八年级数学上册27二次根式试题新题新版北师大版96
2.7 二次根式 北师大版数学八年级上册堂堂练(含答案)

2.7二次根式—2023-2024学年北师大版数学八年级上册堂堂练1.使二次根式有意义的x的取值范围是( )
A. B. C. D.
2.下列二次根式中,是最简二次根式的是( )
A. B. C. D.
3.的值为( )
A. B. C. D.0
4.计算的结果是( )
A. B.3 C. D.
5.下列计算错误的是( ).
A. B.
C. D.
6.计算:____________.
7.计算:的结果是_____________.
8.(1);
(2).
答案以及解析
1.答案:C
解析:根据题意得,,
解得.故选C.
2.答案:A
解析:解:A、是最简二次根式,符合题意;
B、,不是最简二次根式,不符合题意;
C.,不是最简二次根式,不符合题意;
D、,不是最简二次根式,不符合题意;故选A.
3.答案:C
解析:
,故选C.
4.答案:B
解析:
5.答案:A
解析:A.3与不是同类二次根式,不能合并,故错误,符合题意;
B.,正确,不符合题意;
C.,正确,不符合题意;
D.,正确,不符合题意;故选A.
6.答案:2
解析:.
7.答案:
解析:原式,
故答案为:.
8.答案:(1) (2)
解析:(1)原式
;(2)原式
.。
北师大版八年级数学上册2.7二次根式计算专题( 含答案解析)

北师大版八年级数学上册2.7二次根式计算专题1.计算:(1))3127(12+- (2)()()6618332÷-+- 【答案】(1)334- (2)2【解析】试题分析:(1==(2312=-= 考点:实数运算点评:本题难度较低,主要考查学生对平方根实数运算知识点的掌握。
要求学生牢固掌握解题技巧。
2.(÷【答案】1【解析】试题分析:(-=(32⨯⨯1= 考点:二次根式的化简和计算点评:本题考查二次根式的化简和计算,关键是二次根式的化简,掌握二次根式的除法法则,本题难度不大3.计算(每小题4分,共8分)(1(2)【答案】【解析】试题分析:原式=-+2)原式+考点:实数的运算点评:实数运算常用的公式:(1)2(0)a a =≥(2,a =(30,0)a b =≥≥(40,0)a b=≥≥.4.计算:(1) (2)(3+ (4)14【答案】(1),(2),(3)194-13,(4【解析】本题考查二次根式的加减法.根据二次根式的加减法法则进行计算解:(1)原式= 2)原式=-(3)原式= 24+= 4(4)原式3-25.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--. 【答案】22. 【解析】试题分析:根据二次根式的运算法则计算即可.-==. 考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.==⎝.考点:二次根式计算.9.计算:()0+1π错误!未找到引用源。
.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+【答案】323223+.【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+.考点:二次根式的化简.11.计算:(1)(2)()02014120143π----【答案】(1)1(2)3-【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,绝对值4个考点分别进行计算,试题解析:(1(2)()20141201431133π---=--+=-考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算:212)31()23)(23(0+---+【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.(1==+试题解析:解:原式=2123+--=2考点:二次根式的混合运算.130(2013)|+-+-.【答案】1.【解析】试题分析:0(2013)|+-+-1=+1=. 考点:二次根式化简.14.计算:⎛÷ ⎝2+ 【答案】5【解析】试题分析:解:原式13⎛=÷ ⎝153== 考点:实数运算点评:本题难度较低,主要考查学生对实数运算知识点的额掌握,为中考常考题型,要求学生牢固掌握。
北师大版数学八年级上册2.7《二次根式》练习

2.7二次根式专题一 与二次根式有关的规律探究题1.将1按如图所示的方式排列.若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数之积是( )A.1B.2C. 2. 观察下列各式及其验证过程:322322=+===.====. (1)按照上述两个等式及其验证过程,猜想1544+的变形结果并进行验证; (2)针对上述各式反映的规律,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证;(3)针对三次根式及n 次根式(n 为任意自然数,且2n ≥),有无上述类似的变形,如果有,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证.3. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=221)(+,善于思考的小明进行了以下探索:设a+b 2=22)(n m +(其中a 、b 、m 、n 均为正整数),则有a+b 2=m 2+2n 2+2mn 2, ∴a=m 2+2n 2,b=2mn.这样小明就找到了一种把部分a+b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +b 3=2)3(n m +,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空: +=( +2;(3)若a +43=2)3(n m +,且a 、m 、n 均为正整数,求a 的值.专题二 利用二次根式的性质将代数式化简4. 化简二次根式 )A. - D. -5.如图,实数a .b 在数轴上的位置, 化简:222)(b a b a -+-.答案:1.D 【解析】 从图示中知道,(4,2).∵前20排共有1+2+3+4+…+20=210个数,∴(21,2)表示的是第210+2=212个数.∵这些数字按照1的顺序循环出现,212÷4=53,∴(21,2.∴(4,2)与(21,2)表示的两数6=.2.解:(1====.(2=(a 为任意自然数,且2a ≥).===(3)333311-=-+a a a a aa (a 为任意自然数,且2a ≥).验证:===.a =a 为任意自然数,且2a ≥). 验证:n n n n n nn n n n a a a a aa a a a a a a 111111-=-=-+-=-+++.3. 解:(1)223n m + 2mn (2)21 12 3 2(3) ∵223n m a +=,4=2mn, ∴mn=2. ∵ m,n 为正整数,∴m=1,n=2或m=2,n=1, ∴a=13或a=7.4.B 【解析】若二次根式有意义,则22a a +-≥0,-a-2≥0,解得a≤-2,∴原式=-B .5.解:由图知,a <0,b >0,∴a ﹣b <0, ∴222)(b a b a -+-=|a |﹣|b |+|a ﹣b |=(﹣a )﹣b +(b ﹣a )=﹣2a .。
八年级数学上册2_7二次根式练习题新版北师大版

二次根式班级:___________姓名:___________得分:__________一、选择题(每题6分,共36分)1. 等式a a b b =⋅成立的条件是( ) A.b a ,同号 B.0,0≥≥b a C.b a ,异号 D.0,0>≥b a2. 在根式①ab ;②5x ;③xy x -2;④abc 27中,最简二次根式是( ) A.①② B.③④ C.①③ D.①④ 3. 以下二次根式中与3归并的二次根式的是( ).A.18B.3.0C.30D.3004. 估量522132⨯+⨯的结果在( ).A.6至7之间B.7至8之间C.8至9之间D.9至10之间5. 以下运算正确的选项是( ).A.3 +2 =5B. 3×2=6C.(3-1)2=3-1 D.225-3 =5-3 6. 假设代数式21--x x 成心义,那么x 的取值范围是( ). A.21≠>x x 且 B.1≥x C.2≠x D.21≠≥x x 且 二、填空题(每题6分,共24分)1.计算:=⨯⨯12824__________.=-222440_________.2.假设x <0,那么332x x -等于__________.3.若81-x +18x -成心义,那么3x =______. 4. 已知实数a 在数轴上的位置如下图,那么化简| 1-a|+2a 的结果为________.三、解答题(每题20分,40分) 1. 计算:(1)(10112+12322-⎛⎫-- ⎪⎝⎭(2) 241221348+⨯-÷.y=,. 2.已知8参考答案一、选择题1.D【解析】∵ b是分母,∴b≠0,又a,b是被开方数,因此a≥0,b>0,应选D.2. C【解析】①ab 是最简二次根式;②5x 不是最简二次根式,因为被开方数中含有字母;③xy x -2是最简二次根式;④abc 27被开方数含有能开得尽方的因数,不是最简二次根式,故最简二次根式①③应选C.3.D【解析】A 、18,与3的被开方数不同,故本选项错误;B 、3.0=10,与3的被开方数不同,故本选项错误; C 、30与3的被开方数不同,故本选项错误;D 、300=3的被开方数相同故本选项正确; 应选:D.4.B【解析】522132⨯+⨯ ∵1.42=1.96,1.422=2.0164,2.32=5.29,2.222=4.9284,∴1.4<1.42 2.22<2.3∴4+1.4+2.22<4+4+1.42+2.3即7.62<7.72即522132⨯+⨯结果在7至8之间应选:B.5.B【解析】A 项,依照二次根式的运算法那么可知:3 和2不能归并,故A 错误。
(最新)北师大版八年级数学上册《二次根式》练习题

《二次根式》练习题1.二次根式的定义一般地,我们把形如a (a ≥0)的式子叫做二次根式,“ ”称为二次根号,a 叫做被开方数.【例1-1】 下列式子中,哪些是二次根式,哪些不是二次根式?2,33,1x ,x 2+1,0,42,-2,1x +y,x +y .解:二次根式有:2,x 2+1,0,-2;不是二次根式的有:33,1x ,42,1x +y,x +y .析规律 二次根式的条件二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0. 【例1-2】 当x 是多少时,3x -1在实数范围内有意义? 分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x -1≥0时,3x -1才有意义.解:由3x -1≥0,得x ≥13.因此当x ≥13时,3x -1在实数范围内有意义.点技巧 二次根式有意义的条件二次根式有意义的条件是,被开方数是非负数,即被开方数一定要大于或等于0. 2.积的算术平方根用“>,<或=”填空.4×9______4×9,16×25______16×25,100×36______100×36.根据上面的计算我们可得出:ab =a ·b (a ≥0,b ≥0)即:积的算术平方根,等于各算术平方根的积. 【例2】 化简:(1)9×16;(2)16×81;(3)81×100;(4)54. 分析:利用ab =a ·b (a ≥0,b ≥0)直接化简即可. 解:(1)9×16=9×16=3×4=12. (2)16×81=16×81=4×9=36. (3)81×100=81×100=9×10=90.(4)54=9×6=32×6=3 6. 点评:利用积的算术平方根的性质可对二次根式进行化简,使其不含能开得尽方的因数或因式.3.商的算术平方根 填空:(1)916=__________,916=__________;(2)1636=__________,1636=__________; (3)416=__________,416=__________; (4)3681=__________,3681=__________. 规律:916______916;1636______1636;416______416;3681______3681. 通过计算容易得出上面的式子都是相等的.因此, a b =ab(a ≥0,b >0) 即:商的算术平方根等于各算术平方根的商. 【例3】 化简:(1)364;(2)64b 29a 2;(3)9x 64y 2;(4)5x169y 2.分析:直接利用a b =ab(a ≥0,b >0)就可以达到化简之目的. 解:(1)364=364=38. (2)64b 29a 2=64b 29a 2=8|b |3|a |. (3)9x 64y 2=9x 64y 2=3x8|y |. (4)5x 169y 2=5x 169y 2=5x13|y |. 4.最简二次根式最简二次根式应满足以下两个条件: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.所以,化简二次根式时,要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式.【例4】 把下列根式化成最简二次根式:(1)12,(2)40,(3) 1.5,(4)43.解:(1)12=4×3=2 3. (2)40=4×10=210.(3) 1.5=32=32=3×22×2=62.(4)43=23=233.点评:化简二次根式时,要求最终结果中分母不含有根号,应利用二次根式的有关性质化掉分母中的根号.5.二次根式的乘除二次根式的乘法:a·b=ab(a≥0,b≥0)二次根式的除法:ab=ab(a≥0,b>0)即:二次根式相乘除,只把被开方数相乘除,结果仍然作为被开方数.【例5】计算:(1)5×7;(2)13×9;(3)14÷116;(4)648.分析:直接利用a·b=ab(a≥0,b≥0)和ab=ab(a≥0,b>0)计算即可.解:(1)5×7=35.(2)13×9=13×9= 3.(3)14÷116=14÷116=14×16=4=2.(4)648=648=8=2 2.6.二次根式的加减计算下列各式:(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3.上面的题目,实际上为同类项合并.同类项合并就是字母不变,系数相加减.计算下列各式:(1)22+32;(2)28-38+58;(3)7+27+9×7;(4)33-23+ 2.分析:(1)如果我们把2当成x,不就转化为上面的问题了吗?22+32=(2+3)2=5 2.(2)把8当成y;28-38+58=(2-3+5)8=48=8 2.(3)把7当成z;7+27+9·7=7+27+37=(1+2+3)7=67.(4)把3看为x,2看为y.33-23+2=(3-2)3+2=3+ 2.因此,二次根式的被开方数相同的话是可以合并的.二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.【例6】计算:(1)8+18;(2)16x +64x ;(3)348-913+312;(4)(48+20)+(12-5).分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.解:(1)8+18=22+32=(2+3)2=5 2. (2)16x +64x =4x +8x =(4+8)x =12x .(3)348-913+312=123-33+63=(12-3+6)3=15 3.(4)(48+20)+(12-5)=48+20+12- 5 =43+25+23- 5 =63+ 5.7.化简a 2(1)计算:42=4,0.22=0.2,⎝ ⎛⎭⎪⎫452=45,202=20,观察其结果与根号内幂底数的关系,归纳得到:当a >0时,a 2=a .(2)计算:(-4)2=4,(-0.2)2=0.2,⎝ ⎛⎭⎪⎫-452=45,(-20)2=20,观察其结果与根号内幂底数的关系,归纳得到:当a <0时,a 2=-a .(3)计算:02=0,当a =0时,a 2=0.(4)将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:a 2=|a |=⎩⎪⎨⎪⎧a ,a >0,0,a =0,-a ,a <0.【例7-1】 化简:(1)9; (2)(-4)2; (3)25;(4)(-3)2.分析:因为(1)9=32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用a 2=a (a ≥0)去化简.解:(1)9=32=3.(2)(-4)2=42=4.(3)25=52=5.(4)(-3)2=32=3.【例7-2】 先化简再求值:当a =9时,求a +1-2a +a 2的值,甲、乙两人的解答如下:甲的解答为:原式=a +(1-a )2=a +(1-a )=1;乙的解答为:原式=a +(1-a )2=a +(a -1)=2a -1=17.两种解答中,__________的解答是错误的,错误的原因是__________.答案:甲甲没有先判定1-a是正数还是负数8.二次根式的混合运算计算:(1)6x·3y;(2)(2x+y)·zx;(3)(2x2y+3xy2)÷xy.(4)(2x+3y)(2x-3y);(5)(2x+1)2+(2x-1)2.如果把上面的x,y,z改写成二次根式,以上的运算规律是否仍成立?仍成立.整式运算中的x,y,z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.【例8】计算:(1)(6+8)×3;(2)(46-32)÷22;(3)(5+6)(3-5);(4)(10+7)(10-7).分析:因为二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.解:(1)(6+8)×3=6×3+8×3=18+24=32+2 6.(2)(46-32)÷22=46÷22-32÷22=23-3 2 .(3)(5+6)(3-5)=35-(5)2+18-65=13-3 5.(4)(10+7)(10-7)=(10)2-(7)2=10-7=3.。
北师大版八年级数学上册 2.7.1 二次根式 同步测试【含答案】

A.1+8 3 3
B.1+2 3
C. 3
D.1+4 3
10.若 a>0,把 -4a化成最简二次根式为( ) b
A.2 -ab b
B.-2 ab b
C.-2 -ab b
D.2b -ab
二.填空题(共 8 小题,3*8=24)
11.化简: 12=________; 1=_________. 2
12. 代数式 9-x有意义时,实数 x 的取值范围是_______.
24.(8 分) 已知△ABC 的三边长分别为 2 5,2 5,2 10,试判断△ABC 的形状,并求出这
个三角形的面积.
25.(8 分) 观察下列各式:
1+112+212=1+1×12=1+
1-1 2
,
1+212+312=1+2×13=1+
1-1 23
,
1+312+412=1+3×14=1+
1-1 34
19. 解:(1)-3<0,∴不是二次根式; (2)根指数是 3,∴不是二次根式; (3) 被开方数=a2+2a+2=a2+2a+1+1=(a+1)2+1>0,∴是二次根式; (4)被开方数 a2+1>0,∴是二次根式 20. 解:(1) 16×7= 16× 7=4 7. (2) 3 = 3 = 3× 13 = 39.
北师大版八年级数学上册 2.7.1 二次根式 同步测试
一、选择题(共 10 小题,3*10=30)
1.下列式子一定是二次根式的是( )
A. a
B. -10
C. a+1
D. a2+1
2.式子 x-1在实数范围内有意义,则 x 的取值范围是( )
A.x>0
B.x≥-1
C.x≥1
D.x≤1
北师大版八年级数学上册2 7二次根式 解答专项 练习题 (word版 含答案)

2022-2023学年北师大版八年级数学上册《2.7二次根式》解答专项练习题(附答案)1.计算:(1)9﹣7+5;(2)÷﹣×+.2.计算题:(1)(4﹣6+3)÷2;(2)(﹣1)2+(2+)(2﹣).3.定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.4.已知y=++,求的值.5.学习二次根式后,小王认为:当x=m时,3﹣有最大值,且最大值为n,你知道m,n的值分别为多少吗?6.实数a在数轴上的对应点A的位置如图所示,b=|a﹣|+|2﹣a|.(1)求b的值;(2)已知b+2的小数部分是m,8﹣b的小数部分是n,求2m+2n+1的平方根.7.已知.求﹣x﹣3y的立方根.8.已知|2022﹣a|+=a,求a﹣20222的值.9.实数a,b在数轴上对应点的位置如图所示,化简.10.把下列二次根式化简最简二次根式:(1);(2);(3);(4).11.先阅读下列解答过程,然后再解答:形如的化简,只要我们找到两个正数a,b,使a+b=m,ab=n,使得=m,,那么便有:(a>b).例如:化简:解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即:=7,,所以.问题:(1)填空:=,=;(2)化简:(请写出计算过程);(3)化简:.12.先化简,再求值:(+)﹣(+),其中x=,y=27.13.已知一个三角形的三边长分别为、6、2x.(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.14.阅读下列解题过程:===﹣=﹣2;===2+2;请解答下列问题:(1)观察上面解题过程,计算;(2)请直接写出的结果.(n≥1)(3)利用上面的解法,请化简:+++…++.15.已知最简二次根式和可以合并,你能求出使有意义的x的取值范围吗?16.若a,b都是正整数,且a<b,与是可以合并的二次根式,是否存在a,b,使+=?若存在,请求出a,b的值;若不存在,请说明理由.17.计算:.18.(1)计算:.(2)因式分解:5x2﹣5y2.19.已知a=.(1)求a2﹣4a+4的值;(2)化简并求值:.20.“欲穷千里目,更上一层楼”,说的是登得高看得远,如图,若观测点的高度为h(单位km),观测者能看到的最远距离为d(单位km),则d≈,其中R是地球半径,通常取6400km.(1)小丽站在海边的一块岩石上,眼睛离海平面的高度h为20m,她观测到远处一艘船刚露出海平面,求此时d的值.(2)判断下面说法是否正确,并说明理由;泰山海拔约为1500m,泰山到海边的最小距离约230km,天气晴朗时站在泰山之巅可以看到大海.21.在解决问题“已知a=,求3a2﹣6a﹣1的值”时,小明是这样分析与解答的:∵a===+1,∴a﹣1=,∴(a﹣1)2=2,a2﹣2a+1=2,∴a2﹣2a=1,∴3a2﹣6a=3,3a2﹣6a﹣1=2.请你根据小明的分析过程,解决如下问题:(1)化简:.(2)若a=,求2a2﹣12a+1的值.参考答案1.解:(1)原式=9﹣14+20=15;(2)原式=﹣+2=4﹣+2=4+.2.解:(1)原式=4÷2﹣6÷2+3÷2=2﹣1+3=4;(2)原式=﹣+1+4﹣3=﹣.3.解:(1)∵a与2是关于6的共轭二次根式,∴2a=6,∴a==,故答案为:;(2)∵4+与8﹣m是关于26的共轭二次根式,∴(4+)(8﹣m)=26,∴8﹣m===8﹣2,∴m=2.4.解:∵x﹣2≥0,2﹣x≥0,∴x=2,∴y=,∴===.5.解:=0时,即m=x=1时,3﹣有最大值,n最大=3,m=1.6.解:(1)由图可知:2<a<3,∴a﹣<0,2﹣a<0,∴b=|a﹣|+|2﹣a|==;(2)∵b+2=,,∴b+2的小数部分是﹣3,∴m=﹣3,∵8﹣b=8﹣(﹣3,)=11﹣,7<11﹣<8,∴11﹣的小数部分是11﹣﹣7=4﹣,∴n=4﹣,∴2m+2n+1=2﹣6+8﹣2+1=3,∴2m+2n+1的平方根为±.7.解:∵,∴,解得x=3,∴y=8,∴﹣x﹣3y=﹣3﹣24=﹣27,∴﹣x﹣3y的立方根﹣3.8.解:∵a﹣2023≥0,∴a≥2023,∴2022﹣a<0,∴a﹣2022+=a,∴=2022,∴a﹣2023=20222,∴a﹣20222=2023.9.解:由数轴可知,﹣2<a<﹣1,1<b<2,则a+1<0,b﹣1>0,所以=﹣a+[﹣(a+1)]﹣(b﹣1)=﹣a﹣a﹣1﹣b+1=﹣2a﹣b.10.解:(1)==4;(2)==2;(3)===;(4)==.11.解:(1)原式===;原式===;故答案为:;;(2)原式===;(3)原式=++++=1++2﹣+﹣2+=﹣1.12.解:原式=6x×+×y﹣4y×﹣6=6+3﹣4﹣6=﹣,当x=,y=27时,原式=﹣=﹣=﹣3.13.解:(1)周长=+6+2x=2+3+2=7.(2)当x=4时,周长=7×=14.(答案不唯一).14.解:(1)原式==+;(2)归纳总结得:=﹣(n≥1);(3)原式=﹣1+﹣+﹣+…+﹣+﹣=10﹣1=9.15.解:根据题意得:,解得:,∴=,∵2x﹣4≥0,∴x≥2.16.解:存在,理由:∵与是可以合并的二次根式,+=,∴+==5,∴当a=3,则b=48,当a=12,则b=27.17.解:原式=+﹣+2=3﹣.18.解:(1)原式=2+3﹣﹣3=;(2)原式=5(x2﹣y2)=5(x+y)(x﹣y).19.解:(1)a===2﹣,a2﹣4a+4=(a﹣2)2,将a=2﹣代入(a﹣2)2得(﹣)2=3.(2),=﹣=(a﹣1)﹣,∵a=2﹣,∴a﹣1=1﹣<0,∴原式=a﹣1+=2﹣﹣1+2+=3.20.解:(1)由R=6400km,h=0.02km,得d===16(km),答:此时d的值为16km;(2)说法是错误,理由:站在泰山之巅,人的身高忽略不计,此时,h=1.5km,则d2=2×1.5×6400=19200,2302=52900,∵19200<52900,∴d<230,∴天气晴朗时站在泰山之巅看不到大海.21.解:(1)===3+;(2)∵a====3﹣2,∴a﹣3=﹣2,∴(a﹣3)2=8,即a2﹣6a+9=8,∴a2﹣6a=﹣1,∴2a2﹣12a=﹣2,则2a2﹣12a+1=﹣2+1=﹣1.。
北师大版八年级上册数学二次根式专题训练(附答案)

北师大版八年级上册数学二次根式专题训练(附答案)一、单选题1.下列运算正确的是()A. B. C. D.2.下列运算正确的是( )A. B. C. D.3.下列根式中,是最简二次根式的是()A. B. C. D.4.是某三角形三边的长,则等于()A. B. C. 10 D. 45.下列计算正确的是()A. B. C. D.6.从,,这三个实数中任选两数相乘,所有积中小于2的有()个.A. 0B. 1C. 2D. 37.计算的结果是()A. B. 3 C. D. 98.下列计算正确的是()A. B. C. D.二、填空题9.若二次根式在实数范围内有意义,则的取值范围是________.10.计算________;11.若有意义,则x的值可以是________.(写出一个即可)12.计算的结果是________.13.人们把这个数叫做黄金分割数,著名数学家华罗庚优选法中的法就应用了黄金分割数.设,,则,记,,…,.则________.14.计算:=________.15.埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,底面正方形的边长与侧面等腰三角形底边上的高的比值是,它介于整数n和n+1之间,则n的值是________.16.计算:________.三、计算题17.计算:.18.计算:.19.先化简,再求值:.其中,.20.计算:.21.计算:.22.先化简,再求值:,其中.四、解答题23.阅读理解:∵,即2< <3,∴1< -1<2,∴-1的整数部分为1,∴-1的小数部分为-2解决问题:已知a是-3的整数部分,b是-3的小数部分,求(-a)3+(b+4)2的平方根24.阅读理解:求的值.解:设两边平方得:∴,即.∴∵∴请利用上述方法,求的值.25.已知的算术平方根是,的平方根是,是的整数部分,求的平方根26.已如实数、在数轴上的位置如图所示,请化简答案一、单选题1. D2. C3. D4. D5. C6. C7. B8. A二、填空题9. 10. 3 11. 3 12. 13. 10 14. 4 15. 1 16. 5三、计算题17. 解:.18. 解:.19. 解:原式= ,把,代入得:原式= .20. 解:= = =021. 解:原式22. 解:原式,,.当时,原式四、解答题23. 解:∵<<∴4<<5 ∴1--3<2 ∴a=1,b=-4∴(-a)3+(b+4)2=(-1)3+(-4+4)2=-1+17=16∴(-a)3+(b+4)2的平方根是±424. 解:设x=,两边平方得x2===14,∴x=±.∵>0,∴=.25. 解:∵2a-1的算术平方根是3,3a+b-1的平方根是±4,,解得:,∵9<13<16,∴3<<4,∴的整数部分是3,即c=3,∴原式=5+2×2-9=0.26. 解:由题意得:<<,<<<<>。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.7二次根式
专题一 与二次根式有关的规律探究题
1.将1、2、3、6按如图所示的方式排列.
若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数之积是( ) ** B.2 C. D.6
2. 观察下列各式及其验证过程:
322322=+,验证:228222223333
⨯+===. 333388+=,验证:2327333338888
⨯+===. (1)按照上述两个等式及其验证过程,猜想15
44+的变形结果并进行验证; (2)针对上述各式反映的规律,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证;
(3)针对三次根式及n 次根式(n 为任意自然数,且2n ≥),有无上述类似的变形,如果有,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证.
3. 阅读材料:
小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=221)(+,善于思考的小明进行了以下探索: 设a+b 2=22)(n m +(其中a 、b 、m 、n 均为正整数),则有a+b 2=m 2+2n 2
+2mn 2, ