高中函数的概念说课稿
高中数学函数说课稿(共8篇)

高中数学函数说课稿(共8篇)篇一:高中数学函数说课稿范文各位评委老师,大家好!我是本科数学**号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》(可以在这时候板书课题,以缓解紧张)。
我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。
恳请在座的专家评委批评指正。
一、教材分析1、教材的地位和作用(1)本节课主要对函数单调性的学习;(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)(3)它是历年高考的热点、难点问题(根据具体的课题改变就行了,如果不是热点难点问题就删掉)2、教材重、难点重点:函数单调性的定义难点:函数单调性的证明重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。
(这个必须要有)二、教学目标知识目标:(1)函数单调性的定义(2)函数单调性的证明能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想情感目标:培养学生勇于探索的精神和善于合作的意识(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)三、教法学法分析1、教法分析“教必有法而教无定法”,只有方法得当才会有效。
新课程标准之处师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。
本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法2、学法分析“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。
学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。
在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。
(前三部分用时控制在三分钟以内,可适当删减)四、教学过程1、以旧引新,导入新知通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,归纳。
函数概念人教版说课稿

函数概念人教版说课稿一、说课背景本次说课的内容是人教版高中数学必修一中的“函数概念”单元。
函数作为数学中的一个核心概念,是高中数学教学的重要组成部分。
通过本单元的学习,学生将建立起函数的基本概念,理解函数的图像和性质,为后续的数学学习打下坚实的基础。
二、教学目标1. 知识与技能目标:使学生理解函数的定义,掌握函数的基本概念,如定义域、值域、函数的表示方法等;能够识别和绘制基本初等函数的图像。
2. 过程与方法目标:培养学生通过观察、归纳、抽象等方法发现数学规律的能力;训练学生运用函数知识解决实际问题的思维。
3. 情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的数学审美和创新意识,强化学生合作学习和交流的能力。
三、教学重点与难点1. 教学重点:函数的定义及其基本概念,如定义域、值域、函数的表示方法。
2. 教学难点:函数图像的绘制和理解,函数性质的抽象和应用。
四、教学过程1. 引入新课通过实际问题引入函数的概念,例如,通过速度与时间的关系来引出函数的概念,让学生感受到函数与现实生活的紧密联系。
2. 讲解新知详细讲解函数的定义,强调函数的三要素:定义域、对应关系和值域。
通过实例说明函数的表示方法,如表格法、解析式法和图象法。
3. 学生活动组织学生进行小组讨论,通过具体的例子来归纳函数的定义和性质。
让学生尝试绘制简单的函数图像,并进行交流和评价。
4. 巩固练习设计针对性的练习题,包括函数定义的填空题、绘制函数图像的作图题以及运用函数知识解决实际问题的应用题。
5. 课堂小结总结本节课的主要内容,强调函数的基本概念和性质,提醒学生注意函数图像与方程解的区别。
6. 布置作业布置适量的课后作业,包括基础题和拓展题,以巩固学生对函数概念的理解和应用。
五、教学方法采用启发式教学法和探究式学习法,通过问题引导学生自主学习和合作探究。
同时,运用多媒体教学工具辅助教学,使抽象的函数概念形象化、直观化。
六、教学评价1. 过程评价:通过小组讨论、课堂提问和学生作品的展示,评价学生对函数概念的理解和应用能力。
高中数学-函数的概念说课稿

《函数的概念》说课稿说课人:张燕各位评委:大家好!今天我说课的内容是人教版高中数学必修1第一章第二节函数的概念第一课时。
我将从教材分析、教学目标、重点难点、教学过程设计及教学评价等方面来对本节课的教学进行说明。
