驱动桥差速器和主减速器解答
主减速器、差速器概述

驱动桥-主减速器
驱动桥的功用:是将万向传动装置〔或变速器〕传来的 动力经降速增扭、转变动力传递方向〔发动机纵置时〕 后,安排到左右驱动轮,使汽车行驶,并允许左右驱 动轮以不同的转速旋转。 驱动桥的组成:它由主减速器、差速器、半轴和桥壳 驱动桥的类型:整体式和断开式驱动桥 整体式驱动桥与非独立悬架协作使用。桥壳为一刚性 的整体,多用于汽车的后桥。 断开式驱动桥承受独立悬架。多用于汽车的前桥
东风 EQ1090承 受双曲面 锥齿轮式 的单极主 减速器 (垮置式支 撑)
解放CA1091型汽车 双级主减速器,第 一级为锥齿轮传动 ,其次级为圆柱斜 齿轮传动
3.双速主减速器 为了提高汽车的动力性和经济性,有些汽车的主减速器具有两个档〔即两个
传动比〕。可依据行驶条件的变化转变档位,这种主减速器称为双速主减速器。 行星齿轮式双速主减速器,它由 主、从动锥齿轮的啮合间隙和啮合印痕,是通过主、从动锥齿轮沿各
自轴向位移来调整。主动锥齿轮轴向位移通过增减主动锥齿轮轴承壳与减 速器壳之间的调整垫片实现。从动锥齿轮轴向位移通过旋拧差速器轴承调 整环实现的〔不要转变轴承预紧度,需一侧拧入多少,另一侧拧出多少〕 或将左、右两侧的调整垫片从一侧调到另一侧,总垫片数不变。
--
圆周力/N
25~58 16.7~33.3 12.3~28.4 18.3~30.4
-10~30
2、 调整方法:单级主减速器从动锥齿轮轴承就是
差速器轴承,其预紧度调整随构造不同而异。对整 体式桥壳来说,通常是通过两差速器轴承外侧的螺 母来调整的。旋进螺母预紧力加大,反之则减小。 对与变速器在一起的组合式构造来说,通常是通过 增减两差速器轴承外环与壳体间的两组垫片的厚度 来调整的。两组垫片总厚度增加,预紧度减小,反 之增加。
差速器和主减速器结构和工作原理#(精选.)

差速器和主减速器结构和工作原理内容简介:发动机的动力经过变速器输出后,必须经过主减速器和差速器才能传递车轮,对于前轮驱动的汽车,如我们常见的轿车,主减速器和差速器设计在变速器壳体内;对于后轮驱动的汽车,如客车和货车,主减速器和差速器安装在后轿内发动机的动力经过变速器输出后,必须经过主减速器和差速器才能传递车轮,对于前轮驱动的汽车,如我们常见的轿车,主减速器和差速器设计在变速器壳体内;对于后轮驱动的汽车,如客车和货车,主减速器和差速器安装在后轿内。
一主减速器主减速器的作用将变速器输出的动力再次减速,以增加转矩,之后将动力传递给差速器。
主减速器的类型:(1)单级主减速器:大部分汽车的主减速器为单级主减速器,减速型式为普通斜齿轮式或锥形齿轮式:锥形齿轮式主减速器图其中锥形齿轮式主减速器如图所示,广泛的应用于后驱汽车的后轿中,变速器输出动力经过传动轴传给主动锥齿轮,经从动锥齿轮减速后传给差速器。
普通斜齿轮式主减速器应用于前驱汽车的变速器中。
注:对于前驱汽车的变速器中的主减速器,如果发动机在机舱在横置,则主减速器为普通斜齿轮式;如果发动机在机舱内纵置,则主减速器为锥形齿轮式,如桑塔纳、帕萨特等。
(2)双级主减速器:在重型货车上,常采用双级主减速器,如下图所示:双级主减速器结构图第一级为锥形齿轮减速,第二级为普通斜齿轮减速。
二减速器:1 差速器的作用:汽车在直线行驶时,左右车轮转速几乎相同,而在转弯时,左右车轮转速不同,差速器能实现左右车轮转速的自动调节,即允许左右车轮以不同的转速旋转。
2 差速器的组成结构:差速器结构图1-差速器壳轴承;2和8-差速器壳体;3和5-调整垫片;4-半轴齿轮(两个);6-行星齿轮(两个或四个);7-主减速器从动锥齿轮;9-行星齿轮轴。
