第22章二次函数 知识点过关练习题 二次函数与几何图形面积问题2021-2022人教九年级上册数学

合集下载

《常考题》初中九年级数学上册第二十二章《二次函数》知识点复习(含答案解析)

《常考题》初中九年级数学上册第二十二章《二次函数》知识点复习(含答案解析)

一、选择题1.一次函数y =ax +c 与二次函数y =ax 2+bx +c 在同一个平面坐标系中图象可能是( ) A .B .C .D .2.根据下列表格中的对应值:x1.98 1.992.00 2.01 2y ax bx c =++-0.06-0.05-0.030.01判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)一个根x 的范围是( ) A .1.00 1.98x << B .1.98 1.99x << C .1.99 2.00x << D .2.00 2.01x <<3.已知关于x 的二次函数y=(x-h )2+3,当1≤x≤3时,函数有最小值2h ,则h 的值为( ) A .32B .32或2 C .32或6 D .32或2或6 4.抛物线2(2)3y x =-+的对称轴是( ) A .直线2x =-B .直线3x =C .直线1x =D .直线2x =5.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为( )A .26B .3C .6D .426.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++ 7.已知抛物线229(0)y x mx m =-->的顶点M 关于坐标原点O 的对称点为M ',若点M '在这条抛物线上,则点M 的坐标为( )A .(1,5)-B .(2,8)-C .(3,18)-D .(4,20)-8.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >>9.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.关于抛物线223y x x =-+-,下列说法正确的是( ) A .开口方向向上 B .顶点坐标为()1,2- C .与x 轴有两个交点D .对称轴是直线1x =-11.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x 7-6- 5- 4-3-2-y27- 13-3-353则当1x =时,y 的值为( ) A .5B .3-C .13-D .27-12.如图,以直线1x =为对称轴的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( ).A .23x <<B .34x <<C .45x <<D .56x <<13.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( )A .0ac >B .方程20ax bx c ++=的两根是1213x x =-=, C .20a b -=D .当x>0时,y 随x 的增大而减小.14.二次函数2y ax bx c =++的图象如图所示,下列结论中:①20a b +>;②()a b m am b +≠+(1m ≠的实数);③2a c +>;④在10x -<<中存在一个实数0x 、使得0a bx a+=-其中正确的有( )A .1个B .2个C .3个D .4个15.对于二次函数2(2)7y x =---,下列说法正确的是( ) A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小二、填空题16.如图,抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,则不等式2ax mx c n -+<的解集是_____________.17.如图,已知二次函数()20y ax bx c a =++≠的图像与x 轴交于点A (3,0)对称轴为直线x =1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x <-1时,y <0;②30a b +>;③2-13a ≤≤-;④248ac ab ->;其中正确的结论有_________.18.抛物线2(3)y a x m =-+与x 轴的一个交点为(1,0),则关于x 的一元二次方程2(3)0a x m -+=的根为__________.19.二次函数2y ax bx c =++的部分对应值如下表:x-3 -2 -1 0 1 2 3 4 5 y125-3-4-3512利用二次函数的图象可知,当函数值0y >时,x 的取值范围是______. 20.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________21.单行隧道的截面是抛物线形,且抛物线的解析式为21 3.258y x =-+,一辆车高3米,宽4米,该车________(填“能”或“不能”)通过该隧道.22.小明从如图所示的二次函数()20y ax bx c a =++≠图象中,观察得出了下面五条信息:①32a b =;②240b ac -=;③ 0ab >;④0a b c ++<;⑤20b c +>.你认为正.确.信息的有_______________.(请填序号)23.如图,在直角坐标系中,点A ,C 在x 轴上,且8AC =,10AB =,90ACB ∠=,抛物线经过坐标原点O 和点A ,若将点B 向右平移5个单位后,恰好与抛物线的顶点D 重合,则抛物线的解析式为_______.24.二次函数2y ax bx c =++(a 、b 、c 为常数,0a ≠)中的x 与y 的部分对应值如下表:x 1-0 3 yn33当0n <时,下列结论中一定正确的是_______.(填序号即可)①0abc <;②若点()12,C y -,()2,D y π在该拋物线上,则12y y <;③4n a < ;④对于任意实数t ,总有()2496at bt a b +≤+.25.已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线2312y x x m =++上的点,则y 1,y 2,y 3的大小关系为__.26.若函数21y mx x =++的图象与x 轴只有一个公共点,则m 的值是_______.参考答案三、解答题27.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ()0,3-,A 点的坐标为(-1,0).(1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,当Q 在什么位置时QA+QC 最小,求出Q 点的坐标,并求出此时△QAC 的周长.28.已知关于x 的方程(k-1)x 2+(2k-1)x+2=0.(1)求证:无论k 取任何实数时,方程总有实数根;(2)当抛物线y =(k-1)x 2+(2k-1)x+2图象与x 轴两个交点的横坐标均为整数,且k 为正整数时,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象确定实数a 的取值范围.(3)已知抛物线y =(k-1)x 2+(2k-1)x+2恒过定点,求出定点坐标29.如图已知抛物线2y x bx c =-++与x 轴交于(1,0)A -,(3,0)B 两点与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)如图,连接BC ,PB ,PC ,设PBC 的面积为S . ①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.30.有一块缺角矩形地皮ABCDE (如下图),其中110m AB =,80m BC =,90m CD =,135EDC ∠=︒,现准备用此地建一座地基为长方形(图中用阴影部分表示)的数学大楼,建筑公司在接受任务后,设计了A 、B 、C 、D 四种方案,请你研究探索应选用哪一种方案,才能使地基面积最大?(1)求出A 、B 两种方案的面积.(2)若设地基的面积为S ,宽为x ,写出方案C (或D )中S 与x 的关系式. (3)根据(2)完成下表(5)用配方法对(2)中的S与x之间的关系式进行分析,并检验你的猜测是否正确.(6)你认为A、B、C、D中哪一种方案合理?。

2020-2021学年度人教版九年级上册数学第二十二章《二次函数》综合过关测试卷(含答案)

2020-2021学年度人教版九年级上册数学第二十二章《二次函数》综合过关测试卷(含答案)

流落地点 B 离墙距离 OB 是 ( )
第 6 题图
第 8 题图
第 10 题图
A.2m
B.3m
C.4m
D.5m
7.在同一平面直角坐标系中,函数 y=ax2+bx 与 y=bx+a 的图象可能是( )
8.如图,在平面直角坐标系中,抛物线所表示的函数表达式为 y=-2(x-h)2+k,则
下列结论正确的是 ( )
A.h>0,k>0 B.h<0,k>0
C.h<0,k<0
D.h>0,k<0
9.向空中发射一枚炮弹,经 x 秒后的高度为 y 米,且时间与高度的关系式为
y=ax2+bx+c(a≠0).若此炮弹在第 6 秒与第 14 秒时的高度相等,则在下列时
间中炮弹所在高度最高的是( )
A.第 8 秒 B.第 10 秒 C.第 12 秒 D.第 14 秒
,当 k=
时,y 随 x 的增大而减小.
时,它的图象是开口向下的抛物线;此时当 x
13.若抛物线 y=(x+a)2+a-1 的顶点在第二象限,则 a 的取值范围是
.
14.如图,已知二次函数 y=x2+bx+c 的图象经过点(-1,0),(1,-2),当 y 随 x 的增
大而增大时,x 的取值范围是________.
25.某跳水运动员进行 10m 跳台跳水训练时,身体(看成一点)在空中运动路线是 如图所示坐标系下经过原点 O 的一条抛物线(图中标出的数据为已知条件).在跳 某个规定动作时,正常情况下该运动员在空中的最高处 A 点距水面 10 m,入水处 B 点距池边的距离为 4m,同时运动员在距水面高度为 5m 以前,必须完成规定的翻 腾动作,并调整好入水的姿势,否则就会出现失误. 世纪金榜导学号 26534313

九年级数学上册第二十二章二次函数知识点总结归纳完整版(带答案)

九年级数学上册第二十二章二次函数知识点总结归纳完整版(带答案)

九年级数学上册第二十二章二次函数知识点总结归纳完整版单选题1、已知实数a ,b 满足b −a =1,则代数式a 2+2b −6a +7的最小值等于( )A .5B .4C .3D .2答案:A分析:由已知得b =a +1,代入代数式即得a 2-4a +9变形为(a -2)2+5,再根据二次函数性质求解. 解:∵b -a =1,∴b =a +1,∴a 2+2b -6a +7=a 2+2(a +1)-6a +7=a 2-4a +9=(a -2)2+5,∵(a -2)2≥0,∴当a =2时,代数式a 2+2b -6a +7有最小值,最小值为5,故选:A .小提示:本题考查二次函数的最值,通过变形将代数式化成(a -2)2+5是解题的关键.2、点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为()A .m >2B .m >32C .m <1D .32<m <2答案:B分析:根据y 1<y 2列出关于m 的不等式即可解得答案.解:∵点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上,∴y 1=(m -1-1)2+n =(m -2)2+n ,y 2=(m -1)2+n ,∵y 1<y 2,∴(m -2)2+n <(m -1)2+n ,∴(m-2)2-(m-1)2<0,即-2m+3<0,∴m>3,2故选:B.小提示:本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m的不等式.3、抛物线y=x2−x−1经过点(m,3),则代数式m2−m−1的值为()A.0B.1C.2D.3答案:D分析:将点(m,3)代入代数式中即可得到结果.解:将点(m,3)代入m2−m−1中得,m2−m−1=3,故代数式m2−m−1的值为3,故选:D.小提示:本题考查代数式的值,根据函数图象经过的点求函数解析式,能够掌握属性结合思想是解决本题的关键.4、小明在研究抛物线y=−(x−ℎ)2−ℎ+1(h为常数)时,得到如下结论,其中正确的是()A.无论x取何实数,y的值都小于0B.该抛物线的顶点始终在直线y=x−1上C.当−1<x<2时,y随x的增大而增大,则ℎ≥2D.该抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,则y1>y2答案:C分析:根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可.解:A.∵y=−(x−ℎ)2−ℎ+1,∴当x=ℎ时,y max=−ℎ+1,当ℎ<1时,y max=−ℎ+1>0,故错误;B.∵抛物线y=−(x−ℎ)2−ℎ+1的顶点坐标为(ℎ,−ℎ+1),当x=ℎ时,y=−ℎ−1≠−ℎ+1,故错误;C.∵抛物线开口向下,当−1<x<2时,y随x的增大而增大,∴ℎ≥2,故正确;D.∵抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,∴x1+x2<ℎ,∴点A到对称轴的距离大2于点B到对称轴的距离,∴y1<y2,故错误.故选C.小提示:本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.5、根据表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,可以判断方程ax2+bx+c=0的一个解x 的范围是()C.1<x<1.5D.1.5<x<2答案:B分析:利用二次函数和一元二次方程的性质.解:观察表格可知:当x=0.5时,y=-0.5;当x=1时,y=1,∴方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是0.5<x<1.故选:B.小提示:本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.6、某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元,用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件.如果用相同的工时生产,总获利润最大的产品是第k档次(最低档次为第一档次,档次依次随质量增加),那么k等于()A.5B.8C.9D.10答案:C分析:第k档次产品比最低档次产品提高了(k−1)个档次,则数量在60的基础上减少了3(k−1),每件产品利润在8的基础上增加2(k−1),据此可求出总利润关系,求出最值即可.解:设总利润为y元,∵第k档次产品比最低档次产品提高了(k−1)个档次,∴每天利润为y=[60−3(k−1)][8+2(k−1)]=−6(k−9)2+864,∴当k=9时,产品利润最大,每天获利864元,故选C.小提示:本题考查了二次函数的实际应用,借助二次函数解决实际问题是本题的关键.7、已知抛物线y=x2+bx+c与x轴的两个交点之间的距离为6,对称轴为x=3,则抛物线的顶点P关于x轴对称的点P′的坐标是()A.(3,9)B.(3,−9)C.(−3,9)D.(−3,−9)答案:A分析:根据抛物线y=x2+bx+c与x轴两个交点间的距离为6.对称轴为直线x=3,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为6,对称轴为直线x=3,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=36,−b=3,2×1∴(﹣b)2﹣4×c=36,b=﹣6,解得:c=0,∴抛物线的解析式为y=x2﹣6x=(x﹣3)2﹣9,∴顶点P的坐标为(3,﹣9),∴点P关于x轴的对称点的坐标是(3,9),故选:A.小提示:本题考查抛物线与x轴的交点、二次函数的性质、关于x轴对称的点的坐标特点,解答本题的关键是求出点P的坐标,利用二次函数的性质解答.8、已知a是不为0的常数,函数y=ax和函数y=﹣ax2+a在同一平面直角坐标系内的图象可以是()A.B.C.D.答案:C分析:根据题意分a>0,a<0两种情况讨论,结合函数图象即可求解.解:A.正比例函数中a<0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故A 不正确;B.正比例函数中a>0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故B不正确;C.正比例函数中a>0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,故C正确;D. .正比例函数中a<0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,矛盾,故D不正确;故选C小提示:本题考查了正比例函数与二次函数的图象的性质,掌握正比例函数与二次函数的图象的性质是解题的关键.9、二次函数y=ax2+bx+c(a≠0)的图像如图所示,则关于x的一元二次方程ax2+bx+c=0的根的情况描述正确的是()A.有两个相等的实数根B.有两个异号的实数根C.有两个同号的实数根D.有两个无法确定符号的实数根答案:B分析:根据二次函数的图像判断与x轴有两个交点,且在原点两侧,故关于x的一元二次方程ax2+bx+c= 0有两个异号的实数根.解:∵二次函数的图像与x轴有两个交点,且在原点两侧,∴关于x的一元二次方程ax2+bx+c=0有两个异号的实数根,故选:B.小提示:本题考查二次函数图像与一元二次方程根的关系,掌握二次函数y=ax2+bx+c(a≠0)的图像与x 轴有交点的横坐标即为关一元二次方程ax2+bx+c=0的根是解答本题的关键.10、已知抛物线y=2(x−3)2−5,其对称轴是()A.直线x=−3B.直线x=3C.直线x=−5D.直线x=5答案:B分析:直接根据抛物线的顶点式进行解答即可.解:∵y=2(x−3)2−5,∴抛物线对称轴为直线x=3.故选:B.小提示:本题考查二次函数的性质,解题关键是掌握二次函数图像与系数的关系.填空题11、已知二次函数y=(x−1)2+3,当x=_______时,y取得最小值.答案:1分析:根据抛物线的顶点坐标和开口方向即可得出答案.解:∵y=(x−1)2+3,∴该抛物线的顶点坐标为(1,3),且开口方向向上,∴当x=1时,y取得最小值,所以答案是:1.小提示:本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法.12、如图,过点D(1,3)的抛物线y=-x2+k的顶点为A,与x轴交于B、C两点,若点P是y轴上一点,则PC+PD的最小值为____.答案:3√2分析:由两点之间线段最短可知,当D、P、B在同一直线上时就可使PC+PD的值最小,解答即可.解:连接PB,对于抛物线y=-x2+k,对称轴是y轴,∴PC=PB,∴当D、P、B在同一直线上时,PC+PD的值最小,最小值为BD的长,∵抛物线y=-x2+k过点D(1,3),∴把x=1,y=3代入y=-x2+k,解得:k=4,把y=0代入y=-x2+4,解得:x=2或x=-2,所以点B的坐标为(-2,0),所以BD=√(−2−1)2+32=3√2,所以答案是:3√2.小提示:本题考查了抛物线与x轴的交点,轴对称-最短路线问题,找到P点是本题的关键.13、已知实数a、b满足a-b2=4,则代数式a2-3b2+a-14的最小值是________.答案:6分析:根据a-b2=4得出b2=a−4,代入代数式a2-3b2+a-14中,通过计算即可得到答案.∵a-b2=4∴b2=a−4将b2=a−4代入a2-3b2+a-14中得:a2-3b2+a-14=a2−3(a−4)+a−14=a2−2a−2a2−2a−2=a2−2a+1−3=(a−1)2−3∵b2=a−4≥0∴a≥4当a=4时,(a−1)2−3取得最小值为6∴a2−2a−2的最小值为6∵a2-3b2+a-14=a2−2a−2∴a2-3b2+a-14的最小值6所以答案是:6.小提示:本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解.14、已知二次函数y =−x 2−2x +3,当a ⩽x ⩽12时,函数值y 的最小值为1,则a 的值为_______. 答案:−1−√3##−√3−1分析:先把函数解析式化为顶点式可得当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,然后分两种情况讨论:若a ≥−1;若a <−1,即可求解.解:y =−x 2−2x +3=−(x +1)2+4,∴当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,若a ≥−1,当a ⩽x ⩽12时,y 随x 的增大而减小, 此时当x =12时,函数值y 最小,最小值为74,不合题意,若a <−1,当x =a 时,函数值y 最小,最小值为1,∴−a 2−2a +3=1,解得:a =−1−√3或−1+√3(舍去);综上所述,a 的值为−1−√3.所以答案是:−1−√3小提示:本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.15、已知二次函数y =ax 2+bx +c(a ≠0)的图像的顶点为(2,−2),与x 轴交于点(1,0)、(3,0),根据图像回答下列问题:当x _______时,y 随x 的增大而减小:方程ax 2+bx +c =0的两个根是___________.答案: x <2 x 1=1,x 2=3分析:利用开口向上和对称轴以及二次函数与一元二次方程的联系即可得到答案.解(1)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴二次函数的对称轴为直线x=2,∵抛物线的开口向上,∴当x<2时,y随x的增大而减小;(2)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴方程ax2+bx+c=0的两个根是x1=1,x2=3.小提示:本题考查了二次函数的图像与性质以及二次函数与一元二次方程的联系,属于常考题型.解答题16、在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直..以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.答案:(1)v=−12t+10,y=−14t2+10t(2)6cm/s(3)黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球分析:(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入两组数值求解即可;根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入三组数值求解即可;(2)当黑球减速后运动距离为64cm时,代入(1)式中y关于t的函数解析式求出时间t,再将t代入v关于t的函数解析式,求得速度v即可;(3)设黑白两球的距离为w cm,得到w=70+2t−y=14t2−8t+70,化简即可求出最小值,于是得到结论.(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入(0,10),(1,9.5)得,{10=b 9.5=k+b ,解得{k=−12b=10,∴v=−12t+10,根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入(0,0),(1,9.75),(2,19)得{0=c9.75=a+b19=4a+2b,解得{a=−14b=10c=0,∴y=−14t2+10t;(2)依题意,得−14t2+10t=64,∴t2−40t+256=0,解得,t1=8,t2=32;当t1=8时,v=6;当t2=32时,v=−6(舍);答:黑球减速后运动64cm时的速度为6cm/s.(3)设黑白两球的距离为w cm,w=70+2t−y=14t2−8t+70=14(t−16)2+6,∵14>0,∴当t=16时,w的值最小为6,∴黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球.小提示:本题考查一次函数和二次函数的实际应用,待定系数法求解析式,解决本题的关键是明确题意求出函数表达式.17、已知抛物线y=ax2−4ax+3(a≠0)的图象经过点A(−2,0),过点A作直线l交抛物线于点B(4,m).(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移n(n>0)个单位,使顶点落在直线l上,求m,n的值.答案:(1)y=−14x2+x+3;(2,4)(2)3;2分析:(1)把点A(−2,0)代入y=ax2−4ax+3(a≠0),求出a的值即可;再运用顶点坐标公式求出顶点坐标即可;(2)把C(4,m)代入y=−14x2+x+3可求出m的值;再运用待定系数法求出直线AB的解析式,从而可求出平移后押物线的顶点坐标,进一步可得结论.(1)将A(−2,0)代入y=ax2−4ax+3得:0=4a+8a+3,解得a=−14,∴抛物线的函数表达式为y=−14x2+x+3,∵−b2a =−12×(−14)=2,4ac−b24a=4×(−14)×3−124×(−14)=4,∴顶点坐标为(2,4);(2)把C(4,m)代入y=−14x2+x+3得,m =−4+4+3=3,设直线AB 的解析式为y =kx +b ,将A (−2,0),B (4,3)代入y =kx +b 得{0=−2k +b 3=4k +b, 解得{k =12b =1, ∴直线AB 的解析式为y =12x +1, ∵顶点的横坐标为2,∴把x =2代入y =12x +1得:y =2,∴n =4−2=2.小提示:本题主要考查了运用待定系数法求函数关系式以及二次函数图象的平移,正确理解题意是解答本题的关键.18、戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x 元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.答案:(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元分析:(1)根据题意列出代数式即可;(2)设每盒售价x 元,则每件的销售利润为(x −50)元,日销售量为[20+2(70−x )]件,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合商家想尽快销售完该款商品,即可求解;(3)设日利润为y ,由(2)列出函数关系式,根据二次函数的性质即可求解.(1)设每盒售价降低x 元,则日销量可表示为(20+2x )盒,每盒口罩的利润为70−50−x =20−x (元)所以答案是:(20+2x);(20−x)(2)设每盒售价x元,则每件的销售利润为(x−50)元,日销售量为[20+2(70−x)]件,根据题意得,(x−50)[20+2(70−x)]=(70−50)×20解得x1=70,x2=60又∵商家想尽快销售完该款商品,∴x=60.答:每件售价应定为60元;(3)设日利润为y,则y=(x−50)[20+2(70−x)]=−2x2+260x−8000=−2(x−65)2+450∴x=65时,y的最大值为450,即每盒售价应定为65元时,最大日利润是450元.小提示:本题考查了一元二次方程的应用,二次函数的应用,根据题意列出方程和函数关系式是解题的关键.。

初三数学上册(人教版)第二十二章二次函数22.1知识点总结含同步练习及答案

初三数学上册(人教版)第二十二章二次函数22.1知识点总结含同步练习及答案

描述:2.二次函数的图象与性质()的图象与性质()的图象与性质(、、 是常数,)的图象与性质所以 .m =2y =a x 2a ≠0y =a (x −h +k )2a ≠0y =a +bx +c x 2a b c a ≠函数 ()在上的最值问题:y =a +bx +c a ≠0y =a +bx +c x 2a >0m <x <n描述:例题:3.二次函数图象的变换平移“上加下减,左加右减”,上下平移时在整体后面进行加减,左右平移时针对的是 进行加减.对称旋转函数图象旋转可以看成先把原图象上的点(通常我们选择顶点)绕着旋转中心旋转,得到旋转后的点的坐标,即可得到新的函数.x (1) 将二次函数 的图象向右平移 个单位,再向上平移 个单位后,所得图象的函数表达式是______.(2) 如果保持抛物线 的图象不动,把 轴、 轴分别向上、向右平移 个单位,那么在新坐标系下该抛物线的解析式是_____.解:(1) ;(2) .(1) “上加下减,左加右减”,上下平移时在整体后面进行加减,左右平移时针对的是 进行加减.(2) 把 轴、 轴分别向上、向右平移 个单位,就相当于把函数分别向下、向左平移 个单位.y =x 212y =2x 2x y 2y =(x −1+2)2y =2(x +2−2)2x x y 22将二次函数 的图象绕坐标原点 旋转 ,则旋转后的图象对应的解析式为______.y =−2x −1x 2O 180∘y =−−2x +12描述:例题:4.二次函数的解析式设一般式 ()若已知条件或根据已知可推出图象上三个点,可以设成一般式,将已知条件代入解析式,得出关于 、、 的三元一次方程组,解方程即可.设顶点式 ()若已知条件或根据已知可推出函数的顶点或对称轴与最值时,可以设成顶点式,将已知条件代入解析式,求出待定系数.设交点式 ()若已知条件或根据已知可推出图象上纵坐标相同的两个点的坐标为 和 时,可以设交点式,将已知条件代入解析式,求出待定系数.解:.可以看成先把原图象上的点绕着坐标原点 旋转 ,得到旋转后的点的坐标,即可得到新的函数.y =−−2x +1x 2O 180∘(1) 抛物线 关于 轴对称的图象为______.(2) 在平面直角坐标系中,先将抛物线 关于 轴作轴对称变换,再将所得的抛物线关于 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为____.(3) 将抛物线 的图象绕它的顶点 旋转 ,则旋转后的抛物线的函数关系式为______.解:(1) ;(2) ;(3) .y =−2x −3x 2x y =+x −2x 2x y y =−2x +1x 2A 180∘y =−+2x +3x 2y =−+x +2x 2y =−+2x −1x 2y =a +bx +c x 2a ≠0a b c y =a (x −h +k )2a ≠0y =a (x −)(x −)+m x 1x 2a ≠0(,m )x 1(,m )x 2二次函数的图象经过 ,, 三点,求该二次函数的解析式.分析:已知条件中给出三个点,所以可以设一般式.解:设二次函数的解析式为 ().将 ,, 三点代入,得解得即二次函数的解析式为 .A (1,2)B (0,−1)C (−2,5)y =a +bx +c x 2a ≠0A (1,2)B (0,−1)C (−2,5)⎧⎩⎨a +b +c =2,c =−1,4a −2b +c =5.⎧⎩⎨a =2,b =1,c =−1.y =2+x −1x 2已知二次函数的图象的顶点为 ,且过点 ,求该二次函数的解析式.分析:已知一个顶点和另一个点,所以可以设顶点式.解:设二次函数的解析式为 .将点 的坐标代入,解得 .所以二次函数的解析式为 .A (−1,4)B (2,−5)y =a (x +1+4)2B (2,−5)a =−1y =−(x +1+4=−−2x +3)2x 2已知抛物线与 轴的交点坐标是 ,,且抛物线经过 ,求抛物线的解析x A (−2,0)B (1,0)C (2,8)四、课后作业 (查看更多本章节同步练习题,请到快乐学)高考不提分,赔付1万元,关注快乐学了解详情。

人教版九年级数学第二十二章二次函数解答题专题复习 55含解析.docx

人教版九年级数学第二十二章二次函数解答题专题复习 55含解析.docx

第二十二章《二次函数》解答题专题复习(55)一、解答题1.如图,顶点M在y轴上的抛物线与直线y=x+l相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1) 求抛物线的函数关系式;(2) 判断AABM的形状,并说明理由.2.如图①已知抛物线y= -x2 +bx+c与x轴交于点A、研3,0)与y轴交于点C(0,3)直线/经过B、C两点.抛物线的顶点为D.(1) 求抛物线和直线/的解析式;(2) 判断ABCD的形状并说明理由.(3) 如图②若点E是线段BC上方的抛物线上的一个动点过E点作EF±x轴于点FEF交线段BC于点G当AECG是直角三角形时求点E的坐标.图①3.如图,抛物线y=x2+bx+c与x轴相交于A ( - 1, 0) , B (3, 0),于y轴交于C.(1)求该抛物线的解析式;(2)若M是抛物线的对称轴与直线BC的交点,N是抛物线的顶点,求MN的长; (3)若点P是抛物线上点,当S APAB =8时,求点P的坐标.4.在平面直角坐标系xQy中抛物线y = ax1 2-4ax+4a—3(a。

0)的顶点为A .(1)求顶点A的坐标;(2)过点(05)且平行于X轴的直线/与抛物线y = ax2-4ax+4a-3(a^0)交于3,C 两点.①当a = 2时求线段BC的长;②当线段的长不小于6时直接写出。

的取值范围.为卜765-321Illi| | | | |)5 -4 -3 -2 -10 1 2 3 4 5x-1-2-3-45.如图甲,抛物线y=ax2+bx - 1经过A(-l, 0), B(2, 0)两点,交y轴于点C (0,-1 求抛物线的表达式和直线BC的表达式.2 如图乙,点P为在第四象限内抛物线上的一个动点,过点P作x轴的垂线PE交直线BC于点D.-3 -4 -3 -2 -1 □(1)求b的值;①在点P运动过程中,四边形ACPB的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.②是否存在点P使得以点。

人教版九年级数学上册第22章二次函数二次函数的图象和性质二次函数同步训练题含答案

人教版九年级数学上册第22章二次函数二次函数的图象和性质二次函数同步训练题含答案

人教版九年级数学上册第22章二次函数二次函数的图象和性质二次函数同步训练题含答案同步训练题1. 以下函数中是二次函数的是( )A .y =2x +1B .y =-2x +1C .y =x 2+2 D .y =12x -2 2. 二次函数y =1-3x +5x 2,那么它的二次项系数a ,一次项系数b ,常数项c 区分是( )A .1,-3,5B .1,3,5C .5,3,1D .5,-3,13. 一台机器原价60万元,假设每年的折旧率是x ,两年后这台机器的价钱为y 元,那么y 与x 之间的函数关系式为( )A .y =60(1-x )2B .y =60(1-x )C .y =60-x 2D .y =60(1+x )24. 在一定条件下,假定物体运动的路段s (米)与时间t (秒)之间的关系为s =5t 2+2t ,那么当t =4秒时,该物体所经过的路程为( )A .28米B .48米C .68米D .88米5. 函数y =(m -3)x |m |-1+3x -1是二次函数,那么m 的值是( )A .3B .-3C .±2D .±36. 二次函数y =2x (x -4)的二次项系数与一次项系数的和为( )A .10B .-10C .6D .-67. 在二次函数y =(a -3)x 2+x -2中,a 的取值范围是 .8. 把函数y =(2-3x )(6-x )化成y =ax 2+bx +c 的方式为 .9. 矩形的长为4cm ,宽为3cm ,假设将长与宽都添加x cm ,那么面积添加y cm 2,那么y 与x 之间的函数关系式为y = .10. 〝五一〞时期市工会组织篮球竞赛,赛制为单循环赛(每两队之间竞赛一场),参与这次竞赛的x 支球队共停止y 场竞赛,那么y 与x 之间的函数关系是 ,它 (填〝是〞或〝不是〞)二次函数.11. 当时,函数y=(m2-2m-8)x2+(m+2)x+m是二次函数,当时,这个函数是一次函数.12. 某商店运营一种水产品,本钱为每千克40元,据市场剖析,假定按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售就增加10千克,设下跌x元后,总利润为y元,那么y与x的函数关系式为.13. 以下函数中,哪些是二次函数?哪些不是?假定是二次函数,请指出a、b、c 的值.(1)y=x(x-1)+1;(2)y=2x(1-x)+2x2;(3)y=(x+3)(3-x).14. 函数y=(a2-4)x2+(a+2)x+3.(1)当a为何值时,此函数是二次函数;(2)当a为何值时,此函数是一次函数.15. 当m为何值时,y=(m+1)xm2-2m-1+(m-3)x+m是二次函数?16. 为了改善小区环境,某小区决议要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).假定设绿化带的BC边长为x m,绿化带的面积为y m2,求y与x之间的函数关系式,并写出自变量x的取值范围.17. 用一根长50cm的细绳围成一个矩形.设矩形的一边长为x cm,面积为y cm2.(1)求y与x的函数关系式;(2)该细绳能围成面积为160cm2的矩形吗?假定能,求出此时的x的值;假定不能,请说明理由.18. 某公司研制出一种新型产品,每件的消费本钱为18元,按定价40元出售,每月可销售20万件.为了添加销量,公司决议采取降价的方法,经市场调研,每降价1元,月销售量可添加2万件,设每件产品的售价为x元.(1) 设月销售利润W(万元),请用含有销售单价x(元)的代数式表示W;(2) 为使月销售利润到达480万元,且按物价部门规则此类商品每件的利润率不得高于80%,每件产品的售价为多少?参考答案:1---6 CDADB D7. a≠38. y =3x 2-20x +129. x 2+7x10. y =12x(x -1) 是 11. m≠4且m≠-2 m =412. y =-10x 2+400x +500013. 解:(1)是,a =1,b =-1,c =1.(2)不是.(3)是,a =-1,b =0,c =9.14. 解:(1)由题意得:a 2-4≠0解得a ≠±2即:当a ≠±2时,此函数是二次函数.(2)由题意得:⎩⎪⎨⎪⎧ a 2-4=0a +2≠0解得:a =2即:当a =2时,此函数是一次函数.15. 解:依据题意得,假定原函数为二次函数,那么有⎩⎪⎨⎪⎧ m +1≠0,m 2-2m -1=2解得m =3.即当m =3时,y =(m +1)xm 2-2m -1+(m -3)x +m 是二次函数.16. 解:由题意,得y =x×40-x 2=-12x 2+20x ,自变量x 的取值范围是0<x≤25. 17. 解:(1)依据题意,得y =x (25-x )=-x 2+25x(2)假定能围成面积为160cm2的矩形,那么-x2+25x=160,即x2-25x+160=0 ∵b2-4ac=(-25)2-4×1×160=-15<0∴方程没有实数根,∴不能围成面积为160cm2的矩形.18. 解:(1)依据题意可得函数解析式:W=(x-18)[20+2(40-x)]=-2x2+136x-1800,即月销售利润W=-2x2+136x-1800;(2)当W=480时,-2x2+136x-1800=480解得x1=30,x2=38又∵38>18×(1+80%),∴x=30答:每件产品的售价为30元.。

九年级数学人教版(上册)小专题8 二次函数与几何图形的小综合

九年级数学人教版(上册)小专题8 二次函数与几何图形的小综合

解:在 y=-x2-2x+3 中,令 y=0,得 -x2-2x+3=0, 解得 x=1 或 x=-3, ∴A(-3,0),B(1,0). 在 y=-x2-2x+3 中,当 x=0 时,y=3, ∴C(0,3).
①当 AC 为平行四边形的边时,PQ∥AC,且 PQ=AC,
如图 1,过点 P 作对称轴的垂线,垂足为 G,设 AC 交对称轴于
入,得 - n=3k3+,n=0,解得kn==13,. ∴直线 BC 的解析式为 y=x+3. 设 P(t,-t2-2t+3)(-3<t<0),则 K(t,t+3), ∴PK=-t2-2t+3-(t+3)=-t2-3t. ∴S△PBC=S△PBK+S△PCK=12PK·(t+3)+12PK·(0-t)=32PK=32(-t2
-3t).
∵S△ABC=12AB·OC=12×4×3=6, ∴S 四边形 PBAC=S△PBC+S△ABC=32(-t2-3t)+6=-32(t+32)2+785. ∵-32<0, ∴当 t=-32时,四边形 PBAC 的面积最
大,此时点 P 的坐标为(-32,145).
类型 2 线段和、周长最值问题 3.(2021·通辽节选)如图,抛物线 y=-x2+2x+3 与 x 轴交于 A, B 两点,与 y 轴交于点 C,动点 P 在抛物线的对称轴上,当以 P,B, C 为顶点的三角形周长最小时,求点 P 的坐标及△PBC 的周长. 解:在 y=-x2+2x+3 中,令 y=0,得-x2+2x+3=0, 解得 x=-1 或 x=3, ∴A(3,0),B(-1,0). 在 y=-x2+2x+3 中,令 x=0,得 y=3, ∴C(0,3).
②当 AC 为平行四边形的对角线时,
如图 2,设 AC 的中点为 M, ∵A(-3,0),C(0,3),

九年级数学上册第二十二章二次函数知识点梳理(带答案)

九年级数学上册第二十二章二次函数知识点梳理(带答案)

九年级数学上册第二十二章二次函数知识点梳理单选题1、已知点A(-2,y1),B(1,y2),C(3,y3)在二次函数y=−2x2图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y2<y1<y3D.y3<y1<y2答案:D分析:分别计算出自变量为-2、-1和3的函数值,然后比较函数值的大小.解:∵点A(-2,y1),B(1,y2),C(3,y3)在二次函数y=-2x2图象上,∴y1=-2×4=-8;y2=-2×1=-2;y3=-2×9=-18,∴y3<y1<y2.故选:D.小提示:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.2、已知抛物线y=x2+kx−k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.−5或2B.−5C.2D.−2答案:B分析:根据二次函数图象左加右减,上加下减的平移规律进行解答即可.解:函数y=x2+kx−k2向右平移3个单位,得:y=(x−3)2+k(x−3)−k2;再向上平移1个单位,得:y=(x−3)2+k(x−3)−k2+1,∵得到的抛物线正好经过坐标原点∴0=(0−3)2+k(0−3)−k2+1即k2+3k−10=0解得:k=−5或k=2∵抛物线y=x2+kx−k2的对称轴在y轴右侧∴x=−k>02∴k<0∴k=−5故选:B.小提示:此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.3、在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是( )A.B.C.D.答案:D分析:根据二次函数与一次函数的图象与性质进行判断即可.解:当a>0,b>0时,y=ax2+bx的开口上,与x轴的一个交点在x轴的负半轴,y=ax+b经过第一、二、三象限,且两函数图象交于x的负半轴,无选项符合;当a>0,b<0时,y=ax2+bx的开口向上,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、三、四象限,且两函数图象交于x的正半轴,故选项A正确,不符合题意题意;当a<0,b>0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、二、四象限,且两函数图象交于x的正半轴,C选项正确,不符合题意;当a<0,b<0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的负半轴,y=ax+b经过第二、三、四象限,B选项正确,不符合题意;只有选项D的两图象的交点不经过x轴,故选D.小提示:本题考查二次函数与一次函数图象的性质,解题的关键是根据a、b与0的大小关系进行分类讨论.4、在平面直角坐标系中,若抛物线y=2(x+5)(x−3)经一次变换后得到抛物线y=2(x+3)(x−5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向上平移8个单位D.向下平移8个单位答案:B分析:先将两解析式化成顶点式,然后根据平移前后的两抛物线的顶点坐标即可解答.解:y=2(x+5)(x-3)=2x2+4x-30=2(x+1)2-32,顶点坐标是(-1,-32).y=2(x+3)(x-5)=2x2-4x-30=2(x-1)2-32,顶点坐标是(1,-32).所以将抛物线y=2(x+5)(x-3)向右平移2个单位长度得到抛物线y=2(x+3)(x-5).故选:B.小提示:本题主要考查了二次函数图像与平移变换,掌握平移的规律“左加右减,上加下减”是解答本题的关键.5、如图,已知抛物线y=ax2+bx−2的对称轴是x=−1,直线l∥x轴,且交抛物线于点P(x1,y1),Q(x2,y2),下列结论错误..的是()A.b2>−8a B.若实数m≠−1,则a−b<am2+bmC.3a−2>0D.当y>−2时,x1⋅x2<0答案:C分析:先根据抛物线对称轴求出b=2a,再由抛物线开口向上,得到a>0,则b2+8a=4a2+8a>0由此即可判断A;根据抛物线开口向上在对称轴处取得最小值即可判断B;根据当x=1时,y=a+b−2<0,即可判断C;根据y>−2时,直线l与抛物线的两个交点分别在y轴的两侧,即可判断D.解:∵抛物线y=ax2+bx−2的对称轴是x=−1,∴−b=−1,2a∴b=2a,∵抛物线开口向上,∴a>0,∴b2+8a=4a2+8a>0,∴b2>−8a,故A说法正确,不符合题意;∵抛物线开口向下,抛物线对称轴为直线x=-1,∴当x=-1时,y=a−b−2,最小值∴当实数m≠−1,则a−b−2<am2+bm−2,∴当实数m≠−1时,a−b<am2+bm,故B说法正确,不符合题意;∵当x=1时,y=a+b−2<0,∴a+2a-2<0,即3a-2<0,故C说法错误,符合题意;∵y>−2,∴直线l与抛物线的两个交点分别在y轴的两侧,∴x1⋅x2<0,故D说法正确,不符合题意;故选C.小提示:本题主要考查了根据二次函数的图象去判断式子符号,二次函数的系数与图象之间的关系等等,熟知二次函数的相关知识是解题的关键.6、二次函数y=x2+2x+2的图象的对称轴是()A.x=−1B.x=−2C.x=1D.x=2答案:A分析:将二次函数y=x2+2x+2写成顶点式,进而可得对称轴.解:∵y=x2+2x+2=(x+1)2+1.∴二次函数y=x2+2x+2的图象的对称轴是x=−1.故选A.小提示:本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键.7、某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x2+60x+800,则利润获得最多为()A.15元B.400元C.800元D.1250元答案:D分析:将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故当x=15时,y有最大值,最大值为1250即利润获得最多为1250元故选:D.小提示:此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.8、抛物线y=ax2+bx+c经过点(−1,0)、(3,0),且与y轴交于点(0,−5),则当x=2时,y的值为()A.−5B.−3C.−1D.5答案:A分析:先利用待定系数法求出抛物线解析式,再求函数值即可.解:∵抛物线y=ax2+bx+c经过点(−1,0)、(3,0),且与y轴交于点(0,−5),∴{c=−5a−b+c=09a+3b+c=0,解方程组得{c=−5 a=53b=−103,∴抛物线解析式为y=53x2−103x−5,当x=2时,y=53×4−103×2−5=−5.故选择A.小提示:本题考查待定系数法求抛物线解析式,和函数值,掌握系数法求抛物线解析式方法和函数值求法是解题关键.9、如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE=2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.答案:B分析:根据平移过程,可分三种情况,当0≤x<1时,当1≤x<3时,当3≤x≤4时,利用直角三角形的性质及面积公式分别写出各种情况下y与x的函数关系式,再结合函数图象即可求解.过点C作CM⊥AB于N,DG=3,在等腰Rt△ABC中,AB=2,∴CN=1,①当0≤x<1时,如图,CM=x,∴PQ=2x,∴y=12⋅PQ⋅CM=12×2x⋅x=x2,∴0≤x<1,y随x的增大而增大;②当1≤x<3时,如图,∴y=S△ABC=12×2×1=1,∴当1≤x<3时,y是一个定值为1;③当3≤x≤4时,如图,CM=x−3,∴PQ=2(x−3),∴y=12AB⋅CN−12PQ⋅CM=12×2×1−12×2×(x−3)2=1−(x−3)2,当x=3,y=1,当3<x<4,y随x的增大而减小,当x=4,y=0,结合ABCD选项的图象,故选:B.小提示:本题考查了动点函数问题,涉及二次函数的图象及性质,能够准确理解题意并分情况讨论是解题的关键.10、如图,在正方形ABCD中,AB=4,点P从点A出发沿路径A→B→C向终点C运动,连接DP,作DP的垂直平分线MN与正方形ABCD的边交于M,N两点,设点P的运动路程为x,△PMN的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.答案:A分析:分点P在AB和BC上两种情况,分别求出MN和PF长,利用面积公式求解.解:(1)如图,当0≤x≤4时,点P在AB上,过点N作NE⊥AD于点E,设MN与PD交于点F,∴NE=DC=AD,则PD=√PA2+AD2=√x2+42=√x2+16,又∵MN垂直平分PD,∴PF=12PD=12√x2+16,∴∠MDF+∠FMD=∠MNE+∠FME=90°,∴∠MNE=∠PDA,在△MNE和△PDA中,{∠A=∠NEMAD=EN∠PDA=∠MNE∴△APD≌△EMN,∴PD=MN=√x2+16,∴y=12MN⋅PF=12√x2+16⋅12√x2+16=14x2+4 ,(2)如图,当4<x≤8时,点P在BC上,过点N作NE⊥CD于点E,设MN交PD于点F,则PD=√PC2+CD2=√(8−x)2+16 ,∴PF=12√(8−x)2+16用(1)的方法得MN=√(8−x)2+16,y=12√(8−x)2+16⋅12√(8−x)2+16=14(x−8)2+4,故y={14x2+4(0≤x≤4)14(x−8)2+4(4<x≤8)故选择A.小提示:本题考查分段函数,解决问题的关键是根据点P的位置确定自变量的取值范围得出函数解析式.填空题11、抛物线y=3−x2位于y轴左侧的部分是______的.(填“上升”或“下降”)答案:上升分析:根据二次函数图象的性质解答即可.解:∵二次项系数-1<0,∴抛物线开口向下,∵对称轴是直线y=0,∴抛物线y=3−x2位于y轴左侧的部分是上升的.所以答案是:上升.小提示:本题考查了二次函数图象的性质,熟练掌握二次函数y=ax2+k的性质是解答本题的关键.对于二次函数y=ax2+k (a,k为常数,a≠0),当a>0时,抛物线开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,抛物线开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.12、如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线经过x轴上的点A,B,则此抛物线的解析式为__________________.答案:y=−2x2+16x−24分析:根据平行四边形的性质得到CD=AB=4,即C点坐标为(4,8),进而得到A点坐标为(2,0),B点坐标为(6,0),利用待定系数法即可求得函数解析式.∵四边形ABCD为平行四边形∴CD=AB=4∴C点坐标为(4,8)∴A点坐标为(2,0),B点坐标为(6,0)设函数解析式为y=a(x−2)(x−6),代入C点坐标有8=a(4−2)(4−6)解得a=−2∴函数解析式为y=−2(x−2)(x−6),即y=−2x2+16x−24故答案为y=−2x2+16x−24.小提示:本题考查了平行四边形的性质,和待定系数法求二次函数解析式,问题的关键是求出A点或B点的坐标.13、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:①c=3;②2a+b=0;③8a-b+c>0;④方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_______(填序号).答案:①②④分析:由二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),即可判断①;由抛物线的对称轴为直线x=1,即可判断②;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,即可判断④,由抛物线开口向下,得到a<0,再由当x=-1时,a−b+c<0,即可判断③.解:∵二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),∴c=3,故①正确;∵抛物线的对称轴为直线x=1,∴−b=1,即2a+b=0,故②正确;2a∵抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,∴抛物线与x轴的另一个交点在2到3之间,故④正确;∵抛物线开口向下,∴a<0,∵当x=-1时,a−b+c<0,∴a−b+c+7a<0即8a−b+c<0,故③错误,所以答案是:①②④.小提示:本题主要考查了二次函数图像的性质,解题的关键在于能够熟练掌握二次函数图像的性质.14、如图,一位篮球运动员投篮,球沿抛物线y=−0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m,则他距篮筐中心的水平距离OH是_________m.答案:4分析:将y=3.05代入y=−0.2x2+x+2.25中可求出x,结合图形可知x=4,即可求出OH.解:当y=3.05时,−0.2x2+x+2.25=3.05,解得:x=1或x=4,结合图形可知:OH=4m,所以答案是:4小提示:本题考查二次函数的实际应用:投球问题,解题的关键是结合函数图形确定x的值.15、如图,一次足球训练中,一球员从球门正前方将球射向球门,球射向球门的路线呈抛物线,当球飞行的水平距离为6米时,球达到最高点,此时球离地面3米,当足球下落到离地面53米时,足球飞行的水平距离为__________米.答案:10分析:设抛物线的解析式为y=a(x−6)2+3,代入原点,确定解析式为y=−112x2+x,当y=53米时,求得x的值即可.设抛物线的解析式为y=a(x−6)2+3,代入原点,得:0=a(0−6)2+3,解得a=−112,∴抛物线的解析式为y=−112x2+x,当y=53米时,−112x2+x=53,解得x=10,x=2(舍去),足球飞行的水平距离为10米,所以答案是:10.小提示:本题考查了抛物线的解析式,已知函数值求自变量值,熟练掌握待定系数法是解题的关键.解答题16、李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?答案:(1)y=−0.2x+8.4(1≤x≤10且x为整数).(2)李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.分析:(1)根据题意列出y=8.2−0.2(x−1),得到结果.(2)根据销售利润=销售量×(售价-进价),利用(1)结果,列出销售利润w与x的函数关系式,即可求出最大利润.(1)解:由题意得y=8.2−0.2(x−1)=−0.2x+8.4∴批发价y与购进数量x之间的函数关系式是y=−0.2x+8.4(1≤x≤10,且x为整数).(2)解:设李大爷销售这种水果每天获得的利润为w元则w=[12−0.5(x−1)−y]⋅10x=[12−0.5(x−1)−(−0.2x+8.4)]⋅10x=−3x2+41x∵a=−3<0∴抛物线开口向下∵对称轴是直线x=416∴当1≤x≤41时,w的值随x值的增大而增大6∵x为正整数,∴此时,当x=6时,w=138最大当41≤x≤10时,w的值随x值的增大而减小6∵x为正整数,∴此时,当x=7时,w=140最大∵140>138∴李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.小提示:本题考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利用二次函数的增减性来解答,解题关键是理解题意,确定变量,建立函数模型,然后结合实际选择最优方案进行解决.17、某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?答案:(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元分析:(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M元,结合题意,根据二次函数的性质,计算得利润最大值对应的x的值,从而得到答案.(1)由题意列方程得:(x+40-30)(300-10x)=3360解得:x1=2,x2=18∵要尽可能减少库存,∴x2=18不合题意,故舍去∴T恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=−10(x −10)2+4000 ∴当x =10时,M 最大值=4000元 ∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.小提示:本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.18、在平面直角坐标系中,设二次函数y =−12(x −2m )2+3−m (m 是实数). (1)当m =2时,若点A (8,n )在该函数图象上,求n 的值.(2)小明说二次函数图象的顶点在直线y =−12x +3上,你认为他的说法对吗?为什么?(3)已知点P(a +1,c),Q(4m −5+a,c)都在该二次函数图象上,求证:c ≤138.答案:(1)-7 (2)对,理由见解析 (3)见解析分析:(1)把m =2,点A (8,n )代入解析式即可求解;(2)由抛物线解析式,得顶点是(2m ,3-m ),把x =2m 代入y =−12x +3,求出y 值与3-m 比较,若相等则即可判断小明说法正确,否则说法错误;(3)由点P (a +1,c ),Q (4m -5+a ,c )的纵坐标相同,即可求得对称轴为直线x =a+1+4m−5+a2=a +2m -2,即可得出a +2m -2=2m ,求得a =2,得到P (3,c ),代入解析式即可得到 c =-12(3-2m )2+3-m =-2m 2+5m -32=-2(m -54)2+138,根据二次函数的性质即可证得结论.(1)解:当m =2时,y =-12(x -4)2+1 ∵A (8,n )在函数图象上, ∴n =-12(8-4)2+1=-7(2)解:由题意得,顶点是(2m,3-m)当x=2m时,y=-12×2m+3=-m+3∴顶点(2m,3-m)在直线y=-12x+3上(3)证明:∵P(a+1,c),Q(4m-5+a,c)都在二次函数的图象上∴对称轴是直线x=a+1+4m-5+a2=a+2m-2∴a+2m-2=2m,∴a=2,∴P(3,c),把P(3,c)代入抛物线解析式,得∴c=-12(3-2m)2+3-m=-2m2+5m-32=-2(m-54)2+138,∵-2<0,∴c有最大值为138,∴c≤138.小提示:本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级上册数学《二次函数》知识点过关精准练
(二次函数与几何图形面积问题)
知识储备:
1.对于二次函数y=-2x2+4x-5,当x=______时,y有最_______值,最_______值是_______.
2.应用二次函数解决面积最值问题的步骤
1.分析题中的变量与常量、几何图形的基本性质.
2.找出等量关系,建立函数模型.
3.结合函数图象及性质,考虑实际问题中自变量的取值范围,常采用配方法求出,或根据二次函数顶点坐标公式求出面积的最大或最小值.
知识点过关精准练
一、选择题。

1.用长40 m的篱笆围成一个矩形菜园,则围成的菜园的最大面积为( )
A.400 m2
B.300 m2
C.200 m2
D.100 m2
2. 如图,小明想用长为12 m的栅栏(虚线部分),借助
围墙围成一个矩形花园ABCD,则矩形ABCD的最大面积是( )
A.16 m2
B.18 m2
C.20 m2
D.24 m2
3.已知在直角三角形中两条直角边的和为18,则当三角形的面积最大时,其中一条直角边长为( )
A.8
B.9
C.10
D.12
4.如图所示,在矩形ABCD的各边AB,BC,CD和DA上分别选取点E,F,G,H(不与A,B,C,D各点重合),使得AE=AH=CF=CG,如果AB=60,BC=40,那么四边形EFGH的最大面积是( )
A.1 350
B.1 300
C.1 250
D.1 200
5. 已知一个直角三角形两直角边之和为20 cm,则这个直角三角形的最大面积为( )
A.25 cm2
B.50 cm2
C.100 cm2
D.不确定
6.如图,△ABC是直角三角形,∠A=90°,AB=8 cm,AC=6 cm.点P从点A出发,沿AB方向以2 cm/s的速度向点B运动,同时点Q从点A出发,沿AC方向以1 cm/s 的速度向点C运动,其中一个动点到达终点时则另一个动点也停止运动,则△APQ 的最大面积是( )
A.0 cm2
B.8 cm2
C.16 cm2
D.24 cm2
7. 用长为12 m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.设CD=DE=x m,五边形ABCDE的面积为S m2.则S的最大值为 ( )
A.12√3 m2
B.12 m2
C.24√3 m2
D.没有最大值
二、填空题。

9. 在一块长为30 m,宽为20 m的矩形地面上修建一个正方形花台.设正方形的边长为x m,除去花台后,矩形地面的剩余面积为y m2,则y与x之间的函数表达式是___________,自变量x的取值范围是__________.y有最_____值,是______ m2.
10.某农场拟建两间矩形饲养室,一面靠着现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体(不包括门)总长为27 m,则能建成的饲养室面积最大为__ __m2.
11.把一根长100 cm的铁丝分为两部分,每一部分均弯曲成一个正方形,它们的面积和最小是__________cm2.
12.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB 向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4 mm/s的速度移动(不与点C重合).如果P,Q分别从A,B同时出发,那么经过__ __s,四边形APQC的面积最小.
13.一养鸡专业户计划用116 m长的篱笆围成如图所示的三间长方形鸡舍,门MN 宽2 m,门PQ和RS的宽都是1 m,围成的鸡舍面积最大是__ __m2.
14.如图,用长8 m的铝合金条制成使窗户的透光面积最大的矩形窗框,那么这个窗户的最大透光面积是 __m2.(中间横框所占的面积忽略不计)
15.如图,小滕用铁栅栏及一面墙(墙足够长)围成了一个矩形自行车场地ABCD,在AB
和BC边各有一个2 m宽的小门(不用铁栅栏),小滕共用了铁栅栏40米,则矩形ABCD的面积的最大值为________m2.
16.如图,在△ABC中∠B=90°,AB=6 cm,BC=8 cm,点P从点A开始沿AB边向点B 以1 cm/s的速度移动,与此同时,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.△BPQ的面积的变化趋势是_______,△BPQ的面积的最大值为______.
三、解答题。

17. 如图,某农户计划用长12 m的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7 m.
(1)若生物园的面积为9 m2,则这个生物园垂直于墙的一边长为多少?
(2)若要使生物园的面积最大,该怎样围?
18. 正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当点M在BC上运动时,保持AM和MN垂直,当点M在什么位置时,△ADN的面积最大或最小?并求出最大或最小面积.
19.如图,利用一面墙(墙EF最长可利用24米),围成一个矩形苗圃园ABCD,与围墙平行的一边BC上要预留3米宽的入口(如图MN所示,不用砌墙),用46米长的墙的材料做围墙,设这个苗圃园垂直于墙的一边的长为x米.
(1)若平行于墙的一边长为y米,直接写出y与x的函数表达式及其自变量x的取值范围.
(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.
20.如图,点E,F,G,H分别位于边长为a的正方形ABCD的四条边上,四边形EFGH 也是正方形,AE=x,正方形EFGH的面积为y.
(1)当a=2,y=3时,求x的值.
(2)当x为何值时,y的值最小?最小值是多少?
21.如图,矩形ABCD 的两边长AB=18 cm,AD=4 cm,点P,Q 分别从A,B 同时出发,P在边AB 上沿AB 方向以每秒2 cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1 cm的速度匀速运动.设运动时间为x s,△PBQ 的面积为y(cm2).
(1)求y 关于x 的函数表达式,并写出x 的取值范围.
(2)求△PBQ 的面积的最大值.。

相关文档
最新文档