一、教材分析——教材的特点、地位与作用本小节对函数概念的学习是在初中学过的函数概念的基础上从更严密的角度来定义函数.函数概念是整个中学数学中最重要的基本概念之一,它为后续学习指数函数、对数函数、幂函数等内容打下基础.而函数又是初等数学和高等数学中最基本最重要的内容之一,经常用到数学的各个分支里.它还是数形结合思想、函数与方程思想产生的载体.二、教学目标(1)知识与技能①理解函数的概念,初步学会用函数的定义判断函数.②会求一些最基本的函数的定义域、值域.③能通过函数的定义域和对应法则判断两个函数是否相等.(2)过程与方法①回顾初中函数的定义,然后通过三个背景实例,分别设置问题,在问题的引导下分析概括出三个实例的共同点,进而引出函数的概念.②在引入了函数概念的基础上给出函数的三要素.(3)情感、态度与价值观①通过对函数概念形成的探究,培养学生主动发现问题和分析问题的能力.②培养学生的抽象概括能力;学会数学表达和交流,发展数学应用意识.三、教学的重点和难点①重点:体会函数是描述变量之间相互依赖关系的重要数学模型,正确理解函数的概念、了解函数的三要素.②难点:对函数概念及符号()y f x的理解.四、教学过程设计为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为七个阶段:(1).回忆旧知,引出困惑问题一:请举出初中学过的一些函数.x y 2=,2x y =,x y 1=等. 问题二:请同学们回忆初中函数的定义是什么? 在一个变化过程中,有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值和它对应,那么说y 是x 的函数,x 叫自变量.[设计意图]:通过回忆初中的函数及函数的定义,为探究问题三作好铺垫. 问题三:)(0R x y ∈=是函数吗?学生活动:先由学生思考回答,对产生的两种意见展开小组讨论,学生可能解决不了.[设计意图]:由于受认知能力的影响,利用初中所学函数知识很难回答这些问题,形成认知冲突,让学生带着悬念、带着认知冲突学习后面的知识,这样有利于激发学生的学习欲望,从而引出本节课的主题(用幻灯片打出课题).(2).创设情境,形成概念实例一:一枚炮弹发射后,经过s 26落到地面击中目标.炮弹的射高为m 845,且炮弹距地面的高度h (单位:m )随时间t (单位:s )变化的规律是:25130t t h -=.问题四1.t 的范围是什么?h 的范围是什么?2.t 和h 有什么关系?这个关系有什么特点?[设计意图]:引导学生用集合与对应的语言来刻画实例一,同时培养学生分析问题和提取信息的能力.事实上生活中这样的实例有很多,随着改革开放的深入,我们的生活水平越来越高,需求越来越大,对环境的影响也越来越重,下面请同学们自学有关臭氧层空洞的问题和恩格尔系数的问题(课本实例二、三):实例二:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1中的曲线显示了南极上空臭氧层空洞的面积从2001~1979年的变化情况. 实例三:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表明,“八五”通过先对两个实例学生自学,然后请学生谈感受,老师提问,学生回答,师生共同完成.问题五:实例一、实例二、实例三的对应关系在呈现方式上有什么不同? 问题六:以上三个实例有什么相同的特征?学生活动:让学生分组讨论交流,总结归纳出.共同特点:①都有两个非空数集B A 、;②两个数集之间都有一种确定的对应关系;③对于数集A 中的每一个x ,按照某种对应关系f ,在数集B中都有唯一确定的y 值和它对应.[设计意图]:由前三个实例,抽象出函数概念的本质,未设计不是函数关系的对应图,这样处理有利于形成知识的正迁移.通过学生的“观察 分析 比较 归纳 概括 培养学生抽象思维的能力,同时也培养了学生的创新意识.问题七:满足以上共同特点的两个数集的对应关系,我们把它叫做什么呢?(先让学生说,老师再做补充)函数概念:设B A 、是非空的数集,如果按某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作A x x f y ∈=),(. 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合})({A x x f ∈叫做函数的值域.显然,值域是集合B 的子集. 问题八:请同学们根据现在函数的定义判断前面三个实例是否表示两个集合的函数关系?问题九:)(0R x y ∈=是函数吗?问题十:用几何画板在平面直角坐标系中画出一段弧,并作平移和旋转,同时叫学生判断这些平移和旋转中的弧是否表示函数图像.方法引导:如何判断给定的两个变量间是否具有函数关系?可依据定义,依据定义中的哪几个要点?要注意函数概念中的哪些关键词? [设计意图]:是对函数概念的简单理解,同时也解决了问题三.(3).质疑解惑,辨析概念:问题十一:请同学们勾画出概念中的关键词,并用简洁的语言说明. 通过交流得出以下几点:① B A 、都是非空的数集;② 任意性与唯一性;③ 确定的对应关系,对应关系f 可以是解析式、图象、表格.问题十二:函数由几部分组成?三要素:定义域、值域、对应法则,缺一不可.问题十三:怎样理解符号)(x f ?在法则f 下,x 所对应的函数值,并结合生活实例说明.[设计意图]:目的在于帮助学生巩固函数的概念.(4).讨论研究,深化理解【例1】已知函数213)(+++=x x x f , (1)求函数的定义域;(2)求)32(),3(f f -的值;(3)当0>a 时,求)1(),(-a f a f 的值.想一想:函数的定义域该怎么求?符号()f a (a 为常数)与()f x 有哪些区别与联系?(学生先思考、计算,老师提问,师生共同完成)[设计意图]: 教师引导学生总结常见函数定义域的求法,使学生加深对定义域的认识;重在强化任意自变量的函数值是唯一的,加深对符号)(x f 的理解,体会由特殊到一般、具体到抽象的分析问题的方法,同时培养运算能力.这组问题重在加深对函数三要素的理解,以此培养学生观察问题、分析问题的能力.(5).即时训练,巩固新知练习1.求函数131)(-++-=x x x f 的定义域:练习2.已知函数,23)(3x x x f +=求)()2(a f f -+的值;学生活动:抽两位学生到讲台在黑板上分别完成(其他同学在下面完成),完成后,师生共同评价完善。
《函数的概念》说课稿

《函数的概念》说课各位专家、评委:大家好!我说课的内容是数学人教版普通高中新课程标准实验教科书必修1函数第一课时。
我将从背景分析、教学目标设计、教法与学法选择、教学过程设计、教学媒体选择及教学评价设计六个方面来汇报我对这节课的教学设想.一、背景分析1.学习任务分析函数是中学数学一个重要的基本概念,其核心内涵为非空数集到非空数集的一个对应,函数思想是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础;它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础.为此本节课设定的教学重点是“函数概念的形成”.2.学情分析从学生知识层面看:学生在初中初步探讨了函数的相关知识,有一定的基础;通过高一第一节“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数,从根本上揭示函数的本质提供了知识保证.从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力.教学中由实例抽象归纳出函数概念时,要求学生必须通过自己的努力探索才能得出,对学生的能力要求比较高.因此,我认为发展学生的抽象思维能力以及对函数概念本质的理解是本节课的教学难点.鉴于上述分析我制定了本节课的教学目标.二、教学目标设计目标了解:通过丰富实例让学生了解函数是非空数集到非空数集的一个对应;了解构成函数的三要素;理解:函数概念的本质;抽象的函数符号)(xf的意义;()f x的区别与联系;会求一f a(a为常数)与()些简单函数的定义域;经历:让学生经历函数概念的形成过程,函数的辨析过程,函数定义域的求解过程以及求函数值的过程;渗透归纳推理、发展学生的抽象思维能力;体验:通过经历以上过程,让学生体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;体验函数思想;通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受数学的抽象性和简洁美.[设计意图]:这样设计目标,可操作性强,容易检测目标的达成度,同时也体现了素质教育的要求.三、教法与学法选择任何一堂课都是各种不同教学方法综合作用的结果,但我们认为本堂课有以下主要的教法和学法.1.问题式教学法:本堂课的特点是概念教学,根据学生的心理特征和认知规律,我采取问题式教学法;以问题串为主线,通过设置几个具体问题情景,发现问题中两个变量的关系,让学生归纳、概括出函数概念的本质,这刚好也符合建构主义的教学理论.2.探究式学法:新课程要求课堂教学的着力点是尊重学生的主体地位,发挥学生的主动精神,培养学生的创新能力,使学生真正成为学习的主体,结合本堂课的特点,我倡导的是探究式学法;让学生在探究问题的过程中,通过老师的引导归纳概括出函数的概念,通过问题的解决,达到熟练理解函数概念的目的,从而让学生由“被动学会”变成“主动会学”.四、教学过程设计(一).结构分析为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为七个阶段:(二).教学过程课题引入20XX年9月5日0时14分,我国在西昌卫星发射中心用“长征三号乙”运载火箭,成功将“鑫诺六号”通信广播卫星送入太空。
2024年《函数的概念》说课稿(7篇)

2024年《函数的概念》说课稿(7篇)《函数的概念》说课稿1一、本课时在教材中的地位及作用教材采用北师大版(数学)必修1,函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。
__节9个课时,函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。
在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。