3 差速器的工作原理和工作状态:行星齿轮的自转:差速器工作时,行星齿轮绕行星齿轮轴的旋转称为行星齿轮的自转;行星齿轮的公转:差速器工作时,行星齿轮绕半轴轴线的旋转称为行星齿轮的公转;(1)汽车直线行驶时,主减速器的从动锥齿轮驱动差速器壳旋转,差速器差驱动行星齿轮轴旋转,行星齿轮轴驱动行星齿轮公转,半轴齿轮在行星齿轮的夹持下同速同向旋转,此时,行星齿轮只公转,不自动,左右车轮和转速等于从动锥齿轮的转速。
轻型卡车驱动桥设计解读

目录1.绪论 02.总体方案 (1)3.主减速器设计 (2)3.1 主减速器结构形式的布置 (2)3.1.1主减速器的齿轮类型 (2)3.1.2主减速器的减速形式 (2)3.1.3主减速器主、从动锥齿轮的支承方案 (3)3.2 主减速器基本参数选择与计算载荷的确定 (4)3.2.1锥齿轮主要参数的选择 (4)3.2.2主减速器齿轮计算载荷的确定 (5)3.3 主减速器锥齿轮强度计算及校核 (8)3.4 主减速器锥齿轮轴承的载荷计算 (10)3.5 主减速器锥齿轮的材料 (14)4.差速器设计 (14)4.1 差速器结构形式选择 (14)4.2 普通锥齿轮式差速器齿轮设计 (15)4.2.1差速器齿轮主要参数选择 (15)4.2.2差速器齿轮强度计算及校核 (16)4.3 差速器齿轮的材料 (16)5.车轮传动装置设计 (16)5.1 结构形式分析 (16)5.2 半轴计算 (17)5.3 半轴可靠性设计 (18)5.4 半轴的结构设计 (19)6.驱动桥壳设计 (19)6.1 驱动桥壳结构方案分析 (20)6.2 驱动桥壳强度计算及校核 (20)7.花键设计与计算 (22)7.1 花键结构的形式及参数选择 (22)7.2 花键校核 (22)8.驱动桥的结构元件 (23)8.1支撑轴承的预紧 (23)8.2锥齿轮啮合调整 (23)8.3润滑 (24)结论 (25)参考文献 (25)摘要翻译..................................................... 错误!未定义书签。
轻型卡车驱动桥设计摘要:驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。
当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。
所以采用传动效率高的单级减速驱动桥已成为未来重载汽车的发展方向。
第五章驱动桥第一节主减速器讲诉

第五章驱动桥组成:主减速器、差速器、半轴、轮毂及桥壳。
功用:①降速增矩;②改变转矩传递方向;③差速作用。
类型:▲非断开式驱动桥;▲断开式驱动桥。
1.非断开式驱动桥如CA1091,EQ1090E,CA1040等车的后桥。
参见图5-1a。
特点:①整体式桥壳;②两侧半轴、驱动轮在横向平面内无相对运动;③非独立悬架(整个车桥通过弹性元件与车架相联)。
2.断开式驱动桥如CA7220、Audi100等轿车常用的转向驱动桥。
参见图5-1b。
特点:①断开式桥壳(主减速器固装于车架上,半轴为万向传动轴);②两驱动轮相对车架彼此独立上、下跳动。
③独立悬架(两侧车轮各自单独与车架由弹簧相联)。
§5.1 主减速器分类:▲按齿轮副个数分:单级:如EQ1090E,CA1040,CA7220,Audi100等。
双级:①一、二级齿轮均于主减速器壳体内,如CA1091;②一级齿轮于主减速器壳体内,二级为轮边减速。
多用于矿用车如SH380A,Terex33-07、33-11E,BJZ3530等。
▲按传动比档数分:①单速:i o为单一定值,目前常见车大都是此类;②i o为2个值(即主减速器有2个档)。
▲按齿轮结构型式分:圆柱齿轮,螺旋(曲线)锥齿轮,准双曲面齿轮。
▲常用的齿轮型式:1)斜齿圆柱齿轮特点是主从动齿轮轴线平行。
2)曲线齿锥齿轮特点是主从动锥齿轮轴线垂直且相交。
3)准双曲面锥齿轮特点是主从动锥齿轮轴线垂直但不相交,有轴线偏移。
▲圆锥齿轮齿轮旋向:常用主动小齿轮左旋:从小端向大端看齿向线向左偏斜;从动大齿轮右旋:从小端向大端看齿向线向右偏斜。
一.单级主减速器轿车,轻、中型货车用之。
≤7。
一般i下面以EQ1090E车为例,其i o=Z2/Z1=38/6=6.33 。
▲动力传递过程:见图5-2,动力从万向传动装置连接的叉形凸缘11→主动锥齿轮18→从动锥齿轮→差速器壳5→行星齿轮十字轴24→行星齿轮21→两半轴齿轮23→两半轴→…。
习题:驱动桥

题目驱动桥一、填空:1. 驱动桥一般是由()、()、()、()。
2. 驱动桥的功用是将由万向传动装置传来的发动机转矩传给驱动车轮,并经()、改变()方向,使汽车行驶,而且允许左右驱动车轮以不同的转速旋转。
3. 对于发动机横向布置的汽车,单级主减速器采用一对()齿轮即可。
4. 从动锥齿轮的调整包括从动锥齿轮()的调整和主、从动锥齿轮之间的()的调整。
5. 为了提高汽车通过坏路面的能力,可采用()差速器。
6. 防滑差速器是特意增加内摩擦力矩,使转的慢的驱动轮(驱动桥)获得的转矩(),转的快的驱动轮(驱动桥)获得的转矩(),提高了汽车通过坏路面的能力。
7. 驱动桥壳既是传动系的组成部分,同时也是()的组成部分。
8. 托森差速器由差速器壳、()个蜗轮、()根蜗轮轴、()个直齿圆柱齿轮及前、后轴蜗杆组成。
二、选择:1. 驱动桥行驶时驱动桥有异响,脱档滑行时异响减弱或消失说明:A 圆锥和圆柱主从动齿轮、行星齿轮、半轴齿轮啮合间隙过大B主动锥齿轮轴承松旷C差速器行星齿轮半轴齿轮不匹配 D 车轮轮毂轴承损坏,轴承外圈松动2. 汽车直线行驶时无异响,当汽车转弯时驱动桥处有异响说明:A主、从动锥齿轮啮合不良B差速器行星齿轮半轴齿轮不匹配,使其啮合不良C制动鼓内有异物D齿轮油加注过多3. 行驶时驱动桥有异响,脱档滑行时亦有异响说明:A半轴齿轮花键槽与半轴的配合松旷B主动圆柱齿轮轴承松旷C差速器十字轴轴颈磨损D轴承处过热三、判断:1. 整体式驱动桥与非独立悬架配用。
( )2. 断开式驱动桥与非独立悬架配用。
( )3. 要先进行轴承预紧度的调整,再进行锥齿轮啮合的调整。
( )4. 锥齿轮啮合调整时,啮合间隙首要,啮合印痕次要,否则将加剧齿轮磨损。
( )5. 汽车直线行驶时,两半轴存在转速差。
()6. 汽车转向行驶时两侧驱动车轮所受到的地面阻力相同。
( )7. 普通锥齿轮差速器的转矩分配特性:即转矩等量分配特性。
( )8. 全浮式半轴支承半轴只在两端承受转矩,不承受其他任何反力和弯矩。
驱动桥

2. 普通差速器 • 结构 • 普通行星锥齿轮差速器由两个或4个圆锥行星 齿轮、行星齿轮轴、2个圆锥半轴齿轮、垫片 和差速器壳等组成,4个行星齿轮分别套在十 字轴轴颈上,2个半轴齿轮与4个行星齿轮相互 啮合,并一起装在差速器壳内,两半壳用螺栓 紧固。中型以下轿车传递扭矩小,可用两个行 星齿轮,而行星齿轮轴,是一根带锁止销的直 轴,速器壳制成整体式框架。
•
c. 支起驱动桥用手转动主动锥齿轮 突缘时感到费劲,高速行驶时,出现尖锐噪 声,并伴有主减速器壳过热,则为轴承预紧 力过大。应调整轴承紧力。 • d. 低速行驶时,有连续的“嗷嗷” 声,车速加快响声加大,支起驱动,用手转 动主动锥齿轮突缘时,没有一点松旷量,则 为主、从动齿轮啮合间隙过小,应调整主、 从动齿轮啮合间隙。
