拉姆齐定价模型
拉姆齐模型

拉姆齐模型拉姆齐模型是一种用于分析企业资本结构和债务重组的理论模型。
拉姆齐模型以名字命名,是由经济学家弗兰克·拉姆齐(Frank P. Ramsey)在20世纪30年代提出的。
该模型用于探讨企业在决定自己的资本结构时所面临的权衡问题,帮助企业制定最佳的债务比例。
背景资本结构是指企业所采用的资本来源和组织方式。
一般来说,企业可以通过两种方式筹集资金:通过债务融资和通过股权融资。
债务融资指的是企业通过发行债券或贷款等方式借入资金,而股权融资则是通过发行股票或吸引投资者购买股权来筹集资金。
企业的资本结构选择对其经营和财务状况有着重要的影响。
合理的资本结构可以降低企业的融资成本、提高税务效益,并平衡利益相关者之间的关系。
这就引出了拉姆齐模型。
模型解释拉姆齐模型首先假设企业的资本结构通过对债务与股权的选择进行优化来实现最大化价值的目标。
在这个模型中,企业的价值受到利润、税收、资本结构和风险等多个因素的影响。
模型中最基本的假设是,企业的资本结构会影响其成本和价值。
企业选择债务的比例是为了最大化净利润,同时平衡税务和金融风险。
根据拉姆齐模型的理论,债务的选择可以通过计算企业的债务税盾等参数来进行。
债务税盾是指企业由于债务利息的抵扣而减少应纳税额的优势。
在拉姆齐模型中,债务税盾会对企业的价值产生积极的影响,因为它减少了企业的纳税额,提高了净现金流。
此外,模型还考虑了资本结构对企业风险的影响。
债务融资可以增加企业财务风险,因为债务必须偿还,而股权融资则可以减少财务风险,因为股票的回报没有偿还压力。
因此,企业需要权衡风险与税盾所带来的优势,以确定最佳的资本结构。
实践应用拉姆齐模型的应用可以帮助企业确定最佳的资本结构,以实现最大化的价值。
通过分析债务税盾和风险影响,企业可以选择适合自己的债务比例,从而降低融资成本,改善财务状况。
在实际应用中,企业可以通过以下步骤使用拉姆齐模型:1.确定企业的利润和税务情况。
拉姆齐模型1-2

第三章 无限期界模型(拉姆齐模型)一、问题的提出在索洛模型中,储蓄率s 被假定为外生参数,储蓄率的变动将影响稳态的人均消费和动态的人均消费水平。
当gold s s >时,与最优储蓄(相对应于最优资本存量和最优消费)相比会出现“过度储蓄”(即“过度积累”)的情况,而一个高于黄金率的储蓄率被证明是动态无效的。
当gold s s <时,只有在给定在当前消费与未来消费之间的权衡参数的条件下,才能判断增加储蓄率的合理性。
图示:s 的变动对稳态和动态的人均消费的影响c c gold 那么,储蓄率是如何决定的?必须引入消费者(家庭)行为来分析跨期预算约束条件下的消费和储蓄选择,即储蓄率的“内生化”。
二、模型假定1.完全竞争市场结构2.长生不老的不断扩展的家庭(有限寿命的个人和基于利他主义的代际转让)3.家庭和个人完全同质4.忽略资本的折旧5.暂不考虑政府行为在简单经济中,家庭与厂商之间的关系:三、厂商行为沿用新古典生产函数),(AL K F Y = 根据欧拉定理,AL AL Y K K Y Y )(∂∂+∂∂=其中,资本的边际产品为:r k f KY==∂∂)('(真实利率) 有效劳动的边际产品为:w k kf k f AL Y=-=∂∂)(')()((工资率)四、家庭行为1.一些假定和符号总人口为L ,以速率n 增长,e L t L nt )0()(=; 家庭的个数为H ,每个家庭有L/H 个人; 每个家庭成员在每一时点上提供1单位劳动;资本最初存量为K(0),每个家庭初始资本存量为K(0)/H 。
2. 家庭效用函数和即期效用函数定义家庭效用函数(也称作“幸福函数”)为:dt HL t C u dt H t L t C u U o t tn o t te e )0()]([)()]([)(⎰⎰∞=--∞=-==ρρ 其中,C(t)为每个家庭成员的消费,)(∙u 为即期效用函数,ρ为贴现率(ρ越大表明与现期消费相比远期消费的价值就越低)。
2-拉姆齐模型

七、修正的黄金资本存量
定理1:在拉姆齐模型中,人均资本存量k收敛于k*,且低于索洛模
