.分析:本题应先将原式合并同类项,再将x的值代入,即可解出本题.解答:解:原式=2x3+x3﹣3x3+9x2﹣5x2﹣2=4x2﹣2,当x=时,原式=1﹣2=﹣1.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.19.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=﹣3;②在①的基础上化简:B﹣2A.考点:多项式.分析:①不含x2项,即x2项的系数为0,依此求得a的值;②先将表示A与B的式子代入B﹣2A,再去括号合并同类项.解答:解:①A+B=ax2+x﹣1+3x2﹣2x+1=(a+3)x2﹣x∵A与B的和中不含x2项,∴a+3=0,解得a=﹣3.②B﹣2A=3x2﹣2x+1﹣2×(﹣3x2+x﹣1)=3x2﹣2x+1+6x2﹣2x+2=9x2﹣4x+3.点评:多项式的加减实际上就是去括号和合并同类项.多项式加减的运算法则:一般地,几个多项式相加减,如果有括号就先去括号,然后再合并同类项.合并同类项的法则:把系数相加减,字母及字母的指数不变.本题注意不含x2项,即x2项的系数为0.五、(本大题共2个小题,每小题9分,共18分)20.10月25日,省运会在赣州隆重开幕,社会各界主动献出自己的力量,支持省运会.某一出租车这天上午以体育场为出发点在东西方向免费接送运动员,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣3、﹣6、﹣4、+12.(1)将最后一名运动员送到目的地,出租车离体育场出发点多远?在体育场的什么方向?(2)若每千米耗油a升,那么这一天共耗油多少升?考点:正数和负数.分析:(1)根据有理数的加法,可得正负数,根据正数在东,负数在西,可得答案;(2)根据单位耗油量乘以行车距离,可得答案.解答:解:(1)+9﹣3﹣5+4﹣8+6﹣3﹣6﹣4+12=2km故出租车在体育场东边2 km处;(2)﹙|+9|+|﹣3|+|﹣5|+|+4|+|﹣8|+|+6|+|﹣3|+|﹣6|+|﹣4|+|+12|﹚•a=60a 升.答:这一天共耗油60a升点评:本题考查了正数和负数,利用有理数的加法运算是解题关键,注意求耗油量时要算每次行驶的绝对值.21.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(精确到1cm)(2)在某次案件中,抓获了两可疑人员,一个身高为1.87m,另一个身高1.82m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?考点:代数式求值.专题:应用题.分析:(1)将脚印长度为24.5cm代入关系式即可得;(2)借助关系式b=7a﹣3.07,求出身高,再根据概率知识推测谁的可能性大.解答:解:(1)已知如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.若某人脚印长度为24.5cm,即a=24.5,将其代入关系式可得,身高约为7×24.5﹣3.07=168.43≈168cm,即他的身高约为168cm;(2)根据现场测量的脚印长度为26.3cm,将这个数值代入b=7a﹣3.07中可得:罪犯身高为181.03cm≈1.81cm,比较可知:身高1.82m的可疑人员的可能性更大.点评:立意新颖,把数学知识融汇到案件侦破中,既考知识,又增加了学习的乐趣.六、(本大题共10分)22.(10分)(2014秋•赣县校级期中)小红爸爸上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一二三四五六每股涨跌+4 +4.5 ﹣1 ﹣2.5 ﹣6 +2(1)通过上表你认为星期三收盘时,每股是多少?(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了1.5‰的手续费,卖出时还需付成交额,1.5‰的手续费和1‰的交易税,如果小红爸爸在星期六收盘时将全部股票卖出,你对他的收益情况怎样评价?考点:有理数的混合运算;正数和负数.专题:应用题.分析:(1)先根据表格中找出星期一,星期二及星期三所对应的涨跌情况,把这三个数字相加得到这三天的涨跌情况,与买进时每股的单价相加即可求出星期三收盘时每股的价钱;(2)根据表格中记录的正负数情况得到星期二涨幅最大,星期五跌幅最大,求出星期一与星期二两天的涨幅情况,与买进时每股的价钱相加即可得到每股的最高价;用星期一到星期五五天的涨跌情况,与买进时每股的价格相加即可求出每股的最低价;(3)根据买进时每股的单价与股数相乘,减去手续费即可得到买进时所花费的钱数,然后求出一星期七天的涨跌情况,与买进时每股的价钱相加即可求出卖出时每股的价钱,然后乘以股数,再减去手续费和交易费即可求出卖出时获得的总钱数,用获得的总钱数减去买入时花费的钱数,根据其差得正负情况即可计算出他得收益情况.解答:解:(1)(+4)+(+4.5)+(﹣1)=7.5,则星期三收盘时,每股是27+7.5=34.5元;(2)本周内最高价是27+4+4.5=35.5元;最低价是27+4+4.5﹣1﹣2.5﹣6=26元;(3)买入时,27×1000×(1+1.5‰)=27040.5元,卖出时每股:27+4+4.5﹣1﹣2.5﹣6+2=28元,所以卖出时的总钱数为28×1000×(1﹣1.5‰﹣1‰)=27930元,所以小红爸爸的收益为27930﹣27040.5=889.5元,故赚了889.5元.点评:此题考查了有理数的混合运算,以及正负数的意义.原题提供的是实际生活中常见的一个表格,它提供了多种信息,但关键是从中找出解题所需的有效信息,构造相应的数学模型,来解决问题.数学服务于生活,数学来源于生活.2015-2016学年七年级(上)期中数学试卷二一、选择题:本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡上.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.3.代数式a2b和﹣3a2b y是同类项时,y的值为()A.0 B. 1 C. 2 D. 34.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体5.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30 000 000个核苷酸,30 000 000用科学记数法表示为()个.A.3×108 B.3×107 C.3×106 D.0.3×1086.若|a|=2,则a=()A.2 B.﹣2C. 2 或﹣2 D.以上答案都不对7.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能8.一个有理数的倒数是它本身,这个数是()A.0 B. 1 C.﹣1 D.1或﹣19.下列图形中,哪一个是正方体的展开图()A.B.C.D.10.下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.一个有理数不是整数就是分数D.0的绝对值是011.比较﹣2,0,﹣(﹣2),﹣3的大小,下列正确的()A.0>﹣3>﹣(﹣2)>﹣2 B.﹣(﹣2)>﹣3>﹣2>0 C.﹣(﹣2)>0>﹣2>﹣3 D.﹣3>﹣(﹣2)>﹣2>012.一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+5二、填空题:本题有4小题,每小题3分,共12分.把答案填在答题卡上.13.﹣a2b的系数是.14.如果水库的水位高于标准水位3米时,记作+3米,那么低于标准水位2米时,应记米.15.菜场上西红柿每千克a元,白菜每千克b元,学校食堂买30kg西红柿,50kg白菜共需元.16.“*”是规定的一种运算法则:a*b=a2﹣b,则5*(﹣1)的值是.三、解答题:本题有6小题,共52分,解答应写出文字说明或演算步骤.17.(16分)(2014秋•深圳校级期中)计算:(1)8﹣6+(﹣9)(2)﹣24×(﹣+)(3)(﹣0.1)÷×(﹣10)(4)16÷(﹣2)3﹣(﹣)×(﹣4)18.(10分)(2014秋•深圳校级期中)先化简,再求值(1)6a+2a2﹣3a+a2+1的值,其中a=﹣1.(2)x﹣2(x+2y)+3(y﹣2x),其中x=﹣2,y=1.19.画出如图几何体的三视图.20.某一矿井的示意图如图所示:以地面为准,A点的高度是+4米,B、C两点的高度分别是﹣15米与﹣30米.A点比B点高多少?比C点呢?21.学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.22.已知a,b互为相反数,m,n互为倒数,x的绝对值等于3.①由题目可得,a+b=;mn=;x=.②求代数式x2﹣(a+b+mn)x+(a+b)2008+(﹣mn)2008的值.2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题:本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡上.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣考点:相反数.专题:常规题型.分析:根据相反数的概念解答即可.解答:解:﹣3的相反数是3,故选:A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.考点:点、线、面、体.分析:上面的直角三角形旋转一周后是一个圆锥,下面的长方形旋转一周后是一个圆柱.所以应是圆锥和圆柱的组合体.解答:解:根据以上分析应是圆锥和圆柱的组合体.故选:B.点评:本题考查的是点、线、面、体知识点,可把较复杂的图象进行分解旋转,然后再组合.3.代数式a2b和﹣3a2b y是同类项时,y的值为()A.0 B.1 C. 2 D. 3考点:同类项.专题:计算题.分析:根据同类项的定义计算即可:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.解答:解:∵代数式a2b和﹣3a2b y是同类项,∴y=1,故选B.点评:本题考查了同类项的定义,解题时牢记定义是关键,此题比较简单,易于掌握.4.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体考点:截一个几何体.分析:根据圆柱、圆锥、球、正方体的形状特点判断即可.解答:解:本题中,用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,无论如何,截面也不会有弧度不可能是圆,故选D.点评:本题考查几何体的截面,关键要理解面与面相交得到线.5.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30 000 000个核苷酸,30 000 000用科学记数法表示为()个.A.3×108 B.3×107 C.3×106 D.0.3×108考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.解答:解:30 000 000=3×107.故选B.点评:把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.6.若|a|=2,则a=()A.2 B.﹣2C. 2 或﹣2 D.以上答案都不对考点:绝对值.分析:直接利用“绝对值等于一个正数的数有两个,它们互为相反数”写出答案即可.解答:解:∵|a|=2,∴a=±2,故选C.点评:本题考查了绝对值的求法,属于基础题,比较简单.7.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能考点:数轴;有理数的加法.专题:数形结合.分析:首先根据数轴发现a,b异号,再进一步比较其绝对值的大小,然后根据有理数的加法运算法则确定结果的符号.异号两数相加,取绝对值较大的加数的符号.解答:解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.点评:本题结合数轴,主要考查了有理数的加法法则,体现了数形结合的思想.8.一个有理数的倒数是它本身,这个数是()A.0 B. 1 C.﹣1 D.1或﹣1考点:倒数.专题:常规题型.分析:根据倒数的定义可知如果一个数的倒数等于它本身,则这个数是±1.解答:解:如果一个数的倒数等于它本身,则这个数是±1,故选:D.点评:此题考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.尤其是±1这两个特殊的数字.9.下列图形中,哪一个是正方体的展开图()A.B.C.D.考点:几何体的展开图.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:折叠后,没有上下底面,故不能折成正方体;B、C折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体;故只有D是正方体的展开图.故选D.点评:只要有“田”字格的展开图都不是正方体的表面展开图.10.下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.一个有理数不是整数就是分数D.0的绝对值是0考点:绝对值;有理数.专题:常规题型.分析:先根据:0既不是正数,也不是负数;整数和分数统称为有理数;0的绝对值是0;判断出A、C、D正确;再根据绝对值最小的数是0,得出B错误.解答:解:0既不是正数,也不是负数,A正确;绝对值最小的数是0,B错误;整数和分数统称为有理数,C正确;0的绝对值是0,D正确.故选:B.点评:本题主要考查正数的绝对值是正数,负数的绝对值是正数,0的绝对值是0,熟练掌握绝对值的性质是解题的关键.11.比较﹣2,0,﹣(﹣2),﹣3的大小,下列正确的()A.0>﹣3>﹣(﹣2)>﹣2 B.﹣(﹣2)>﹣3>﹣2>0 C.﹣(﹣2)>0>﹣2>﹣3 D.﹣3>﹣(﹣2)>﹣2>0考点:有理数大小比较.分析:先化简﹣(﹣2)=2,再根据正数都大于0;负数都小于0;两个负数,绝对值大的反而小求解.解答:解:化简﹣(﹣2)=2,所以﹣(﹣2)>0>﹣2>﹣3.故选C.点评:本题考查了有理数比较大小的方法:(1)正数都大于0;(2)负数都小于0;(3)正数大于一切负数;(4)两个负数,绝对值大的其值反而小.12.一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+5考点:规律型:图形的变化类.专题:压轴题;规律型.分析:本题做为一道选择题,学生可把n=1,x=5;n=2,x=9代入选项中即可得出答案.而若作为常规题,学生则需要一一列出n=1,2,3…的能,再对x的取值进行归纳.解答:解:设段数为x则依题意得:n=0时,x=1,。
江苏省泰州市高港实验学校2015-2016学年七年级12月质量检测数学试题(无答案)

高港实验学校七年级数学质量检测 2015.12.8(时间:120分钟 满分:150分)一、选择题(每题3分,共24分)1.—3的倒数是 ( ) A .—31B .3C .31 D .—32.左图中的图形绕虚线旋转一周,可得到的几何体是 ( )3.下列说法正确的个数是 ( ) ①0是绝对值最小的有理数 ②相反数小于本身的数是正数 ③数轴上原点两侧的数互为相反数 ④两个负数比较,绝对值大的反而小 A .1 B .2 C .3 D .4 4.下面是一个被墨水污染过的方程:+=-x x 3212,答案显示此方程的解是x=-1,被墨水遮盖的是一个常数,则这个常数是 ( ) A .1B .-1C .21-D .215.如图,数轴上A 、B 两点分别对应实数a b 、,则下列结论正确的是 ( )A .0a b +>B .0a b >C .0a b ->D .||||0a b -> 6.某工程,甲单独做12天完成,乙单独做8天完成。
现在由甲先做3天,乙再参加做,求完成这项工程乙还需要几天?若设完成这项工程乙还需要x 天,则下列方程不正确的是 ( )A.18123=++x xB.181121123=⎪⎭⎫⎝⎛++x C. 123181121+=⎪⎭⎫ ⎝⎛+x D. 12318+-=x x 7.下列各图经过折叠不能围成一个正方体的是 ( )第5题8.一质点P从距原点1个单位的M点处向原点方向跳动,第一次跳动到OM的中点M1处,第二次从M1跳到OM1的中点M2处,第三次从点M2跳到OM2的中点M3处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为()A.12nB.112n-C.11()2n+D.12n二、填空题(每题3分,共30分)9.单项式52xy-的系数为 .10.我国的国土面积约为960万平方千米,把960万用科学记数法表示为 . 11.如果单项式32mx y+-与yx n的差仍然是一个单项式,则n m= .12.若关于x的方程1210mx m-++=是一元一次方程,则这个方程的解是. 13.已知代数式x2+x+1的值是8,那么代数式4x2+4x+9的值是.14.若关于x的方程230mmx m--+=是一元一次方程,则这个方程的解是. 15.“仁义礼智信孝”是我们的传统美德,小明将这六个字写在一个正方体的六个面上,其平面展开图如图所示,那么在该正方体中,和“仁”相对的字是__________________.16.根据图中骰子的三种不同状态显示的数字,推出?处的数字是______________. 17.一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这件商品的成本价为元.18.我们知道:式子3-x的几何意义是数轴上表示数x的点与表示数3的点之间的距离,则式子12++-xx的最小值为.三、解答题(共96分)(第15题) (第16题)19.计算:(每小题5分,共10分)(1) 45)533291(⨯+- (2) ()[]2233612-+-⨯--20.化简:(每小题5分,共10分)(1))34()3(y x y x -++- (2)n m mn n m mn 222222131+--21. 解方程:(每题5分,共10分)(1)4—3(2一x)=5x (2)213x +-516x -=122. 先化简,再求值:(本题8分)求)](3)(2[42222b a ab a a ab --+--的值,其中21=-=b a ,.23.(本题12分)已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示。
2015年江苏省泰州市高港实验中学七年级上学期数学期中试卷带解析答案

2014-2015学年江苏省泰州市高港实验中学七年级(上)期中数学试卷一、精心选一选(每题3分,共18分)1.(3分)2014的相反数是()A.﹣2014 B.2014 C.D.﹣2.(3分)下列式子:x2,+4,,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.33.(3分)下列为同类项的一组是()A.ab与7a B.﹣xy2与C.x3与23D.7与4.(3分)已知ab2c3d4e5<0,下列判断正确的是()A.abcde<0 B.ab2cd4e<0 C.ab2cde<0 D.abcd4e<05.(3分)下列变形正确的是()A.从4x=2x﹣1可得到4x﹣2x=1B.从=﹣1得15x﹣5=8x+4﹣1C.从1﹣3(2x﹣1)=2x得1﹣6x﹣3=2xD.从﹣3x﹣2=2x+3得﹣3x﹣2x=3+26.(3分)若a2﹣1=b,则代数式﹣2a2﹣2+2b的值为()A.4 B.0 C.﹣4 D.﹣2二、细心填一填(每题3分,共30分)7.(3分)如果+7℃表示零上7℃,则零下5℃就记为℃.8.(3分)数轴上,与表示﹣1的点相隔3个单位对应点表示的数是.9.(3分)单项式的系数是,次数是.10.(3分)若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m=.11.(3分)若有理数a、b满足|a+b|+(b﹣4)2=0,则a﹣b的绝对值为.12.(3分)若方程x|m|﹣mx+1=0是关于x的一元一次方程,则x=.13.(3分)据统计,全球每分钟约有8500000吨污水排入江河湖海,则每分钟的排污量用科学记数法表示应是吨.14.(3分)绝对值大于3且小于6的所有负整数是,它们的和为.15.(3分)如图所示是计算机程序计算,若开始输入x=﹣1,则最后输出的结果是.16.(3分)符号“f“表示一种运算,它对一些数的运算结果如下:(1)f(1)=0、f(2)=1、f(3)=2、f(4)=3、f(5)=4、…(2)、、、…利用以上规律计算:﹣f(2014)=.三.用心解一解(共102分)17.(8分)将下列各数填在相应的集合里﹣3.8,﹣10,10π,﹣|﹣|,4,0,﹣(﹣)整数集合:;分数集合:正数集合:有理数集合:.18.(10分)计算①(﹣﹣+)×(﹣12)②﹣42×[(1﹣7)÷6]3+[(﹣5)3﹣3]÷(﹣2)3.19.(12分)先化简再求值.(1)已知(a﹣2)2+|b+1|=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]的值.(2)已知a﹣b=2,求:(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a)的值.20.(11分)有理数a、b、c在数轴上的位置如图所示,(1)用“>、=或<”填空c﹣b0,a+b0,|c| |b|,b+c0,a﹣c0(2)化简:﹣3|a+b|﹣|b+c|﹣2|a﹣c|+3|c﹣b|.21.(20分)解下列方程(1)2x﹣5=10+4x(2)3x﹣2(10﹣x)=5(3)﹣=1(4)﹣=1.6.22.(8分)当是a、b有理数时,规定a*b=a2+2ab,例如3*2=32+2×3×2=21,且(﹣2)*x=﹣2+x,求x的值.23.(12分)如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并观察下列问题.(1)第4个图中,共有白色瓷砖块;第n个图中,共有白色瓷砖块;(2)第4个图中,共有瓷砖块;第n个图中,共有瓷砖块;(3)如果每块黑瓷砖4元,白瓷砖3元,铺设当n=10时,共需花多少钱购买瓷砖?24.(10分)对于正数n,规定f(n)=,例如f(3)==,f()==.(1)求f(2)和f()的值;(2)计算:f()+f()+…+f()+f(1)+f(2)+f(3)+…+f(2013)+f(2014)25.(11分)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.方法①.方法②;(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系吗?(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a﹣b)2的值.2014-2015学年江苏省泰州市高港实验中学七年级(上)期中数学试卷参考答案与试题解析一、精心选一选(每题3分,共18分)1.(3分)2014的相反数是()A.﹣2014 B.2014 C.D.﹣【解答】解:2014的相反数是﹣2014,故选:A.2.(3分)下列式子:x2,+4,,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.3【解答】解、整式有:x2,,,﹣5x,0共有5个.故选:B.3.(3分)下列为同类项的一组是()A.ab与7a B.﹣xy2与C.x3与23D.7与【解答】解:由同类项的定义知:A、ab与7a所含B中所含字母不同,不是同类项,故A选项错误;B、﹣xy2与中相同字母的指数不同,不是同类项,故B选项错误;C、x3与23是一个常数和一个含字母的式子,不是同类项,故C选项错误;D、7与﹣都是常数项,是同类项,故D选项正确.故选:D.4.(3分)已知ab2c3d4e5<0,下列判断正确的是()A.abcde<0 B.ab2cd4e<0 C.ab2cde<0 D.abcd4e<0【解答】解:∵b2≥0,d4≥0,∴ac3e5<0,∴ace<0,故选B.5.(3分)下列变形正确的是()A.从4x=2x﹣1可得到4x﹣2x=1B.从=﹣1得15x﹣5=8x+4﹣1C.从1﹣3(2x﹣1)=2x得1﹣6x﹣3=2xD.从﹣3x﹣2=2x+3得﹣3x﹣2x=3+2【解答】解:A、4x=2x﹣1,可得到4x﹣2x=﹣1,故A错误;B、方程两边都乘以5,得15x﹣5=8x+4﹣10,故B错误;C、从1﹣3(2x﹣1)=2x得1﹣6x+3=2x,故C错误;D、从﹣3x﹣2=2x+3得﹣3x﹣2x=3+2,故D正确;故选:D.6.(3分)若a2﹣1=b,则代数式﹣2a2﹣2+2b的值为()A.4 B.0 C.﹣4 D.﹣2【解答】解:∵a2﹣1=b,∴a2﹣b=1,∴﹣2a2﹣2+2b=﹣2(a2﹣b)﹣2=﹣2×1﹣2=﹣2﹣2=﹣4.故选:C.二、细心填一填(每题3分,共30分)7.(3分)如果+7℃表示零上7℃,则零下5℃就记为﹣5℃.【解答】解:“正”和“负”相对,∵+7℃表示零上7℃,∴零下5℃就记为﹣5℃.8.(3分)数轴上,与表示﹣1的点相隔3个单位对应点表示的数是2或﹣4.【解答】解:设这个数为x,则|x﹣(﹣1)|=3,解得:x+1=3,x+1=﹣3,即x=2或﹣4,故答案为:2或﹣4.9.(3分)单项式的系数是,次数是3.【解答】解:代数式的系数是,次数是3.故答案为:,3.10.(3分)若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m=﹣6.【解答】解:原式=3a2﹣6ab﹣3b2﹣a2﹣mab﹣2b2=2a2﹣(6+m)ab﹣5b2,由于多项式中不含有ab项,故﹣(6+m)=0,∴m=﹣6,故填空答案:﹣6.11.(3分)若有理数a、b满足|a+b|+(b﹣4)2=0,则a﹣b的绝对值为8.【解答】解:∵|a+b|+(b﹣4)2=0,∴a+b=0,b﹣4=0,∴a=﹣4,b=4;因此|a﹣b|=|﹣4﹣4|=8.故答案为8.12.(3分)若方程x|m|﹣mx+1=0是关于x的一元一次方程,则x=﹣.【解答】解:x|m|﹣mx+1=0是关于x的一元一次方程,得|m|=1,1﹣m≠0.解得m=﹣1.﹣2x+1=0,解得x=﹣,故答案为:﹣.13.(3分)据统计,全球每分钟约有8500000吨污水排入江河湖海,则每分钟的排污量用科学记数法表示应是8.5×106吨.【解答】解:将8500000用科学记数法表示为:8.5×106.故答案为:8.5×106.14.(3分)绝对值大于3且小于6的所有负整数是﹣4,﹣5,它们的和为﹣9.【解答】解:绝对值大于3且小于6的所有负整数是﹣4,﹣5,它们的和=(﹣4)+(﹣5)=﹣9.故答案为:﹣4,﹣5;﹣9.15.(3分)如图所示是计算机程序计算,若开始输入x=﹣1,则最后输出的结果是﹣22.【解答】解:把x=﹣1代入计算程序中得:(﹣1)×6﹣(﹣2)=﹣6+2=﹣4>﹣5,把x=﹣4代入计算程序中得:(﹣4)×6﹣(﹣2)=﹣24+2=﹣22<﹣5,则最后输出的结果是﹣22,故答案为:﹣2216.(3分)符号“f“表示一种运算,它对一些数的运算结果如下:(1)f(1)=0、f(2)=1、f(3)=2、f(4)=3、f(5)=4、…(2)、、、…利用以上规律计算:﹣f(2014)=1.【解答】解:﹣f(2014)=2014﹣2013=1.故答案为:1.三.用心解一解(共102分)17.(8分)将下列各数填在相应的集合里﹣3.8,﹣10,10π,﹣|﹣|,4,0,﹣(﹣)整数集合:﹣10,4,0;分数集合:;﹣|﹣|,﹣(﹣);正数集合:10π,4,﹣(﹣)有理数集合:﹣3.8,﹣10,﹣|﹣|,4,0,﹣(﹣).【解答】解:整数集合:﹣10,4,0;分数集合,﹣|﹣|,﹣(﹣);正数集合:10π,4,﹣(﹣);有理数集合:﹣3.8,﹣10,﹣|﹣|,4,0,﹣(﹣);故答案为:﹣10,4,0;﹣|﹣|,﹣(﹣);10π,4,﹣(﹣);﹣3.8,﹣10,﹣|﹣|,4,0,﹣(﹣);18.(10分)计算①(﹣﹣+)×(﹣12)②﹣42×[(1﹣7)÷6]3+[(﹣5)3﹣3]÷(﹣2)3.【解答】解:①原式=6+8﹣10=4;②原式=﹣16×(﹣1)+(﹣125﹣3)÷(﹣8)=16+16=32.19.(12分)先化简再求值.(1)已知(a﹣2)2+|b+1|=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]的值.(2)已知a﹣b=2,求:(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a)的值.【解答】解:(1)原式=5ab2﹣2a2b+4ab2﹣2a2b=9ab2﹣4a2b,∵(a﹣2)2+|b+1|=0,∴a=2,b=﹣1,则原式=18+16=34;(2)原式=﹣(a﹣b)2﹣4(a﹣b),当a﹣b=2时,原式=﹣1﹣8=﹣9.20.(11分)有理数a、b、c在数轴上的位置如图所示,(1)用“>、=或<”填空c﹣b<0,a+b<0,|c| <|b|,b+c>0,a﹣c<0(2)化简:﹣3|a+b|﹣|b+c|﹣2|a﹣c|+3|c﹣b|.【解答】解:(1)用“>、=或<”填空c﹣b<0,a+b<0,|c|<|b|,b+c>0,a﹣c<0故答案为:<,<,<,>,<;(2)原式=3(a+b)﹣(b+c)﹣2(c﹣a)+3(c﹣b)=3a+3b﹣b﹣c﹣2c+2a+3c﹣3b=5a﹣b.21.(20分)解下列方程(1)2x﹣5=10+4x(2)3x﹣2(10﹣x)=5(3)﹣=1(4)﹣=1.6.【解答】解:(1)移项合并得:2x=﹣15,解得:x=﹣7.5;(2)去括号得:3x﹣20+2x=5,移项合并得:5x=25,解得:x=5;(3)去分母得:4x+2﹣10x﹣1=6,移项合并得:﹣6x=5,解得:x=﹣;(4)方程整理得:﹣=1.6,即2x﹣6﹣5x﹣20=1.6,移项合并得:﹣3x=27.6,解得:x=﹣9.2.22.(8分)当是a、b有理数时,规定a*b=a2+2ab,例如3*2=32+2×3×2=21,且(﹣2)*x=﹣2+x,求x的值.【解答】解:根据题意可得:(﹣2)*x=﹣2+x可化为:4+2×(﹣2)×x=﹣2+x,解得:x=1.2.故x的值为1.2.23.(12分)如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并观察下列问题.(1)第4个图中,共有白色瓷砖20块;第n个图中,共有白色瓷砖n(n+1)块;(2)第4个图中,共有瓷砖42块;第n个图中,共有瓷砖(n+2)(n+3)块;(3)如果每块黑瓷砖4元,白瓷砖3元,铺设当n=10时,共需花多少钱购买瓷砖?【解答】解:(1)第4个图中,共有白色瓷砖4×5=20块;第n个图中,共有白色瓷砖n(n+1)块;(2)第4个图中,共有瓷砖20+4×4+6=42块;第n个图中,共有瓷砖(n+2)(n+3)块;(3)4×(4×10+6)+3×(10×11)=184+330=514(元)答:共需花514元钱购买瓷砖.故答案为:20,n(n+1));42,(n+2)(n+3).24.(10分)对于正数n,规定f(n)=,例如f(3)==,f()==.(1)求f(2)和f()的值;(2)计算:f()+f()+…+f()+f(1)+f(2)+f(3)+…+f(2013)+f(2014)【解答】解:(1)f(2)==,f()==;(2)根据题意得:f(n)+f()=+==1,则原式=[f()+f(2014)]+[f()+f(2013)]+…+[f()+f(2)]+f (1)=1+1+…+1+=2013.25.(11分)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于m﹣n;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.方法①(m+n)2﹣4mn.方法②(m﹣n)2;(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系吗?(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a﹣b)2的值.【解答】解:(1)m﹣n;(2)(m+n)2﹣4mn或(m﹣n)2;(3)(m+n)2﹣4mn=(m﹣n)2;(4)(a﹣b)2=(a+b)2﹣4ab,∵a+b=6,ab=4,∴(a﹣b)2=36﹣16=20.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2015——2016学年度第一学期七年级期中质量检测答案

新钢中学2015——2016学年度第一学期期中质量检测七年级数学试题参考答案说明:本试卷共有六大题,26小题,全卷满分120分,考试时间100分钟.卷首语:亲爱的同学们,一转眼半学期已经过去.逝去的是光阴,播下的是辛勤,收获的是喜悦.这份试卷将带你走进知识的乐园,请尽情采摘自己的甜蜜果实吧!一、选择题(本大题共8小题,每题3分,共24分,每小题只有一个正确选项)1.下列各式中,正确的是……………………………………………………………………………( D )A .2a+3b=5abB .a 3+a 2=a 5C .7ab ﹣3ab=4D .x 2y ﹣2x 2y=﹣x 2y2.在下列选项中,具有相反意义的量是……………………………………………………………( C )A .盈利3万元与支出3万元B .气温升高3℃与气温为﹣3℃C .胜二局与负三局D .甲乙两队篮球比赛比分分别为65:60与60:65 3. “社会主义核心价值观”要求我们牢记心间,小明在“百度”搜索“社会主义核心价值观”, 找到相关结果约为4280000个,数据4280000用科学记数法表示为……………………………( B )A .0.428×107B .4.28×106C .4.28×105D .428×104 4.若m 是有理数,则|m|+m 一定是……………………………………………………………………( C )A .正数B .负数C .非负数D .零 5.对于单项式﹣,下列结论正确的是……………………………………………………( D )A .它的系数是, 次数是5B .它的系数是﹣,次数是5C .它的系数是﹣,次数是6D .它的系数是﹣π,次数是56.有理数a ,b 在数轴上的位置如图所示,则下列各式:①a+b >0;②a ﹣b >0;③|b|>a ;④ab <0.一定成立的是……………………………………………………………………………( C ) A .①②③ B .③④ C .②③④ D .①③④7.在代数式xy 2中,x 与y 的值各减少50%,则代数式的值……………………………………………( B )A .减少50%B .减少其值的C .减少其值的81D .减少75% 8.运算※按右表定义,例如“3※2=1”,那么(2※4)※(1※3)=……………………………………( A )A .4B .3C .2D .1二、填空题(本大题共8小题,每小题3分,共24分)9.比较大小,用“<、>、=”填空:﹣ > ﹣1.3 10.用四舍五入法,把20049精确到百位为___2.00×104_____. 11.如图所示,数轴上A 、B 两点所表示的有理数的和是 ﹣1____ . 12. 每件a 元的上衣先提价10%,再打九折以后出售的价格是 0.99a 元/件 13.若3a 2﹣a ﹣2=0,则5+6a 2﹣2a = 9 .14.已知a,b 互为倒数,c,d 互为相反数,且m 为最大的负整数,则=__2__15. 小明在求一个多项式减去x 2—3x+5时,误认为加上x 2—3x+5,得到的答案是5x 2—2x+4, 则正确的答案是___3x 2+4x-6___.16.如图,第(1)个多边形由正三角形“扩展”而来,边数记为a 3,第(2)个多边形由正方形“扩展”而来,边数记为a 4,…,依此类推,则a 12的值是__156____三、(本大题共4小题,每小题5分,共20分)17.画出数轴,把下列各数0,2,(﹣1)2,﹣|﹣3|,﹣2.5在数轴上分别用点A ,B ,C ,D ,E 表示出来;按从小到大的顺序用“<”号将各数连接起来. 解:如图所示,,故D <E <A <C <B .计算下列各小题:18. (﹣7)+5﹣(﹣3)+(﹣4)解:原式=-7+5+3-4 =-319.﹣14+(1-2)2÷(﹣)×4解:原式=-1+1Х(-4)Х4=-1-16=-17 20. 4xy ﹣(3x 2﹣3xy )﹣7yx+2x 2解:原式=4xy-3x 2+3xy-7yx+2x 2=-x2第6题图第8题图第11题图 第16题图四、(本大题共3小题,每小题8分,共24分)21.已知:3a =,24b =,0ab <,求a b -的值.解:3a =,24b =得3a =±,2b =± 由0ab <得32a b =⎧⎨=-⎩或32a b =-⎧⎨=⎩解得5a b -=±22.已知多项式(2x 2+ax-y+6)-(2bx 2-3x+5y-1),(1)若多项式的值与字母x 的取值无关,求a 、b 的值;(2)在(1)的条件下,先化简多项式3(a 2-ab+b 2)-(3a 2-ab+2b 2),再求它的值。
2015-2016年七年级上学期期中考试数学试卷及答案

其中温差最大的一天是
A.12月21日 B.12月22日
C.12月23日
D.