这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
本节课《函数的概念》是函数这一章的起始课。
概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。
本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。
也为进一步学习函数这一章的其它内容提供了方法和依据二、教学目标理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
三、重难点分析确定根据上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是__的难点。
四、教学基本思路及过程本节课《函数的概念》是函数这一章的起始课。
概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。
本课(借助小黑板)从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用,也为进一步学习函数这一章的其它内容提供了方法和依据。
⑴学情分析一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
函数说课稿人教版版

函数说课稿人教版版一、说课背景与目标本次说课的内容为人教版高中数学教材中的函数章节。
函数作为数学中的一个核心概念,是高中数学教学的重要组成部分。
通过本章节的学习,学生将能够理解函数的基本概念、性质和应用,掌握函数的图象和变换,提高解决实际问题的能力。
二、教学内容与分析1. 函数的基本概念首先,我们将介绍函数的定义,包括函数的表达式、定义域和值域。
通过实例讲解,帮助学生理解函数是如何将输入值(自变量)映射到输出值(因变量)的。
此外,还将讨论常函数、一次函数、二次函数等常见函数类型的特点和性质。
2. 函数的图象在这一部分,我们将学习如何通过图象来表示函数,包括坐标系中的点和线。
通过绘制函数图象,学生可以直观地理解函数的性质,如单调性、奇偶性和周期性。
此外,还将介绍如何通过图象判断函数的交点、零点和极值点。
3. 函数的变换函数的变换是本章节的重点之一。
我们将讲解水平变换、垂直变换、伸缩变换和对称变换等基本变换规则,并通过实例演示如何应用这些规则来得到新的函数表达式和图象。
通过这部分的学习,学生将能够灵活地处理函数的变换问题。
4. 函数的应用最后,我们将探讨函数在实际问题中的应用,如物理中的运动规律、经济学中的成本和收益分析等。
通过解决实际问题,学生可以加深对函数概念的理解,并提高运用数学知识解决实际问题的能力。
三、教学方法与策略1. 启发式教学在讲解函数概念时,我们将采用启发式教学方法,通过提问和讨论引导学生自主思考和探索。
这种方法可以激发学生的学习兴趣,培养他们的批判性思维能力。
2. 案例分析通过分析具体的函数案例,学生可以更好地理解函数的性质和应用。
案例分析也有助于学生将理论知识与实际问题相结合,提高他们的实践能力。
3. 分组合作在探讨函数变换和应用时,我们将组织学生进行分组合作。
通过小组讨论和合作解决问题,学生可以相互学习,提高团队协作能力。
四、教学评价与反馈1. 课堂提问与小测在教学过程中,我们将通过课堂提问和小测来检测学生对函数概念的理解程度。
高中数学函数的说课稿(精选5篇)

高中数学函数的说课稿(精选5篇)高中数学函数的说课稿(精选5篇)作为一名教职工,时常需要用到说课稿,借助说课稿可以更好地组织教学活动。
那么大家知道正规的说课稿是怎么写的吗?下面是小编帮大家整理的高中数学函数的说课稿(精选5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
高中数学函数的说课稿1一、教材说明本节课是人教版高中数学必修I第一章《集合与函数概念》1.2.2函数的表示方法,该课时主要学习函数的三种表示方法:解析法,图像法,列表法,以及应用函数的表示方法解决一些实际问题1.教材所处低位和作用学习函数的表示,不仅是研究函数本身和应用函数解决实际问题所涉及的问题,而且是加深理解函数的概念的过程。
特别是在信息技术的环境下面可以使函数在数与形两方面的方式表示,因而使得学习函数的表示也是向学生渗透数形结合方法的重要过程。
2.学情分析学生的年龄特点和认知特点学生已具备的基本知识与技能二、教学目标知识与技能1.进一步理解函数概念,使学生掌握函数的三种表示法:解析法,列表法,图像法2. 能够恰当运用函数的三种表示方法,并借此解决一些实际问题:初步培养学生实际问题转化为数学问题的能力过程与方法1. 通过三种方法的学习,渗透数形结合的思想2.在运用函数解决实际问题的过程中,培养学生分析问题的能力增强学生运用数学的意识情感态度与价值:让学生体会数学在实际问题中的应用,培养学生学习兴趣三、教学重点,难点重点:函数的三种表示方法(因为学习本节课的目的就是为了掌握函数的三种不同表示方法)难点:根据不同的实际需要选择恰当的方法表示函数(因为恰当比较难把握)四、教法分析与学法指导本着以“学生发展为本”。
引导学生主动参与学习,指导学生学会学习方法,培养学生积极探索的精神,学生为主,教师指导。
整个教学过程主要用启发式教学方法,体现“分析”——“研究”——“总结”的学习环节,并以多媒体为教辅手段。
通过创设问题情境,营造学习氛围,组织学生讨论,让学生尝试探索中不断发现问题,以激发学生的求知欲,并在寻求解决问题的方法尝试的过程中获得自信心和成功感,在完成知识目标的同时,也完成情感目标的教育五、教学过程教学环节教学环节与教学内容设计意图引入定义表示法,这节课将更深入的了解、探讨这三种表示方法,先回顾函数解析法,图像法,列表法的定义;并给出一些众所周知的例子。
函数的概念说课稿

函数的概念说课稿各位评委、各位老师,今天我要说的课题是“函数的概念及性质”。
我将从教材分析、学情分析、教学目标分析、教法与学法、教学过程设计、教学效果评价六个方面进行说明。
一、教材分析一)教学内容函数的概念及性质”是苏教版高中数学必修1第二章第一节内容。
本节课为第一课时,主要讲解函数的概念、定义域、值域等基本内容。
这节课是后面研究函数的性质的理论基础,为后面研究指数函数、对数函数以及三角函数的图像和性质提供了研究方法和理论基础。
同时,这节课内容蕴含着数形结合等丰富的数学思想,是培养学生观察能力、概括能力、探究能力和创新意识的重要题材。
二)教材的地位和作用本节内容是继学生在初中研究了简单的一次函数、反比例函数、二次函数的基础上展开的,因此这节课有承前启后的作用,是本章和本节的重点内容之一。
三)教学重难点分析本节课的重点是函数的概念及其定义域、值域。
为了突出重点,教师应启发引导,让学生自主探索,用集合的语言描述出函数的概念,并通过课堂例题及练巩固所学知识。
本节课的难点是用集合的语言描述函数的概念。
为了突破此难点,关键是让学生理解函数自变量和变量的本质,并引导学生从集合的角度理解函数的定义域和值域。
二、学情分析通过初中函数知识的研究,学生在知识上已经具备了一定的知识经验和基础,在能力上,已经初步具备了运用数形结合思想解决问题的能力。
但数形结合的意识和思维的深刻性还有待进一步加强。
在情感方面,多数学生对教学新内容的研究,有相当的研究兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不均衡,需要教师创设民主和谐平等的课堂气氛,加以调动。
三、教学目标分析根据教学大纲的要求,本节教材的特点,学生的认知规律,确定了以下目标:1.知识与技能目标:掌握并理解函数的概念,会求一些简单函数的定义域和值域。
2.过程与方法目标:通过让学生积极参与、亲身经历用集合的语言描述函数概念的获得过程,进一步理解函数的概念,培养学生从感性上升到理性的能力,以及使用数学语言的逻辑性与严谨性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中函数的概念说课稿
高中函数的概念说课稿
涓涓不壅,终为江河,教师专业化水平的逐渐提高,需要通过教师不断学习、钻研理论知识并结合实际经验,才能逐步走向成熟,下面是小编带来的是高中函数的概念说课稿,希望对您有帮助。
一、说课内容:
苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题
二、教材分析:
1、教材的地位和作用
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。
二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。
进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。
而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。
所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的'取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.
3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范
围。
三、教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程
2、从学生活动出发,通过以旧引新,顺势教学过程
3、利用探索、研究手段,通过思维深入,领悟教学过程
四、教学过程:
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)
2.它们的形式是怎样的?
(=x+b,≠0;=x ,≠0;= , ≠0)
3.一次函数(=x+b)的自变量是什么?函数是什么?常量是什么?为什么要有≠0的条件?值对函数性质有什么影响?