型中的黄金资本存量k*, 因此k*被称作“修正的黄金资本存量”。
定理2:拉姆齐模型表明在索洛模型中高于黄金资本存量的平衡增
长路径是不可能的。
【证明】通过相位图可以证明当k(0)>k(gold)时,追求跨期最优化的
家庭将降低储蓄,使k收敛于k*,且k*<k(gold)。
定理3:经济不收敛于产生最大c(即c(gold))的平衡增长路径,而
是收敛于一个较低的水平c*。
【证明】c*<c(gold)的前提是,它表明贴现率较高,家庭和个人更
重视现期消费,而不是未来消费。
图示(在索洛模型中当s低于s(gold)时提高s的影响):
c(gold)
c*
c0
c0
t
t
s较大的提高
s较小的提高
思考:在动态转移过程中ρ、ln(Y/L)、c、k、s的轨迹是什么? 此外,贴现率下降将可以使人均消费达到黄金律水平的平衡增长。
九、基本结论
1.拉姆齐模型没有改变索洛模型关于经济增长平衡路径的基本结 论。
2.索洛模型可以被看作是拉姆齐模型的一个特例,它必须对应于 后者特殊的参数和稳态。
3.拉姆齐模型的特点在于从家庭和个人的跨期消费行为的微观基 础出发决定稳态的消费(储蓄),从厂商的微观基础出发决定稳态的资 本存量,因此c和k是同时决定的。在这样的过程中,储蓄的决定被内生 化了。
六、平衡增长路径
均衡点E(c*,k*)的解为: 因此模型中的各个变量的长期变动如下:
变量
含义
平衡增长速度
K
资本存量
n+g
绝 对
简答什么是拉姆齐模型

简答什么是拉姆齐模型
简单来说,拉姆齐模型与索罗模型不同,拉姆齐模型是研究在任何情况下,国民产出有多少应该分配给消费从而产生当前的效用,又有多少国民产出应该分配给储蓄并进而投资以提高未来的产出和消费,从而产生未来的效用。
与新古典增长模型或者说索罗模型不同,因为在新古典增长模型中,储蓄率是被假定为一个外生参数,并没有说明其是如何决定的。
对此,拉姆齐模型引入了消费者(家庭)行为来分析跨期预算约束条件下的消费和储蓄选择,从而将储蓄这个参数内生化了。
拉姆齐模型的基本假定主要是:
1)市场是完全竞争的;
2)家庭是不断延续的;
3)家庭和个人是完全同质的;
4)忽略了资本折旧;
5)不考虑政府行为。
拉姆齐模型研究的结论可归结为以下几点:
第一,拉姆齐模型并没有改变新古典增长模型关于经济平衡增长路径的基本结论。
第二,在对应于拉姆齐模型中的参数稳态下,新古典增长模型可以看作是拉姆齐模型的一个特例。
第三,拉姆齐模型的特点在于从家庭和个人的跨期消费行为
的微观基础出发决定稳态的消费和储蓄,从厂商的微观基础出发决定稳态的资本存量,所以消费和储蓄是同时决定的。
在这个过程中,储蓄的决定被内生化了。
第四,拉姆齐模型避免了新古典增长模型中的无效的过度资本积累。
第五,拉姆齐模型中的任意初始状态不一定会收敛到稳态,会存在发散的情况,而新古典增长模型则不会。
拉姆齐模型

拉姆齐模型家庭行为:总人口:L 人口增长率:n 家庭数量:H 家庭初始资本量:K (0)/H家庭效用函数:()[]()dt Ht L t C u eU t t⎰∞=-=0ρ (1)C (t ):t 时刻家庭每个成员的消费 u :瞬时效用函数,L (t )/H :家庭成员数 ρ:贴现率瞬时效用函数(相对风险厌恶不变的函数(CRRA )):()()()θθ-=-11t C t C u θ>0,ρ-n-(1-θ)g >0 (2) 相对风险厌恶的系数:()()θ=-C u C Cu '/''厂商行为:厂商生产函数:Y=F (K ,AL ) A 以速率g 外生的增长资本的边际产品:)(/),('k f K AL K F =∂∂,()∙f 是生产函数的紧致形式 市场竞争性的,不存在折旧,资本的真实报酬率等于其每单位时间的收入,即真实利率为:()()()t k f t r '=有效劳动的边际产品:()AL AL K F ∂∂/,=()()()())('t k f t k t k f -,即等于每单位有效劳动的工资:w(t)=()()()())('t k f t k t k f - (3)家庭预算约束:家庭的终生消费的贴现值不能超过其初始财富与其终生劳动收入的现值之和 考虑r 