①半轴内端花键齿或半轴齿轮花键齿磨损,会使半 轴齿轮与半轴花键配合间隙变大,应予以更换。 ②半轴不得有裂纹或断裂,否则应予更换。 ③半轴突缘螺栓孔磨损应予修复。 ④半轴内端键齿扭斜应予更换。 ⑤半轴弯曲检查采用百分表测量半轴中部的偏转量。 摆差不得超过2mm。否则应予更换或校正;半轴突 缘平面应与半轴中心线垂直,当以半轴中心线为回 转中心,检查半轴突缘平面时,半轴应无弯曲,偏 摆量应不大于0.20mm
强制 锁止 式差 速器
黏性耦合器中平行装有很多片间距很小的摩擦片,相邻的两片分别 安装于耦合器外壳和深入其中的传动轴上。粘性耦合器内部充满了 硅油。传动轴与外壳分别连接于差速器两端的两个半轴上,当车辆 直线行驶或进行正常的弯道行驶时,由于摩擦片之间只发生较小的 相对转动,黏性耦合器并不会限制差速器的工作。 当两侧驱动轮的转速差超过某 一临界值(这取决于硅油的黏 性)时,由于内部的硅油会被 高速搅动,膨胀并产生黏性, 使得黏性耦合器形成类似锁住 的现象。这样两侧驱动轮的阻 力达到新的平衡。附着力较大 的一侧驱动轮获得动力,得以 继续驱动车辆前进。当两侧驱 动轮之间的转速差减小至临界 值以下时,硅油温度降低,黏 性耦合器不再产生“黏性”, 差速器恢复工作,车辆正常行 驶。
车辆驱动桥的结构、原理讲解以及检修、调整解析

调整:移动主动锥齿轮,调整垫片9。 b. 啮合间隙
检查:将百分表抵在从动锥齿轮正面的大端处,用手 把住主动锥齿轮,然后轻轻往复摆转从动锥齿轮即可 显示间隙值。
调整:移动从动锥齿轮,调整螺母2,应一侧进几圈, 另一侧出几圈。
c. 从动锥齿轮的止推装置:支承螺柱6。
(三)双级主减速器 用于中、重型汽车,
三、差速器
(一)差速器功用、类型 1. 功用
把主减速器的动力传给左右半轴,并允许左右车轮以不同的转 速旋转,使左右驱动轮相对地面纯滚动而不是滑动。 车轮的运动状态:
– 滚动:v=rω – 滑动:v>0,ω=0——滑移;ω>0,v=0——滑转 – 边滚边滑:v>rω——边滚边滑移;v<rω,边滚边滑转 滑动的危害:轮胎磨损、动力损耗、转向和制动性能下降。
M1=M2=M0/2 汽车转向(两侧驱动轮阻力不同)
M1=(M0-MT)/2 M2=(M0+MT)/2 MT很小,可以忽略不计, M1=M2=M0/2
3. 缺陷 在坏路面行驶时,汽车的通过性差。 如左侧车轮陷于泥泞路面,右侧车轮位于良好路面, n1>0,n2=0,为什么?
(三)防滑差速器 1. 强制锁止差速器
分段式桥壳
3.桥壳的检修
1) 桥壳和半轴套管不允许有裂纹存在,半轴套管应进行探伤处 理。各部螺纹损伤不得超过2牙。
2) 钢板弹簧座定位孔的磨损不得大于1.5mm,超限时先进行补 焊,然后按原位置重新钻孔。
3) 整体式桥壳以半轴套管的两内端轴颈的公共轴线为基准,两 外轴颈的径向圆跳动误差超过0.30mm时应进行校正,校正 后的径向圆跳动误差不得大于0.08mm。
3) 以半轴轴线为基准,半轴中段未加工圆柱体径向圆跳动误差 不得大于1.3mm;花键外圆柱面的径向圆跳动误差不得大于 0.25mm;半轴凸缘内侧端面圆跳动误差不得大于0.15mm。 径向圆跳动超限,应进行冷压校正;端面圆跳动超限,可车 削端面进行修正。
驱动桥差速器和主减速器解答

驱动桥壳从结构上可分为整体式桥壳和分段式桥壳两类。
图2-164 驱动桥壳
图2 - 1 6 4 驱动桥壳
(1)整体式桥壳
主减 速器从动 锥齿 轮
轮毂 轴承
a
半轴 凸缘
半轴 桥壳
b
(a) Fy
F X
F Z
Fy
F X
F Z
(b)
b .半轴的全浮 式支承和半浮式支承受力图
2.半浮式半轴支承
图2-163为半浮式半轴支承结构图。其半轴内端的 支承方法与上述相同,即半轴内端不受力及弯矩。半轴 外端是锥形的,锥面上切有纵向键槽,最外端有螺纹。 轮毂有相应的锥形孔与半轴配合,用键连接,并用螺母 固紧。半轴用圆锥滚子轴承直接支承在桥壳凸缘内。显 然,此时作用在车轮上的各反力都必须经过半轴传给驱 动桥壳。因这种支承形式,只能使半轴内端免受弯矩, 而外端却承受全部弯矩,故称为半浮式。
从图2-150中可见,差速器的作用是把转矩从传动轴 传递到半轴和车辆的驱动轮。在前轮驱动的汽车上,差速 器布置在变速驱动桥内,成为整个系统的一部分。由发动 机发出的转矩,通过变速器传递到差速器。然后,由差速 器把转矩分开,传送到驱动轮。
按照差速器的工作特性可以分为普通齿轮式差速器和 防滑限速式差速器。
图2 - 1 54 差速器
图2-155所示为摩擦片式自锁差速器,它是普通行星齿 轮差速器的变形,十字轴的端部均切有凸V形斜面,差速器 壳上与之相配合的孔较大,有凹V形斜面。两行星齿轮轴的 V形斜面是反向安装的,壳体通过V形斜面向行星齿轮轴传 递扭矩,每个半轴齿轮的背面有压盘和主、从动摩擦片。 压盘的内花键与半轴相连,从动盘的内花键与压盘相连, 主动摩擦片的外花键与差速器壳相连,压盘与主、从动摩 擦片均有微小的轴向移动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2-148 断开式驱动桥
减 振器 弹 性元件 半轴
车轮 摆 臂 摆 臂轴 主减 速器
二、主减速器和差速器
(一)主差速器 (二)差速器
(一)主减速器
主减速器由一对大小啮合斜齿轮构成,小齿轮与输出 轴制成一体,大齿轮由铆钉与差速器的外壳连在一起,如 图2-149所示。
变 速器 从动 轴 (带 主动 锥齿 轮)
前 后转 动 检 查间 隙
百 分表
图2- 15 7 用百分表检 验齿圈与 主 动锥齿 轮的间 隙
放松
如果 间隙 过小
放 松多 少就 旋 紧多 少
拆下垫 片
主 动锥 齿轮 定 位垫 片组
放 松多 少就 旋 紧多 少
放松
增加垫 片
如果 间隙 过大
齿圈 位置
主动 锥齿 轮位 置
在调整齿 圈与主动 锥齿轮 时 ,本图 显示了移 动 方向 。 垫片用于 定位行星 齿轮, 轴 承调整 螺母用于 定 位环 齿 。
驱动桥壳应有足够的强度和刚度,且质量要小,并便于主减速 器的拆装和调整。由于桥壳的尺寸和质量一般都比较大,制造较困难, 故其结构形式在满足使用要求的前提下,要尽可能便于制造。如图2164所示。
驱动桥壳从结构上可分为整体式桥壳和分段式桥壳两类。
图2-164 驱动桥壳
图2 - 1 6 4 驱动桥壳
(1)整体式桥壳
第五节 驱动桥
一、驱动桥的结构形式 二、主减速器和差速器 三、半轴与桥壳 四、万向传动装置 五、驱动桥常见故障检修 知识链接:四轮全轮驱动系统
一、驱动桥的结构形式
驱动桥由主减速器、差速器、半轴和驱动桥壳等组成。 其主要功用是:将万向传动装置传来的发动机动力经过降 速,将增大的转矩分配到驱动车轮。
驱动桥按结构形式一般可分为非断开式和断开式两种。
轮锥 滚子 轴承 半轴
母
推力 块
图2 - 1 63 半 浮式半 轴支承 结构图
(二)桥壳
1.桥壳的作用与分类
驱动桥壳的功用是:支承并保护主减速器、差速器和半轴等;使左 右驱动车轮的轴向相对位置固定;同从动桥一起支承车架及其上的各总 成质量;汽车行驶时,承受由车轮传来的路面反作用力和力矩,并经悬 架传给车架。
主 减 速器 从 动 齿轮
主减 速器
差速 器壳 主减 速 差 速器
图2 - 14 9 主减速器实物与安装位置
工作原理:
主减速器是在传动系中起降低转速,增大转矩作用的 主要部件,当发动机纵置时还具有改变转矩旋转方向的作 用。它是依靠齿数少的齿轮带齿数多的齿轮来实现减速的, 采用圆锥齿轮传动则可以改变转矩旋转方向。将主减速器 布置在动力向驱动轮分流之前的位置,有利于减小其前面 的传动部件(如离合器、变速器、传动轴等)所传递的转 矩,从而减小这些部件的尺寸和质量。
2 -半轴 齿轮 3 - 半轴齿轮 7 -垫圈 4 -行星 齿轮 从动 齿轮 推力 垫 片
1 -左外 壳
轴承
6 -螺栓
8 -十字 轴
5 -右外 壳
图2- 153 对称式锥齿轮式差速器结构图
上海桑塔纳轿车差速器即采用这种结构(如图2-154所 示)。差速器壳为一整体框架结构。行星齿轮轴装入差速器壳 后用止动销定位。半轴齿轮背面也制成球面,其背面的推力垫 片与行星齿轮背面的推力垫片制成一个整体,称为复合式推力 垫片。螺纹套用来紧固半轴齿轮。
图2-147 非断开式驱动桥
后 桥壳
差 速器 壳 差 速器 行星 齿轮 差 速器 半轴 齿轮
主 减速 器 主 动小 齿轮
半轴
主 减速 器从 动齿 轮齿 圈
(二)断开式驱动桥
为了与独立悬架相适应,驱动桥壳需要分为用铰链连 接的几段,更多的是只保留主减速器壳(或带有部分半轴 套管)部分,主减速器壳固定在车架或车身上,这种驱动 桥称为断开式驱动桥。为了适应驱动轮独立上下跳动的需 要,差速器与车轮之间的半轴也要分段,各段之间用万向 节连接。 如图2-148所示。
主从 动摩 擦片 差速 器壳
行星 齿轮 轴
压盘
行星 齿轮
V 型 斜面
主、 从动 摩擦 片
压盘
行星 齿轮 轴
图2 - 15 5 摩 擦片 式自 锁差 速器
3.差速器原理
它主要由两个行星齿轮、 行星齿轮轴、驱动法兰轴 齿轮、整体式差速器摩擦 壳、差速器壳与主减速器 从动齿轮一起组成的差速
主减 速器 从动 齿轮
压盘
行星 齿轮 轴 行星 齿轮
主、 从动 摩擦 片
V 型斜 面
压盘 行星 齿轮 轴
图2- 151 摩擦片式自锁差速器
2 -半轴 齿轮 3 -半轴 齿轮 7 -垫圈 4 -行星 齿轮 从动 齿轮 推力 垫片
1 -左外 壳
轴承
6 -螺栓
8 -十字 轴
5 -右外 壳
图2- 1 52 对称式锥齿轮式差速 器结构图
图2 - 1 54 差速器
图2-155所示为摩擦片式自锁差速器,它是普通行星齿 轮差速器的变形,十字轴的端部均切有凸V形斜面,差速器 壳上与之相配合的孔较大,有凹V形斜面。两行星齿轮轴的 V形斜面是反向安装的,壳体通过V形斜面向行星齿轮轴传 递扭矩,每个半轴齿轮的背面有压盘和主、从动摩擦片。 压盘的内花键与半轴相连,从动盘的内花键与压盘相连, 主动摩擦片的外花键与差速器壳相连,压盘与主、从动摩 擦片均有微小的轴向移动。
主减 速器从动 锥齿 轮
轮毂 轴承
a
半轴 凸缘
半轴 桥壳
b
(a) Fy
F X
F Z
Fy
F X
F Z
(b)
b .半轴的全浮 式支承和半浮式支承受力图
2.半浮式半轴支承
图2-163为半浮式半轴支承结构图。其半轴内端的 支承方法与上述相同,即半轴内端不受力及弯矩。半轴 外端是锥形的,锥面上切有纵向键槽,最外端有螺纹。 轮毂有相应的锥形孔与半轴配合,用键连接,并用螺母 固紧。半轴用圆锥滚子轴承直接支承在桥壳凸缘内。显 然,此时作用在车轮上的各反力都必须经过半轴传给驱 动桥壳。因这种支承形式,只能使半轴内端免受弯矩, 而外端却承受全部弯矩,故称为半浮式。
2.差速器的结构
(1)普通齿轮式差速器
主减速器的主动锥齿轮用铆钉或螺栓固定在差速器壳的 凸缘上。装配时,十字形的行星齿轮轴的四个轴颈嵌在差速器 壳相应的孔内,差速器壳的剖分面通过行星齿轮轴各轴颈中心 线。每个轴颈上浮套着一个行星齿轮,它们均与两个半轴齿轮 啮合。而半轴齿轮分别支承在差速器壳相应的左右座孔中,并 用花键与半轴相联。动力自主减速器从动锥齿轮依次经差速器 壳、十字轴、行星齿轮、半轴齿轮、半轴输出给驱动轮。当两 侧车轮以相同转速转动时,行星齿轮绕半轴轴线转动——公转。 若两侧车轮阻力不同,则行星齿轮在作上述公转运动的同时, 还绕自身轴线转动——自转,因此两半轴齿轮可带动两侧车轮 以不同转速转动。如图2-153所示。
整体式桥壳因制造方法不同又有多种形式。常见的有整体铸造、 钢板冲压焊接、中段铸造两端压入钢管、钢管扩张成形等形式。整体 铸造桥壳(如图2-165所示),为增加强度和刚度,两端压入无缝钢 管制成的半轴套管。
通气 塞
整体 式桥 壳
主减 速差 速 器壳 体
图2- 1 6 5 金杯 海狮微型 客货车整 体式桥壳
从图2-150中可见,差速器的作用是把转矩从传动轴 传递到半轴和车辆的驱动轮。在前轮驱动的汽车上,差速 器布置在变速驱动桥内,成为整个系统的一部分。由发动 机发出的转矩,通过变速器传递到差速器。然后,由差速 器把转矩分开,传送到驱动轮。
按照差速器的工作特性可以分为普通齿轮式差速器和 防滑限速式差速器。
(一)非断开式驱动桥
非断开式驱动桥也称为整体式驱动桥,它由驱动桥壳, 主减速器,差速器和半轴组成。
驱动桥壳由中间的主减速器壳和两边与之刚性连接的 半轴套管组成,通过悬架与车身或车架相连。两侧车轮安 装在此刚性桥壳上,半轴与车轮不可能在横向平面内作相 对运动。
输入驱动桥的动力首先传到主减速器主动小齿轮,经 主减速器减速后转矩增大,再经差速器分配给左右两半轴, 最后传至驱动车轮。 如图2-147所示。
花键
杆部
垫圈
凸缘
半轴起拔螺栓
图2 -1 6 1 半轴结构图
半轴 紧固 螺栓
1.全浮式半轴支承
全浮式半轴支承广泛应用于各种类型载货汽车上。 图2-162a为全浮式半轴支承结构图,半轴外端锻出凸 缘,借助螺栓和轮毂连接。轮毂通过两个相距较远的圆 锥滚子轴承支承在半轴套管上。半轴套管与驱动桥壳压 配一体,组成驱动桥壳总成。采用这样的支承形式,半 轴与桥壳没有直接联系。
半轴 齿轮
行星 齿轮
图2 - 1 59 差速器 壳内半 轴齿轮与行 星 齿轮 之间的 间隙 可以测 得
用一套塞规检 验半轴齿轮与变速 器壳之间的间隙。 通常的测量值在 0~0.006in之间。 如间隙超过规定值, 则须更换差速器壳。 如图2-160所示。
半轴齿 轮
在半轴 齿轮 的每 一 侧插 入 塞尺, 以确 保轴 线 不错 位
图2-166所示为钢板冲压焊接驱动桥壳,它主要由冲压成形的上下两个桥 壳主件、四块三角形镶块、前后两个加强环、一个后盖以及两端两个半轴 套管组焊而成。为了防止桥壳内润滑油外溢,有的汽车在桥壳轴管处焊有 挡油环或加装油封。
图2 - 15 8 主动锥齿轮调整示意图
用百分表检查差速 器壳内半轴齿轮与行星齿 轮之间的间隙。其间隙一 般应在0.001~0.006in的 范围内。如间隙大于最大 值,增加垫片;小于最小 值拆下垫片。一般地, 0.002in垫片改变间隙 0.001in。
如图2-159所示。
百分 表
间隙0 .00 1 ~ 0.0 06 in
行星 齿轮
A
C
B
器安装壳体、驱动法兰、
驱动法兰轴及驱动法兰轴
组件的支承轴承和各种辅 助联接件等组成。