【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调≠0的条件,以备与二次函数中的a进行比较.
(二)引入新课
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。
看下面三个例子中两个变量之间存在怎样的关系。
(电脑演示)
例1、(1)圆的半径是r(c)时,面积s (c)与半径之间的关系是什么?
解:s=πr(r>0)
例2、用周长为20的篱笆围成矩形场地,场地面积()与矩形一边长x()之间的关系是什么?
解: =x(20/2-x)=x(10-x)=-x+10x (0<x<10)
例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。
如果存款额是100元,那么请问两年后的本息和(元)与x之间的关系是什么(不考虑利息税)?
解: =100(1+x)
=100(x+2x+1)
= 100x+200x+100(0<x<1)
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系:(1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。
(2)自变量的最高次数是2(这与一次函数不同)。
(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1、强调“形如”,即由形来定义函数名称。
二次函数即是关于x 的二次多项式(关于的x代数式一定要是整式)。
2、在 =ax2+bx+c 中自变量是x ,它的取值范围是一切实数。
但在实际问题中,自变量的取值范围是使实际问题有意义的值。
(如例1中要求r>0)
3、为什么二次函数定义中要求a≠0 ?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)
4、在例3中,二次函数=100x2+200x+100中,a=100,b=200, c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零.
若b=0,则=ax2+c;
若c=0,则=ax2+bx;
若b=c=0,则=ax2.
注明:以上三种形式都是二次函数的特殊形式,而=ax2+bx+c是二次函数的一般形式.
【设计意图】这里强调对二次函数概念的理解,有助于学生更好
地理解,掌握其特征,为接下来的判断二次函数做好铺垫。
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)=3(x-1)+1 (2)
(3)s=3-2t (4)=(x+3)- x
(5) s=10πr (6) =2+2x
(8)=x4+2x2+1(可指出是关于x2的二次函数)
【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。
(四)巩固练习
1.已知一个直角三角形的两条直角边长的和是10c。
(1)当它的一条直角边的长为4.5c时,求这个直角三角形的面积;
(2)设这个直角三角形的面积为Sc2,其中一条直角边为xc,求S 关
于x的函数关系式。
【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。
2.已知正方体的棱长为xc,它的表面积为Sc2,体积为Vc3。
(1)分别写出S与x,V与x之间的函数关系式子;
(2)这两个函数中,那个是x的二次函数?
【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。
通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。
3.设圆柱的高为h(c)是常量,底面半径为rc,底面周长为Cc,圆柱的体积为Vc3
(1)分别写出C关于r;V关于r的函数关系式;
(2)两个函数中,都是二次函数吗?
【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。
4. 篱笆墙长30,靠墙围成一个矩形花坛,写出花坛面积(2)与长x 之间的函数关系式,并指出自变量的取值范围.
【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”。
(五)拓展延伸
1. 已知二次函数=ax2+bx+c,当x=0时,=0;x=1时,=2;x= -1时,=1.求a、b、c,并写出函数解析式.
【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。
2.确定下列函数中的值
(1)如果函数= x^2-3+2 +x+1是二次函数,则的值一定是______
(2)如果函数=(-3)x^2-3+2+x+1是二次函数,则的值一定是______
【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.
(六)小结思考:
本节课你有哪些收获?还有什么不清楚的地方?
【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。
而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。
(七)作业布置:
必做题:
1. 正方形的边长为4,如果边长增加x,则面积增加,求关于x 的函数关系式。
这个函数是二次函数吗?
2. 在长20c,宽15c的矩形木板的四角上各锯掉一个边长为xc的正方形,写出余下木板的面积(c2)与正方形边长x(c)之间的函数关系,并注明自变量的取值范围。
选做题:
1.已知函数是二次函数,求的值。
2.试在平面直角坐标系画出二次函数=x2和=-x2图象
【设计意图】作业中分为必做题与选做题,实施分层教学,体现
新课标人人学有价值的数学,不同的人得到不同的发展。
另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。
五、教学设计思考
以实现教学目标为前提
以现代教育理论为依据
以现代信息技术为手段
贯穿一个原则——以学生为主体的原则
突出一个特色——充分鼓励表扬的特色
渗透一个意识——应用数学的意识。