可随时间变化,定义()()τττd r t R t⎰==(4)在0时刻投资一单位产出品,在t 时刻获得产品()t R e在t 时刻的一单位产品的价值用0时刻的产出表示为()t R e-每个家庭成员数:L (t )/Ht 时刻的劳动总收入是W (t )L (t )/H t 时刻的消费支出是C (t )L (t )/H 家庭初始资本:K (0)/H家庭预算约束:()()()()()()()⎰⎰∞=-∞=-+≤00t t R t t R dt H t L t W e H K dt H t L t C e(5) 我们可以用家庭的资本持有量的极限形式表示预算约束将(5)式各项移到右边,化简得:()()()()[]()⎰∞=-≥-+000t t R dt H t L t C t W e H K (6)我们可以写出从t=0到t=∞的及积分形式作为一种极限,(6)式等价于:()()()()[]()00lim 0≥⎥⎦⎤⎢⎣⎡-+⎰=-∞→st t R s dt H t L t C t W e H K (7)家庭最大化问题:考虑到技术进步,c (t )为有效劳动的消费()()gt e A t A 0=,()()()t c t A t C =,()()()()H L A k K /0000=由(2)式:()()()()()[]()[]()()()()θθθθθθθθθθθ-=-=-=-=-------1010111111111t c e A t c e A t c t A t C t C u gt gt (8)将(8)式代入(1)得: a .家庭效用函数:()()()()()()()()()()()dt t c e Bdt t c e e H L A dt H e L t c e A edt Ht L t C eU t tt gt t nt t gt tt t⎰⎰⎰⎰∞=--∞=----∞=----∞=---=-=⎥⎦⎤⎢⎣⎡-=-=1011101110111000101θθθθθβθθρθθθθρθρ (9)其中,()()H L A B /001θ-=,()g n θρβ---=1b .家庭预算约束()()()()()()()()()()()⎰⎰∞=-∞=-+≤00000t t R t t R dt H t L t A t w e H L A k dt H t L t A t c e (10)其中,家庭的有效劳动数量是A (t )L (t )/H ,A (t )L (t )等于()()()t g n e L A +00 (11)将(11)代入(10)得到:()()()()()()()⎰⎰∞=+-∞=+-+≤000t tg n t R t t g n t R dt e t w e k dt e t c e (12) 求家庭最大化,由(9)和(12)式构造拉格朗日函数:()()()()()()()()⎥⎦⎤⎢⎣⎡-++-=Φ⎰⎰⎰∞=∞=+-+-∞=--000101t t tg n t R t g n t R t t dt t c e e dt t w e e k dt t c e B λθθβ (13)其中,()g n θρβ---=1在时刻t ,家庭消费c (t ),对于每一个c (t ),一阶条件是:()()()t g n t R te e t c Be+---=λθβ (14)对(14)式两边取对数:()()()()()t g n d r t g n t R t c t B t++-=++-=--⎰=0ln ln ln ln τττλλθβ (15)利用了()()τττd r t R t⎰==两边求关于t 的导数:()()()()g n t r t c t c ++-=--∙θβ (16) 由(16)式得到:()()()()θθρθβgt r g n t r t c t c --=---=∙(17)利用了()g n θρβ---=1的定义。
中级宏观经济学第章拉姆齐模型

第一节 拉姆齐问题
家庭行为-效用最大化
B
et c
t 1 dt
0
1
k 0
eRtengt w t dt-
0
0
eRt
en
g
t
c
t
dt
( 5-16)
在每个时点家庭选择c,这样就会形成无限多个c(t)。对每一单 个c(t),其一阶条件是对于任意的t:
第一节 拉姆齐问题
家庭行为-效用最大化(续)
方程(5-20)是求解这类最大化问题的著名的欧拉方程(Euler equation),也就是连续时间的随机形式(continuous-stochastic version)。这一方程描述了在任何最优路径上都必须被满足的必要 条件,因此这一条件也叫作凯思斯一拉姆齐规则(Keynes Ramsey rule or condition)。直觉上,欧拉方程描述了结定c(0)时,c必须 随时间变化而变化。如果c不按照式(5-20)演化,那么家庭就会在不 改变终生费用现值的条件下,用提高终生效用的方式重新安排其消费。 这样,c(0)的选择就由如下条件决定:在所形成的路径上,终生消 费的现值等于初始财富与未来收入的现值之和。当c(0)被选择得太 低,沿满足式(5-20)路径上的消费支出并不会用尽其终生财富,因 此,较高的路径是可能的。当c(0)确定得太高,消费支出大于其可 用尽的终生财富,这种路径反而成为不可行。
Betc t eRtengt ( 5-17)
家庭行为的特征实际上就是由式(5-17)和预算约束式(5-14)来刻 画的。
第一节 拉姆齐问题
家庭行为-效用最大化(续)
为了理解式(5-17)对消费行为的含义,可以对这一公式展开进 一步的分析。首先给公式两边取对数:
拉姆齐定价法则

拉姆齐法则拉姆齐法则(Ramsey Rule )拉姆齐在政府不能征收归总税的前提下给出了对不同需求弹性的商品如何征税才能做到效率损失最小的原则。
一、基本思路:边际税收的效率损失相等循经济学中常用的边际分析方法,不难发现,要想使对不同商品课税所带来的总体效率损失最小,只有当从不同商品征得的最后一单位税收所引起的效率损失都相等的情况下才行。
也就是说,只要从某种商品征得的最后一单位税收引起的效率损失大于其他的商品,那么就还有可能通过改变征税办法降低效率损失,只要适当降低该商品税率,提高其他商品税率,就能够实现效率损失最小化。
因此,效率损失最小的原则可以表述为边际税收效率损失相等原则。
在这一原则下,可以使用代数方式,也可以使用几何方式,得到拉姆齐法则的两种表述,一种称为逆弹性法则,另一种称为需求等比例递减法则。
二、逆弹性法则(inverse elasticity rule )为保证效率损失能够最小,该法则要求,两种商品的税率应与其需求弹性成反比。
三、等比例递减法则对拉姆齐法则的另一种表述的政策含义更加简明,它要求,为使税收引起的效率损失最小,不同商品税率的确定应使对两种商品的需求同比例地减少。
因此,做到效率损失最小并不要求对不同的商品课征统一的税率,而是要求使不同的商品税后需求量的变动比例能够统一。
四、对拉姆齐法则的简要批评拉姆齐法则对最优商品税问题提出了极有价值的理论见解,但这并不表示它是完美无缺的。
主要的批评集中在它并没有完全解决前面已指出的效率损失研究中的各种遗憾,比如,它只考虑了结合不同商品的需求弹性确定最优税率的问题,仍然没有考虑商品之间可能具有替代或互补的关系;也没有专门处理闲暇这类商品的征税问题;按照它的逆弹性法则,虽然可以更为准确地确定不同商品之间理想的相对税率,但是,如果有一种无弹性的商品,该法则仍会赞同把所有的税收都加到它头上;而这样一来,就又暴露了它的一个最为严重的问题,忽略收入分配。
拉姆齐模型的详细推导

拉姆齐模型的详细推导拉姆齐模型(Ramsey model)是一种用来研究经济增长和储蓄决策的动态经济模型。
它由经济学家弗兰克·拉姆齐(Frank Ramsey)于1928年提出。
拉姆齐模型的基本假设是在一个无限时间段内,个体的目标是最大化消费效用的总和。
模型中的主要变量包括消费(C),资本(K)和劳动(L)。
模型的核心是通过设立动态规划问题来推导最优的消费和储蓄决策规则。
下面是拉姆齐模型的详细推导过程:1. 假设:-整个经济的生产函数为Y = F(K, L),其中Y为产出,K为资本,L为劳动。
-消费者的效用函数为U(C),其中C为消费。
-劳动力的增长率为n,资本的折旧率为δ。
-时间折现率为ρ(消费者对未来收益的偏好程度)。
-模型是一个无期限模型,没有考虑人口增长和技术进步。
2. 确定个体的动态规划问题:-消费者的目标是最大化消费效用的总和,即max [∫[0,∞] U(C(t))e^(-ρt)dt]-消费者面临的约束条件为C(t) + K(t+1) = F(K(t), L(t)) + (1-δ)K(t),即消费和资本投资的总和等于产出和资本折旧的总和。
3. 利用欧拉方程推导消费决策规则:-求解拉格朗日函数:J = ∫[0,∞] U(C(t))e^(-ρt)dt + λ[∫[0,∞] {F(K(t), L(t)) - C(t) - K(t+1) + (1-δ)K(t)}dt]-通过求极值问题,得到欧拉方程:U'(C(t)) = U'(C(t+1))(F'(K(t+1), L(t+1)) -δ)-将欧拉方程整理为消费决策规则:C(t) = (1/ρ)(1+n+g)F(K(t), L(t)) - (1/ρ)(1+n+g-δ)K(t+1),其中g为人口增长率。
4. 确定资本积累规律:-将消费决策规则代入约束条件,得到资本积累规律:K(t+1) = (1/ρ)(1+n+g)F(K(t), L(t)) - C(t),即现期资本等于当期产出减去消费。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公用事业大都是自然垄断的行业,其定价受到政府主管机关的管制。
公用事业的定价与补贴机制是公用事业良性发展问题的核心。
由于公用事业的边际成本递减,边际成本定价法会导致企业的亏损,而平均成本定价法则会导致社会福利的净损失。
拉姆塞定价实际上是一种价格歧视,但它与获得垄断利润最大化为目的的第三级价格歧视不同,其价格的差别是以回收成本为目的,因此是一种管制上容许的价格歧视。
在盈亏平衡约束下,次优的定价方法是实现消费者剩余的最大化。
引用拉姆塞定价模型,令公用事业企业对n个不同市场(用户群)的需求逆函数:
pi=p(qi)
第i市场上的消费者剩余为:
St=pi(qi)dqi−pi(qi)∗qi
qi
引入拉格朗日乘数⋋:
π=pi qi dqi−pi qi∗qi−⋋(pi qi∗q−c(qi)
n
t−1)
qi
0经计算得:
pi−mc
pi ∗ε=
⋋+1
⋋
整合有:
p1−mc1
p1
p2−mc2
p2=ε2
式中:
pi表示第I 时段的价格水平;mci表示第I 时段的边际成本;qi表示第I 个时段的客流量;εi表示pi对应的价格弹性。
图4-4 拉姆塞定价模型图示
客流时间分布不均衡有3种情况,季节性或短期性客流不均衡(如旅游的旺淡季);全日客流不均衡(不同线路工作日和双休日的客流变化);不同时段客流不均衡(随人们的生活节奏和出行特点而变化)。
由于第1种情况规律性差,变化随机性大(如城市主办某一项重大活动),所以轨道交通余能利用的分时段票价主要针对后两种情况。
客流的空间分布不均衡也有3种情况:各条线路客流的不均衡,由于城市经济功能区、生活功能区与生态功能区的布局之间关系的差异而形成;上下行方向客流不均衡;各个车站乘降人数不均衡(与车站周边土地开发强度有关)。
而拉姆塞模型的含义为:需求弹性越小的市场,定价可以超出其边际成本的比例就越大,即越是在高峰时间,地铁票价越可以涨价可以凭此在最大化乘客满意度的情况下,根据弹性大小适当调整,设定最为适当的价格。
由于高峰期乘坐地铁的人群弹性较小,乘客对于价格变化较为迟缓,如图4-3-4中D
,针对这一人群可以更大幅度的调整价格;而对于非高峰时
1
比较容易产生波动。
期的人群,价格弹性相对较大,需求曲线如图D
同理,对于远程的乘客,相对弹性比较小,可选择的出行方式比较单一,地铁的依赖性较高,从而在拉姆塞模型中,位于D点;但同时由于边际成本递减原理,远程的顾客可以适当在计程的计价方式中,减少每公里价格,以刺激需求,鼓励使用公共交通。
比如,乘客在前10公里每3公里加价1元,而之后每5公里加价1元,这样可以更多的惠及居住在城市外层的市民,并且在。
这一点在调查数据操作中得到了更加具体的验证,并作为理论性模型为需求模型建模提供了支撑。