12月24日
( ) 2.下列各对数中,互为相反数的是:
A.和2 B. C. D.
( ) 3 下列式子:中,整式的个数是:
A. 6
B. 5
C. 4
D. 3
( ) 4 一个数的平方和它的倒数相等,则这个数是:
A. 1
B. -1
C. ±1
13.若a、b互为相反数,c、d互为倒数,则2a+3cd+2b=___
___;
14.用科学记数法表示:2014应记为______;
15.单项式的系数是______,次数是______; 16. ______; 17.______;
18.如果5x+3与-2x+9是互为相反数,则x的值是_____
_;
19.每件a元的上衣先提价10%,再打九折以后出售的价格是__
2015-2016年七年级数学上学期期中试
卷
班级: 姓名: 得分:
一 选择题 (每小题4分,共40分) ( ) 1.我市2013年12月21日至24日每天的最高气温与最低气温如 下表:
日期 12月21 12月22 12月23 12月24
日
日
日
日
最高 8℃
7℃
5℃
6℃
气温
最低 气温
-3℃
-5℃
-4℃ -2℃
(2)若休闲广场的长为500米,宽为200米,圆形花坛的半 径为20米,求广场空地的面积。(计算结果保留π)
28.
29.(列方程)把一批图书分给七年级(11)班的同学阅读,若每人 分3本,则剩余20本, 若每人分4本,则缺25本,这个班有多少学生?
2015~2016学年第一学期初一数学期中考试试卷及答案

2015~2016学年第一学期初一数学期中考试试卷(考试时间:90分钟 满分:100分) 一、细心选一选 (每小题3分,共24分)1.下面的计算正确的是 ( )A .6a -5a =1B .a + 2a 2 =3a 3C .-(a -b ) =-a + bD .2(a + b ) =2a + b 2.在(-1)3,(-1)2012,-22,(-3)2这四个数中,最大的数与最小的数的差等于 ( ) A .10 B .8 C .5 D .13 3.下列各组代数式中,是同类项的是 ( )A .5x 2 y 与15xy B .-522 y 与15yx 2 C .5ax 2与15yx 2 D .83与x 34.给出下列判断:①单项式5×103x 2的系数是5;②x -2xy + y 是二次三项式;③多项式-3a 2 b +7a 2b 2-2ab +1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是( )A .1个B .2个C .3个D .4个5.有理数a ,b ,c 在数轴上的位置如图所示, 则a c ++c b --b a += ( )A .-2bB .0C .2cD .2c -2b 6.若m =3,n =5且m -n >0,则m + n 的值是 ( )A .-2B .-8或-2C .-8或8D .8或-27.上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为 ( ) A .a b x y++ B .ax by ab+ C .ax by a b++ D .2x y +8.观察图中每一个正方形各顶点所标数字的规律,2 012应标在 ( )A .第502个正方形左上角顶点处B .第502个正方形右上角顶点处C .第503个正方形左上角顶点处D .第503个正方形右上角顶点处二、认真填一填 (每小题2分,共20分)9.-23的倒数为 ;绝对值等于3的数是 .10.钓鱼岛是钓鱼岛列岛的主岛,是中国固有领土,位于中国东海,面积4 384 000 m 2,将这个数据用科学记数法可表示为 m 2. 11.比较大小,用“<”“>”或“一”连接:(1) -34--(-23) (2) -3.14 -π-12.已知4x 2m y m+n 与3x 6 y 2是同类项,则m -n = .13.数轴上与表示-2的点距离3个长度单位的点所表示的数是 . 14.已知代数式x -2y 的值是12,则代数式-2x + 4y -1的值是 .15·若a ,b 互为相反数,c ,d 互为倒数,m 到原点的距离为2,则代数式m —cd +a b m+的值为 .16.定义新运算“⊗”,规定:a ⊗b =13a -4b ,则12⊗(-1) = .17.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .18.观察表一,寻找规律.表二,表三,表四分别是从表一中截取的一部分,其中a + b + c的值为 .三、耐心解一解 (共56分)19.计算:(每小题3分,共12分)(1) -10-(-16)+(-24); (2) 5÷(-35)×53(3) -22×7-(-3)×6+5 (4) (113+18-2.75)×(-24)+(-1)2014+(-3)3.20.化简:(每小题3分,共6分)(1) 2x +(5x -3y )一(3x + y ); (2) 3(4x 2-3x +2)-2(1-4x 2-x ).21.(5分) 将-2.5,12,2,-2,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来.22.(5分) 已知多项式A,B,其中A=x2-2x + 1,小马在计算A+B时,由于粗心把A+B看成了A-B求得结果为-3x2-2x-1,请你帮小马算出A+B的正确结果.23.(本题满分8分)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如左下表:(1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?(3) 如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.8千米,下降2.9千米,再上升1.6千米.若要使飞机最终比起飞点高出1千米,问第4个动作是上升还是下降,上升或下降多少千米?24.(10分) 在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移a格(当a 为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移b格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b).例如,从A到B记为:A→B (+1,+3);从C到D记为:C→D (+1,-2).回答下列问题:(1) 如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程.(2) 若点A运动的路线依次为:A→M(+2,+3),M→N (+1,-1),N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M,N,P,Q的位置.(3) 在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是;n与q满足的数量关系是.25.(10分) 如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,a +(c-7)2=0.且a,b满足2(1) a=,b=,c=.(2) 若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.2015~2016学年第一学期初一数学期中考试试卷参考答案1.C 2.D 3.B 4.A 5.B 6.B 7.C 8.C 9.-323或-310.4.384×10611.< > 12.4 13.-5,1 14.-2 15. 1 16.8 17.3018.76 19.(1) -18 (2) -1259 (3) -5 (4) 5 20.(1) 4x -4y (2) 20x 2-7x + 421.画图略,-2.5<-2-<0<12<2<-(-3) 22.B =4x 2 + 2 A +B =5x 2-2x + 323.解:(1) +4.4+(-3.2)+1.1+(-1.5) =0.8(km) 答:这架飞机比起飞点高了0.8千米 (2) 2×( 4.4++ 3.2-+ 1.1++ 1.5-=20.4(升),答:4个动作表演完,一共消耗20.5升燃油. (3) 3.8-2.9+1.6-1=1.5, 答:第4个动作下降1.5千米. 24.(1) 1+3+2+1+3+4=14 (2)(3) m + p =5,n + q =0 25.(1) a =2,b =1,c =7 (2) 4 (3) AB =3t + 3,AC =5t + 9,BC =2t + 6 (4) 不变,始终为12.。
江苏省泰州市高港实验学校七年级(上)第一次月考数学试卷

解:“正”和“负”相对,高于平均水位 1.5m 的水位记了下+1.5m,那么-0.8m 表示 低于平均水位 0.8m. 故答案为:低于平均水位 0.8m. 在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 此题考查正数和负数的意义,解题关键是理解“正”和“负”的相对性,确定一对 具有相反意义的量. 8.【答案】−25
【解析】
解:设一个球重 x,圆柱重 y,正方体重 z. 根据等量关系列方程 2x=5y;2z=3y,
消去 y 可得:x= z,
则 3x=5z,即三个球的重量等于五个正方体的重量. 故选:D. 由图可知:2 球体的重量=5 圆柱体的重量,2 正方体的重量=3 圆柱体的重量.可 设一个球体重 x,圆柱重 y,正方体重 z.根据等量关系列方程即可得出答案. 此题主要考查认识立体图形及等式的性质,解题的关键是找到球,正方体,圆 柱体的关系. 7.【答案】低于平均水位 0.8m
(2)设中间的数为 x,则用代数式表示方框 9 个数的和______,让长方形方框上
下左右移动,可框住另外的 9 个数,9 个数的和能等于 207 吗?______(填“能”或“不 能”)
25. 如图,数轴上点 A,B 所表示的数分别是 4,8. (1)请用尺规作图的方法确定原点 O 的位置;(不 写作法,保留作图痕迹) (2)已知点 M 在线段 OA 上,点 N 在射线 AB 上,且 AN=2AM. ①当点 M 所表示的数为 1 时,AM=______,AN=______;当点 M 所表示的数为 x 时,AM=______ ,AN=______ ; ②若线段 BN=2,求点 M 所表示的数.
第 5 页,共 14 页
答案和解析
1.【答案】D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输出输入x高港实验学校2015-2016学年度第一学期期中考试七年级数学试题 2015.11(考试时间:120分钟,满分150分)一、选择题(下列每题只有一个答案是正确的,每题3分共18分) 1.14的相反数是 ( ) A 、14 B 、4 C 、-14D 、-42.若三个数的积为负数,则这三个数中负数的个数是 ( )A 、1个B 、2个C 、3个D 、1个或3个3.数轴上与原点距离小于3.5个单位长度的整数点的个数是 ( ) A 、6个 B 、7个 C 、8个 D 、9个4.下列各组中,两个单项式是同类项的是 ( ) A 、3mn 与-4nm B 、2mn -与 n m 2C 、2x 3与-3y 3D 、3ab 与-abc 5.用代数式表示“x 的3倍与y 的平方的和”,正确的是 ( )A 、223y x + B 、23y x + C 、)(32y x + D 、2)(3y x +6.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。
那么顾客到哪家超市购买这种商品更合算 A 、甲 B 、乙 C 、丙 D 、一样 ( ) 二、填空题(每小题3分,共30分. )7.已知P 是数轴上表示-4的点,把P 点向左移动2个单位长度后所表示的数是 . 8.单项式-2ab 2的次数为 .9.地球赤道的周长约是4 010 000m ,用科学记数法表示这个数据是 . 10.计算:=-⨯-20152)1(2 .11.在月历的某一竖列上,按顺序圈三个数,设最上面的数为n ,则这三个数的和为 . 12.有一运算程序如下:若输出的值是25,则输入的值可以是 .13.三个有理数a 、b 、c 在数轴上的位置如图所示,则a +b ,a +c ,b +c班级编号_____________ 班级____________ 姓名 —————— …………………………………装………………………………订…………………………………线……………………………………从大到小的顺序是 .(用“>” 14.若122++=n n m ,则34482-+-n m n的值等于 .15.如图,边长为(m +4)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为4,则另一边长是(用含m 的代数式表示).16.计算(1-1 2 - 1 3 - 1 4 - 1 5 )( 1 2 + 1 3 + 1 4 + 1 5 + 1 6 )-(1- 1 2 - 1 3 - 1 4 - 1 5 - 1 6 )( 12+1 3 + 1 4 + 15 )的结果是 .三、解答题(本大题有10小题,共102分) 17.(8分)将下列各数填在相应的集合里.74,3.14030030003,20-,-82,0,)125.3(--,2.2020020002…,π. 有理数集合:{ … }; 正数集合: { … }; 负数集合: { … }; 无理数集合:{ … }. 18.(18分)计算(1))19(910-++-)( (2) )1()47(41---+-o c ba第13题第(3))24()1276521(-⨯-+ (4)2)3(12)3221(39-+⨯-+÷-(5))61(6)3(824-⨯--⨯+- (6)4575)3()61()3121(2÷⨯-+-÷-19.(8分)一砂石场某天的原料进出如下表(运进用正数表示,运出用负数表示)(1)这天砂石场的原料比原来增加了还是减少了?说明理由;(2)无论进出,砂石场按5元/吨收取手续费,这天收了多少元手续费?20.(8分)若5=a ,2=b . (1)若b a >,求b a +的值; (2)若b a b a -=+,求a 、b 的值.21.(8分)计算:(1)计算:b a ab ab b a 2222453+-- ;(2)先化简再求值:)1(3)1()1(2222--+-+---t t t t t t 其中21-=t .22.(10分)已知:A =2a 2+3ab -2a -1,B =-a 2+ab +a +3 . (1)当a =-1,b =10时,求4A -(3A -2B )的值; (2)若a 、b 互为倒数,求(1)中代数式的值.23.(10分)用式子表示十位上的数字是 a 、个位上的数字是b 的两位数,再把这个两位数的十位上的数字与个位上的数字对换,计算所得新的两位数与原数的和.这个和能被11整除吗?为什么?24.(10分)甲、乙两地相距100 km ,一辆汽车的行驶速度为v km/h . (1)用代数式表示这辆汽车从甲地到乙地需要行驶的时间;(2)若汽车行驶速度增加了a km/h ,则从甲行驶到乙可比原来早到多少小时? (3)若a =10km/h ,v =40km/h ,求上述(1)、(2)两小题中代数式的值. 25.(10分)如图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标的线段为道路,ABQP 、BCRQ 、CDSR 为正方形.(1)若A 、B 、C 、D 四个采煤点每天的采煤量均为50吨,现在P 地建一个运煤中转站,四个采煤点所采的煤都运到P 处,运煤费用为10元/吨·公里,A 到P 的距离为5公里,四个采煤点一天运煤到P 所需的最低总费用是多少元?(2)若A 、B 、C 、D 四个采煤点每天的采煤量之比为5:1:2:3,运煤费用为x 元/吨·公里,现要在P 、Q 、R 、S 四地选一个运煤中转站,使四个采煤点的煤运到中转站的总费用最低,中转站应在P 、Q 、R 、S 的那一点?为什么?l S R QDC A B P 班级编号_____________ 班级____________ 姓名 —————— …………………………………装………………………………订…………………………………线……………………………………26.(12分)一堆足够多的棋子,其数目是3的倍数,现在依次进行如下操作:第一步:将棋子平均分成左、中、右三堆;第二步:从左堆中取出5枚棋子放入中堆,再从右堆中取出3枚棋子放入中堆;第三步:从中堆取出与左堆余留棋子数相等的棋子放入左堆.(1)若这堆棋子数为30,第三步完成后,中堆有多少枚棋子?(2)若将题中第二步改为从左堆中取出8枚放入中堆,再从右堆中取出4枚放入中堆,其余步骤不变,则完成第三步后,中堆有多少枚棋子?(要有计算过程)(3)若题中第三步完成后,中堆棋子共有9枚,则第二步应从左堆、右堆各取多少枚棋子放入中堆?期中考试 七年级数学 参考答案一、选择题 1-6: CDBABC二、填空题7、-6 8、3 9、4.01×106 10、4 11、3n+21 12、4或-6(只写一个答案不扣分) 13、a+b>a+c>b+c 14、-7 15、2m+4 16、1/6三、解答题 17、有理数集合:{74,3.14030030003,20-,-82,0,)125.3(--… }; 正数集合: { 74,3.14030030003,)125.3(--,2.2020020002…,π … };负数集合: { 20-,-82,… };无理数集合:{2.2020020002…,π … }.………………每个数集2分,共8分18、(1)-20;(2)-1;(3)-18;(4)4;(5)-39;(6)14………………过程1分,答案2分19、(1)∵-3×2+4×1+(-1)×3+2×3+(-5)×2=-9,………………3分 ∴这天砂石场原料比原来减少了;………………4分(2)3×2+4×1+1×3+2×3+5×2=29,29×5=145(元),………………7分 这天收取了145元手续费………………8分20、(1)∵5=a ,2=b ,∴a =5±,b=2±,a >b ,则a =5,b=2±,a +b=7或a +b=3;…………4分(2)a =5,b=2时不成立,a =-5,b=2时成立,a =5,b=-2时成立,a =-5,b=-2时不成立,故a =-5,b=2或a =5,b=-2………………8分21、(1)原式=b a b a 2243+225ab ab --=2267ab b a -;………………4分(2)原式=)1()1(522-+---t t t t =4642--t t ,………………6分21-=t 代入得4642--t t =4×41-6×)21(--4=0………………8分22、(1)4A -(3A -2B )=A +2B =5ab+5,………………3分a =-1,b =10时5ab+5=-45………………5分 (2)a 、b 互为倒数时ab =1,………………8分5ab+5=10………………10分23、十位上的数字是 a 、个位上的数字是b 的两位数是10a+b ,………………3分对换后的两位数是10b+a ,………………6分两数和为(10a+b )+(10b+a )=11a+11b=11(a+b ),………………8分 根据题意,a 、b 是整数,故这个和能被11整除………………10分24、(1)这辆汽车从甲地到乙地需要行驶的时间是100/v (h );………………3分 (2)行驶速度增加了a km/h 后,从甲行驶到乙需要av +100(h ),………………5分 故可比原来早到)100100(av v +-(h )………………7分 (3)a =10km/h ,v =40km/h 时,(1)中代数式的值为100/40=2.5(h ),(2)中代数式值为2.5-100/50=0.5(h )………………10分25、(1)ABQP 、BCRQ 、CDSR 为正方形,A 到P 的最短路程为5公里,B 到P 的最短路程为10公里,C 到P 的最短路程为15公里,D 到P 的最短路程为20公里,………………2分故四个采煤点的最低费用为50×10×(5+10+15+20)=25000(元)………………5分 (2)设四个采煤点的采煤量分别是5a 吨、a 吨、2a 吨、3a 吨,三个正方形边长为b 公里,………7分运到P 处最低费用5abx +2abx + 6abx + 12abx = 25abx (元);运到Q 处最低费用T 2=10abx + abx + 4abx + 9abx = 24abx (元);运到R 处最低费用T 3=15abx +2abx +2abx + 6abx = 25abx (元);运到S 处最低费用T 4=20abx +3abx + 4abx + 3abx = 30abx (元),中转站应在Q 处………………10分26、(1)第一步完成后,左、中、右三堆棋子数为10,10,10;第二步完成后,左、中、右三堆棋子数为5,18,7;第三步完成后,左、中、右三堆棋子数为10,13,7。