向量在生活中的应用

合集下载

平面向量的应用(教师版)

平面向量的应用(教师版)

平面向量的应用1 平面几何中的向量方法① 由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此平面几何中的许多问题都可用向量运算的方法加以解决.② 用向量方法解决平面几何问题的“三部曲”(1) 建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2) 通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3) 把运算结果“翻译”成几何关系.Eg 点A 、B 、C 、D 不在同一直线上(1)证明直线平行或共线:AB//CD ⇔AB⃗⃗⃗⃗⃗ //CD ⃗⃗⃗⃗⃗ (2)证明直线垂直:AB ⊥CD ⟺AB⃗⃗⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ =0 (3)求线段比值:AB CD =|λ|且AB//CD ⇔ AB⃗⃗⃗⃗⃗ =λCD ⃗⃗⃗⃗⃗ (4)证明线段相等: AB⃗⃗⃗⃗⃗ 2=CD ⃗⃗⃗⃗⃗ 2⇔AB =CD 2 向量在物理中的应用① 速度、力是向量,都可以转化为向量问题;② 力的合成与分解符合平行四边形法则.【题型一】平面向量在几何中的应用【典题1】证明:对角线互相平分的四边形是平行四边形.【证明】 设四边形ABCD 的对角线AC 、BD 交于点O ,且AO =OC ,BO =OD∵AB ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ +12DB ⃗⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ =12DB ⃗⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ ∴AB ⃗⃗⃗⃗⃗ =DC⃗⃗⃗⃗⃗ ,即AB =DC 且AB//DC 所以四边形ABCD 是平行四边形即对角线互相平分的四边形是平行四边形.【点拨】① 证明四边形是平行四边形⇔AB =DC 且AB//DC ⇔AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ . ② 证明几何中的平行和长度关系可以转化为向量的倍数关系.【典题2】 已知平行四边形ABCD 的对角线为AC 、BD ,求证AC 2+BD 2=2(AB 2+AD 2) (即对角线的平方和等于邻边平方和的2倍).【证明】由 |AC ⃗⃗⃗⃗⃗ |2=AC ⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )2=|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2+2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗|DB⃗⃗⃗⃗⃗⃗ |2=DB ⃗⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗ )2=|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2−2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗ 两式相加得|AC⃗⃗⃗⃗⃗ |2+|DB ⃗⃗⃗⃗⃗⃗ |2=2(|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2) 即AC 2+BD 2=2(AB 2+AD 2)【点拨】利用|AB⃗⃗⃗⃗⃗ |2=|AB |2可证明线段长度关系.【典题3】 用向量方法证明:三角形三条高线交于一点.【证明】(分析 设H 是高线BE 、CF 的交点,再证明AH ⊥BC ,则三条高线就交于一点.)设H 是高线BE 、CF 的交点,则有BH ⃗⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ∵BH ⃗⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ ⊥AB⃗⃗⃗⃗⃗ ∴(AH⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )⋅AC ⃗⃗⃗⃗⃗ =(AH ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )⋅AB ⃗⃗⃗⃗⃗ =0 化简得AH⃗⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=0C∴AH⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0 则AH ⊥BC (向量中证明AB ⊥CD ,只需要证明AB ⃗⃗⃗⃗⃗⃗ ⋅CD⃗⃗⃗⃗⃗⃗ =0) 所以三角形三条高线交于一点.【典题4】证明三角形三条中线交于一点.【证明】(分析 设BE 、AF 交于O ,证明C 、O 、D 三点共线便可)AF 、CD 、BE 是三角形ABC 的三条中线设BE 、AF 交于点O ,∵点D 是中点,∴CD ⃗⃗⃗⃗⃗ =12(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) 连接EF ,易证明∆AOB~∆FOE,且相似比是2:1,∴BO =23BE,∴CO ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BO ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +23BE ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +23(BA ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ ) =CB ⃗⃗⃗⃗⃗ +23(BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ )=13(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) ∴CO ⃗⃗⃗⃗⃗ =23CD ⃗⃗⃗⃗⃗ 即C 、O 、D 三点共线, (向量中证明三点A 、B 、C 共线,只需证明AB⃗⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ ) ∴AF 、CD 、BE 交于一点,即三角形三条中线交于一点.巩固练习1(★★) 如图,E ,F 分别是四边形ABCD 的边AD ,BC 的中点,AB =1,CD =2,∠ABC =75°,∠BCD =45°,则线段EF 的长是 .【答案】√72【解析】 由图象,得EF →=EA →+AB →+BF →,EF →=ED →+DC →+CF →.∵E ,F 分别是四边形ABCD 的边AD ,BC 的中点,∴2EF →=(EA →+ED →)+(AB →+DC →)+(BF →+CF →)=AB →+DC →.∵∠ABC =75°,∠BCD =45°,∴<AB →,DC →>=60°,∴|EF|→=12√(AB →+DC →)2=12√AB →2+DC →2+2|AB|→⋅|DC|→cos <AB →,DC →>=12√12+22+2×1×2×12=√72. ∴EF 的长为√72. 故答案为 √72. 2(★★) 证明勾股定理,在Rt∆ABC 中,AC ⊥BC ,AC =b ,BC =a ,AB =c ,则c 2=a 2+b 2.【证明】 由AB⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ,得AB ⃗⃗⃗⃗⃗ 2=(AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )2=AC ⃗⃗⃗⃗⃗ 2+2AC ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ 2 即|AB⃗⃗⃗⃗⃗ |2=|AC ⃗⃗⃗⃗⃗ |2+|CB ⃗⃗⃗⃗⃗ |2 故c 2=a 2+b 2.3(★★) 用向量方法证明 对角线互相垂直的平行四边形是菱形.【证明】如图平行四边形ABCD 对角线AC 、BD 交于点O ,∵AB⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =BO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ∴|AB ⃗⃗⃗⃗⃗ |2=(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )2=|AO ⃗⃗⃗⃗⃗ |2+2AO ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ +|OB⃗⃗⃗⃗⃗ |2=|AO ⃗⃗⃗⃗⃗ |2+|OB ⃗⃗⃗⃗⃗ |2|BC⃗⃗⃗⃗⃗ |2=(BO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )2=|BO ⃗⃗⃗⃗⃗ |2+2BO ⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ +|OC ⃗⃗⃗⃗⃗ |2=|BO ⃗⃗⃗⃗⃗ |2+|OC ⃗⃗⃗⃗⃗ |2 ∴|AB ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ | A BC∴四边形ABCD 是菱形.4(★★)用向量方法证明 设平面上A ,B ,C ,D 四点满足条件AD ⊥BC ,BD ⊥AC ,则AB ⊥CD .【证明】 因AD ⊥BC ,所以AD →⋅BC →=AD →⋅(AC →−AB →)=0,因BD ⊥AC ,所以AC →⋅BD →=AC →⋅(AD →−AB →)=0,于是AD →⋅AC →=AD →⋅AB →,AC →⋅AD →=AC →⋅AB →,所以AD →⋅AB →=AC →⋅AB →,(AD →−AC →)⋅AB →=0,即CD →⋅AB →=0,所以CD →⊥AB →,即AB ⊥CD .5(★★)用向量方法证明 对角线相等的平行四边形是矩形.【证明】如图,平行四边形ABCD 对角线AC 、BD 交于点O,设OA =a ,∵对角线相等 ∴OB =OD =a∵AB⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ ∴AB ⃗⃗⃗⃗⃗ ∙AD ⃗⃗⃗⃗⃗ =(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )(AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ )=AO ⃗⃗⃗⃗⃗ 2+AO ⃗⃗⃗⃗⃗ ∙OD ⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ⋅AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ =a 2+AO ⃗⃗⃗⃗⃗ (OD⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )−a 2=0 ∴AB ⃗⃗⃗⃗⃗ ⊥AD ⃗⃗⃗⃗⃗ 即AB ⊥AD∴四边形ABCD 是矩形.6(★★★) 已知向量OP 1→、OP 2→、OP 3→满足OP 1→+OP 2→+OP 3→=0,|OP 1→|=|OP 2→|=|OP 3→|=1.求证 △P 1P 2P 3是正三角形.【证明】法一 ∵OP 1→+OP 2→+OP 3→=0,∴OP 1→+OP 2→=−OP 3→.∴|OP 1→+OP 2→|=|−OP 3→|.∴|OP 1→|2+|OP 2→|2+2OP1→•OP 2→=|OP 3→|2. 又∵|OP 1→|=|OP 2→|=|OP 3→|=1,∴OP 1→•OP 2→=−12.∴|OP 1→||OP 2→|cos∠P 1OP 2=−12,即∠P 1OP 2=120°.B C同理∠P 1OP 3=∠P 2OP 3=120°.∴△P 1P 2P 3为等边三角形.法二 以O 点为坐标原点建立直角坐标系,设P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则OP 1→=(x 1,y 1),OP 2→=(x 2,y 2),OP 3→=(x 3,y 3).由OP 1→+OP 2→+OP 3→=0,得{x 1+x 2+x 3=0y 1+y 2+y 3=0.∴{x 1+x 2=−x 3y 1+y 2=−y 3., 由|OP 1→|=|OP 2→|=|OP 3→|=1,得x 12+y 12=x 22+y 22=x 32+y 32=1∴2+2(x 1x 2+y 1y 2)=1∴|P 1P 2→|=√(x 1−x 2)2+(y 1−y 2)2=√x 12+x 22+y 12+y 22−2x 1x 2−2y 1y 2=√2(1−x 1x 2−y 1y 2)=√3同理|P 1P 3→|=√3,|P 2P 3→|=√3∴△P 1P 2P 3为正三角形【题型二】平面向量在物理中的应用【典题1】 如图,已知河水自西向东流速为|v 0|=1m/s ,设某人在静水中游泳的速度为v 1,在流水中实际速度为v 2.(1)若此人朝正南方向游去,且|v 1|=√3m/s ,求他实际前进方向与水流方向的夹角α和v 2的大小;(2)若此人实际前进方向与水流垂直,且|v 2|=√3m/s ,求他游泳的方向与水流方向的夹角β和v 1的大小.【解析】如图,设OA ⃗⃗⃗⃗⃗ =v 0⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ =v 1⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ =v 2⃗⃗⃗⃗ ,则由题意知v 2⃗⃗⃗⃗ =v 0⃗⃗⃗⃗ +v 1⃗⃗⃗⃗ ,|OA ⃗⃗⃗⃗⃗ |=1,根据向量加法的平行四边形法则得四边形OACB 为平行四边形.(1)由此人朝正南方向游去得四边形OACB 为矩形,且|OB⃗⃗⃗⃗⃗ |=AC =√3,如下图所示,则在直角△OAC中,|v2⃗⃗⃗⃗ |=OC=√OA2+AC2=2,tan∠AOC=√31=√3,又α=∠AOC∈(0 ,π2),所以α=π3;(2)由题意知α=∠OCB=π2,且|v2⃗⃗⃗⃗ |=|OC|=√3,BC=1,如下图所示,则在直角△OBC中,|v1⃗⃗⃗⃗ |=OB=√OC2+BC2=2,tan∠BOC=√3=√33,又∠AOC∈(0 ,π2),所以∠BOC=π6,则β=π2+π6=2π3,答(1)他实际前进方向与水流方向的夹角α为π3,v2的大小为2m/s;(2)他游泳的方向与水流方向的夹角β为2π3,v1的大小为2m/s.【点拨】注意平行四边形法则的使用!【典题2】在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为F1⃗⃗⃗ ,F2⃗⃗⃗⃗ ,且|F1⃗⃗⃗ |=|F2⃗⃗⃗⃗ |,F1⃗⃗⃗ 与F2⃗⃗⃗⃗ 的夹角为θ.给出以下结论①θ越大越费力,θ越小越省力;②θ的范围为[0 ,π];③当θ=π2时,|F1⃗⃗⃗ |=|G|;④当θ=2π3时,|F1⃗⃗⃗ |=|G|.其中正确结论的序号是.【解析】对于①,由|G|=|F1⃗⃗⃗ +F2⃗⃗⃗⃗ |为定值,所以G2=|F1⃗⃗⃗ |2+|F2⃗⃗⃗⃗ |2+2|F1⃗⃗⃗ |×|F2⃗⃗⃗⃗ |×cosθ=2|F1⃗⃗⃗ |2(1+cosθ),解得|F1⃗⃗⃗ |2=|G|22(1+cosθ);由题意知θ∈(0 ,π)时,y=cosθ单调递减,所以|F1⃗⃗⃗ |2单调递增,即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是(0 ,π),所以②错误.对于③,当θ=π2时,|F1⃗⃗⃗ |2=G22,所以|F1⃗⃗⃗ |=√22|G|,③错误.对于④,当θ=2π3时,|F1⃗⃗⃗ |2=|G|2,所以|F1⃗⃗⃗ |=|G|,④正确.综上知,正确结论的序号是①④.故答案为①④.【典题3】如图,重为10N的匀质球,半径R为6cm,放在墙与均匀的AB木板之间,A端锁定并能转动,B端用水平绳索BC拉住,板长AB=20cm,与墙夹角为α,如果不计木板的重量,则α为何值时,绳子拉力最小?最小值是多少?【解析】如图,设木板对球的支持力为N⃗,则N⃗=10sinα,设绳子的拉力为f.又AC=20cosα,AD=6tanα2,由动力矩等于阻力矩得|f|×20cosα=|N⃗|×6tanα2=60sinα⋅tanα2,∴|f|=6020cosα⋅sinα⋅tanα2=3cosα(1−cosα)≥3(cosα+1−cosα2)2=314=12,∴当且仅当 cosα=1−cosα 即cosα=12,亦即α=60°时,|f|有最小值12N.巩固练习1(★★) 一条渔船以6km/ℎ的速度向垂直于对岸的方向行驶,同时河水的流速为2km/ℎ,则这条渔船实际航行的速度大小为 .【答案】2√10km/ℎ【解析】如图所示,渔船实际航行的速度为v AC →=v 船→+v 水→;大小为|v AC →|=|v 船→+v 水→|=√62+22 =2√10km/ℎ.2(★★) 如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1 ,F 2,且F 1 ,F 2与水平夹角均为45°,|F 1⃗⃗⃗ |=|F 2⃗⃗⃗⃗ |=10√2N ,则物体的重力大小为 .【答案】20【解析】如图,∵|F 1→|=|F 2→|=10√2N ,∴|F 1→+F 2→|=10√2×√2N =20N ,∴物体的重力大小为20.故答案为 20.3(★★) 已知一艘船以5km/ℎ的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30°角,求水流速度和船实际速度.【答案】5√3km/ℎ【解析】如图,设AD →表示船垂直于对岸的速度,AB →表示水流的速度,以AD ,AB 为邻边作平行四边形ABCD ,则AC →就是船实际航行的速度.在Rt△ABC 中,∠CAB =30°,|AD →|=|BC →|=5,∴|AC →|=|BC →|sin30°=10,|AB →|=|BC →|tan30°=5√3.故船实际航行速度的大小为10km/ℎ,水流速度5√3km/ℎ.4 (★★)一个物体受到同一平面内三个力F 1、F 2、F 3的作用,沿北偏东45°的方向移动了8m .已知|F 1|=2N ,方向为北偏东30°;|F 2|=4N ,方向为东偏北30°;|F 3|=6N ,方向为西偏北60°,求这三个力的合力F 所做的功.【答案】24√6 J【解析】 以三个力的作用点为原点,正东方向为x 轴正半轴,建立直角坐标系. 则由已知可得OF 1→=(1,√3),OF 2→=(2√3,2),OF 3→=(﹣3,3√3).∴OF →=OF 1→+OF 2→+OF 3→=(2√3−2,4√3+2).又位移OS →=(4√2,4√2).∴OF →•OS →=(2√3−2)×4√2+(4√3+2)×4√2=24√6(J).。

向量的应用生活实例

向量的应用生活实例

向量的应用生活实例
一、医学检查
在医学检查中,影像诊断技术使用的是向量技术。

CT扫描和核磁共振成像技术可以把患者的器官分解成一个一个的三维向量,经过计算机模拟、分析和增强后,以清晰的图像形式展示给医生,以此来帮助医生仔细分析患者的病情,确定诊断并进行治疗。

二、物流配送
物流配送中大量使用向量运算,例如使用向量来表示不同路径上两个点之间的距离,可以根据配送任务,比较每条路线的长度,从而为物流车辆规划最优的路径,从而节省时间和资源。

三、地图导航
地图导航需要使用向量,比如用户定位后,可以把用户位置和目的地分别表示为不同的向量,然后通过计算向量之间的距离和方向,来为用户规划出最优的路线。

这样可以大大缩短用户出行的时间和路程。

- 1 -。

第二章平面向量在几何物理中的应用举例【新教材】北师大版高中数学必修第二册课件

第二章平面向量在几何物理中的应用举例【新教材】北师大版高中数学必修第二册课件

当堂检测
角度2 垂直问题
例2如图,在正方形ABCD中,P是对角线BD上的一点,四边形PECF是
矩形,用向量证明:PA⊥EF.
探究一
探究二
当堂检测
证明设正方形边长为 a,由于 P 是对角线 BD 上的一点,可设
=λ(0≤λ≤1).
则 = − = -λ = -λ( + )=(1-λ)-λ.
激趣诱思
知识点拨
(3)要证 A,B,C 三点共线,只要证明存在唯一一个实数 λ≠0,使=λ,
或若=a,=b,=c,存在一个实数 t,使 c=ta+(1-t)b.
(4)证明线段的垂直问题,如证明四边形是矩形、正方形,判断直线
(线段)是否垂直等,常运用向量垂直的条件:a⊥b⇔a·
b=0
| || |
π
=
2

=
3
2
3
3
2
.
π
因为 0<∠EAC<2 ,所以∠EAC=6 .
反思感悟 利用平面向量解决几何中的夹角问题,本质是将平面图
形中的角视为两个向量的夹角,借助夹角公式进行求解.这类问题
也有两种方向,一是利用向量的基求解,二是利用坐标运算.在求解
过程中,务必注意向量的方向.
探究一
因为实际速度=游速+水速,所以游速为
− = ,
在 Rt△AOB 中,由已知||=4 3,||=4,
因此 ∥ ,
又因为 , 有公共点 F,所以 A,E,F 三点共线.
探究一
探究二
当堂检测
反思感悟 证明A,B,C三点共线的步骤
(1)证明其中两点组成的向量与另外两点组成的向量共线.
(2)说明两向量有公共点.

向量在生活中的应用159661[整理版]

向量在生活中的应用159661[整理版]

向量在生活中的应用159661在生活中向量也有一些具体表现形式,有关的问题也可以充分利用向量求解.应用问题的解决主要是建立数学模型.用向量、三角、解析几何之间的特殊关系,将生活与数学知识之间进行沟通,使动静转换充实到解题过程之中。

一、平面向量在位移与速度上的应用例1 以某市人民广场的中心为原点建立直角坐标系,x轴指向东,y轴指向北一个单位表示实际路程100米,一人步行从广场入口处A(2,0)出发,始终沿一个方向均速前进,6分钟时路过少年宫C,10分钟后到达科技馆B(-3,5).求:此人的位移向量(说明此人位移的距离和方向);此人行走的速度向量(用坐标表示);少年宫C点相对于广场中心所处的位置.(下列数据供选用:tan18°24?=0.3327,tan18°26?= 13 ,tan2?=0.0006)分析:⑴AB的坐标等于它终点的坐标减去起点的坐标,代入A,B坐标可求;⑵习惯上单位取百米/小时,故需先将时间换成小时。

而速度等于位移除以时间,由三角知识可求出坐标表示的速度向量。

⑶通过向量的坐标运算及三角函数公式求解。

解:⑴ AB=(-3,5)-(2,0)=(-5,5),|AB|=(-5)2+52=52,∠xOB=135°⑵t=10分= 16 小时,|V|= |AB|t =302∴Vx=|V|cos135°=-30,Vy=|V|sin135°=30,∴V=(-30,30)⑶∵AC= 610 AB,∴OC=OA+ 35 AB=(2,0)+ 35 (-5,5)=(-1,3)∴|OC|=10,又tan(18°24?+2?)=0.3327+0.00061-0.3327×0.0006 = 13而tan∠COy= 13 ,∴∠COy=arctan 13 =18°26?。

∴少年宫C点相对于广场中心所处的位置为“北偏西18°26?,10百米”处。

空间向量的实际应用

空间向量的实际应用

向量在计算机游戏中的应用
角色控制
在游戏中,玩家可以通过向量输 入来控制角色的移动、跳跃和攻 击等动作,提供更加直观和灵活
的游戏体验。
物理引擎
游戏中的物理引擎可以通过向量运 算来模拟物体的运动和碰撞,如物 体的位移、速度和加速度等。
动画和特效
向量可以用于实现游戏中的各种动 画和特效,如火、水、电等自然现 象的模拟,增加游戏的视觉效果。
VS
详细描述
在建筑结构设计中,空间向量的分析可以 帮助我们理解结构的受力状态,如压力、 拉力和剪切力等。这对于确保结构的稳定 性和安全性至关重要。通过使用空间向量 ,工程师可以预测结构的变形、位移和振 动等行为,从而优化设计并提高结构的性 能。
04
数学领域中的应用
向量在解析几何中的应用
总结词
详细描述
空间Байду номын сангаас量的实际应用
• 引言 • 物理领域中的应用 • 工程领域中的应用 • 数学领域中的应用 • 计算机图形学中的应用 • 总结与展望
01
引言
空间向量的基本概念
空间向量
具有大小和方向的量,可以用几何图 形表示。
向量运算
包括加法、减法、数乘、向量的模等 基本运算。
空间向量在现实生活中的应用价值
解析几何是研究空间向量、点、线、面等几 何对象在坐标系中的表示和性质。向量在解 析几何中有着广泛的应用,包括向量的表示、 向量的运算、向量的模、向量的数量积、向 量的向量积、向量的混合积等。
在解析几何中,向量被用来表示空间中的点、 线、面等几何对象。通过向量的坐标表示, 我们可以方便地计算向量的长度、夹角、投 影等几何量。此外,向量还可以用来解决一 些几何问题,如求点到直线的距离、求两条 直线的夹角等。

高考数学中向量的几何意义及其应用实例

高考数学中向量的几何意义及其应用实例

高考数学中向量的几何意义及其应用实例高考数学是学生升入大学的重要关键,而其中向量是重要的数学知识之一。

向量是一种带有方向和大小的量,它在几何中有着广泛的应用和实例。

本篇文章将从向量的几何意义和应用实例两个方面来深入探讨。

一、向量的几何意义向量是几何中一个重要的概念,它由大小和方向组成。

在直角坐标系中,向量可以表示为一组有序的数对(x,y),表示向量的方向是从原点指向点(x,y)。

向量的几何意义可以用来解决几何问题,如平面几何、立体几何等。

1. 向量的长度向量的长度是指向量的大小,它表示从原点到向量所代表的终点的距离,也称为向量的模。

向量的长度可以用勾股定理求解,即向量长度的平方等于向量的横坐标的平方加向量的纵坐标的平方。

2. 向量的方向向量的方向是向量的指向,也是向量的几何意义之一。

向量的方向可以通过两点间的连线来表示,即通过终点与起点组成的向量来表示。

3. 向量的加减法向量的加减法在向量运算中也非常重要,可以应用于几何问题。

向量的加法是将两个向量的坐标进行相加;向量的减法则是将另一个向量的坐标进行取反后相加。

二、向量的应用实例向量的几何意义在实际生活中有着广泛的应用,以下将介绍向量在不同领域的应用实例。

1. 物理领域向量在物理领域的应用非常广泛,如在力学、物理光学等方面都有很好的应用。

在力学中,向量可以用来表示物体受到的力的方向和大小,帮助我们解决物理问题。

在光学中,向量可以表示光线的传播方向,帮助我们分析光线的传播规律。

2. 地理领域在地图上,通过向量的概念可以识别地理位置,如向量可以表示两个城市之间的方向和距离。

向量的应用还可以帮助我们计算地球表面的距离和方向。

3. 计算机领域在计算机领域中,向量也有着广泛的应用。

在计算机图像处理领域中,向量可以用来表示图像中的颜色和亮度等信息。

另外,在计算机游戏中,向量可以用来表示游戏场景中的移动方向和速度等信息。

结语:向量是数学中一个重要的概念,不仅在数学领域有着广泛的应用,同时也在物理、地理、计算机等其他领域中发挥着重要的作用。

向量在物理中的应用举例


3.质量 m=2.0 kg 的木块,在平行于斜面向上的拉力 F=10 N 的作用下,沿倾斜角 θ=30°的光滑斜面向上滑行|s|=2.0 m 的距离.(g=9.8 N/kg) (1)分别求物体所受各力对物体所做的功; (2)在这个过程中,物体所受各力对物体做功的代数和是多 少?
解:(1)木块受三个力的作用,重力 G,拉力 F 和 支持力 FN,如图所示, 拉力 F 与位移 s 方向相同,所以拉力对木块所做的功为 WF= F·s=|F||s|cos 0°=20(J); 支持力 FN 与位移方向垂直,不做功,所以 WN=FN·s=0; 重力 G 对物体所做的功为 WG=G·s=|G||s|cos(90°+θ)= -19.6(J). (2)物体所受各力对物体做功的代数和为 W=WF+WN+WG= 0.4(J).
[典例 2] 已知两恒力 F1=(3,4),F2=(6,-5)作用于同一 质点,使之由点 A(20,15)移动到点 B(7,0),求 F1,F2 分别对质 点所做的功.
[解] 设物体在力 F 作用下的位移为 s,则所做的功为 W =F·s.∵―AB→=(7,0)-(20,15)=(-13,-15).
+F22+2F1·F2=4+16=20,∴|F3|=2 5. 答案:C
3.一条河宽为 800 m,一船从 A 处出发想要垂直到达河正对岸 的 B 处,若船速为 20 km/h,水速为 12 km/h,则船到达 B 处所需时间为________min. 解析:由题意作出示意图,如图, ∵v 实际=v 船+v 水=v1+v2, |v1|=20 km/h, |v2|=12 km/h,
二、创新应用题 5.一艘船从南岸出发,向北岸横渡.根据测量,这一天水流速
度为 3 km/h,方向正东,风吹向北偏西 30°,受风力影响, 静水中船的漂行速度为 3 km/h,若要使该船由南向北沿垂 直于河岸的方向以 2 3 km/h 的速度横渡,求船本身的速 度大小及方向.

向量点乘实际生活应用意义

向量点乘实际生活应用意义
向量的点乘(也称为标量积或内积)在实际生活中有着广泛的应用。

点乘是一种向量运算,结果是一个标量(一个没有方向的量),它反映了两个向量的相似程度以及它们之间的夹角大小。

以下是点乘在实际生活中的一些应用:
2.计算机图形学:在计算机图形学中,点乘用于确定光线与表面的角度关系,以计算光照强度和阴影效果。

3.机器学习:在机器学习的算法中,点乘被用于计算向量间的相似性,这在支持向量机(SVM)和神经网络中是常见的操作。

4.导航:点乘可以用来计算两个地理位置向量之间的距离或角度,这在导航系统中非常有用。

5.工程学:在结构工程中,点乘可以用来计算力在特
定方向上的分量,这对于理解和计算结构应力非常重要。

6.游戏开发:在视频游戏的物理引擎中,点乘用于判断物体之间的碰撞以及对象是否在玩家的视线内。

7.经济学:在经济学中,点乘可以用来衡量两组数据(如时间序列数据)的相关性。

8.运动科学:在运动分析中,点乘可以帮助分析肌肉力量在特定运动方向上的投影。

点乘因其在多维空间中提供了一种衡量两个向量方向一致性的简便方法,而在许多科学和工程领域中被广泛使用。

它是理解和应用向量概念的基本工具之一。

向量在几何中的应用

向量在几何中的应用
向量在几何中有着广泛的应用。

下面列举一些主要的应用:
向量的长度和方向可以表示物体的位置和运动状态。

例如,一个位于平面上的物体的位置可以用二维向量表示,其长度表示距离,方向表示位置。

向量可以用于计算和描述几何图形的属性,如面积、周长、法向量等。

例如,通过向量积可以计算平面上任意三角形的面积,通过向量差可以计算直线的法向量。

向量可以用于描述线性变换。

例如,矩阵乘法可以表示几何变换,将向量从一个坐标系变换到另一个坐标系。

向量可以用于描述曲线的切线和曲率。

例如,在曲线上某一点的切线可以表示为曲线的一阶导数,曲率可以表示为曲线的二阶导数。

向量可以用于计算几何体的体积和表面积。

例如,通过向量积可以计算平行六面体的体积,通过向量差可以计算球体的表面积。

总之,向量在几何中有着广泛的应用,可以用于描述物体的位置和运动状态,计算和描述几何图形的属性,描述线性变换,计算曲线的切线和曲率,以及计算几何体的体积和表面积。

数学人教A版2019必修第二册 向量在物理中的应用举例


事实上,要使| |最小,只需
此时


= ,可得 = .

于是| |的最小值为 .

若要使| | = ||,只需

此时

=

最大,


,即

=

.



=



技巧总结
用向量解力学问题
对物体进行受力分析
画出受力分析图
转化为向量问题
例题解析
例2.在如图,一条河两岸平行,河的宽度 = ,一艘船从河岸边的
6.4 平面向量的应用
§6.4.2 向量在物理中的应用举例
情境引入
➢ 向量概念源于物理中的矢量,物理中的力、位移、速度等都
是向量,功是向量的数量积,从而使得向量与物理学建立了
有机的内在联系,物理中具有矢量意义的问题也可以转化为
向量问题来解决.
➢ 因此,在实际问题中,如何运用向量方法分析和解决物理问
模型的建立
建立以向量为主体的数学模型
参数的获得
求出数学模型的有关解—理论参数值
问题的答案
回到问题的初始状态,解释相关的物理现象
随堂练习
1.一物体在力的作用下,由点(, )移动到点 , .已知 =
, − ,求对该物体所 做的功
2.如图,一滑轮组中有两个定滑轮,,在从连接点
程需要多长时间(精确到. )?
解:设点是河对岸一点,与河岸垂直,那么当这艘船实际
沿着方向行驶时,船的航程最短.
如图,设 = + ,则|| =
此时,船的航行时间 =

||
=
.

| | − | | = (/).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量在生活中的应用
向量是高中数学新课程中的重要内容。

向量早在19世纪就已成为数学家和物理学家研究的对象,20世纪初被引入中学数学。

我国在1996年高中数学教学大纲中引入了向量。

向量具有丰富的物理背景,向量既是几何的研究对象,又是代数的研究对象,是沟通代数、几何的桥梁,是重要的数学模型。

在数学中,通常用点表示位置,用射线表示方向。

在平面内,从任一点出发的所有射线,可以分别用来表示平面内的各个方向。

向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

向量也可用字母a、b、c 等表示,或用表示向量的有向线段的起点和终点字母表示。

向量的大小,也就是向量的长度(或称模),记作|a|。

长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量。

大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿。

从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系.向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学.
在计算机图片中,处理图像会有一种向量格式。

在物理中,向量就是矢量,是物理学中最重要的物理量。

物理中的矢量是向量的原型,向量及其运算是物理中矢量及其运算的抽象。

因此,向量在物理中有广泛应用是不言而喻的。

向量与物理学中的力学、运动学等有着天然的联系。

很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.将向量这一工具应用到物理中,可以使物理题解答更简捷、更清晰.并且向量知识不仅是解决物理许多问题的有利工具,而且用数学的思想方法去审视相关物理现象,研究相关物理问题,可使我们对物理问题认识更深刻。

向量在机器人设计与操控、卫星定位、飞船设计等现代技术中也有着广泛的应用。

因此,在向量的教学中,应注意体现向量在物理、数学、现代科学技术中的广泛应用性。

特别应注意不能把向量的应用只局限在解决几何问题中。

向量是解决几何问题的一种有效工具,但高中数学新课程中设置向量内容有着更为广泛的目的,而不仅仅是为了解决几何问题、简化几何证明。

向量的学习,有助于我们认识数学与实际生活以及物理等学科的紧密联系,有助于我们理解数学运算的意义及价值,发展运算能力,有助于我们掌握处理几
何问题的代数方法,体会数形结合思想,有助于增进我们对数学本质的理解,体会向量在刻画和解决实际问题中的作用,从中感受数学的应用价值。

向量在生活中的应用,大多是和坐标平面的整合,这时关键是确定点的坐标,再确定向量的坐标。

从而达到向量关系与坐标关系的互译,架起了生活与向量之间的桥梁。

把向量的基本思想应用到实际生活中,可使我们能够更加直观地通过向量视角观察生活,也让向量更好地为我们服务,解决更多的实际生活问题。

Lg荷叶留珠\(≧▽≦)/。

相关文档
最新文档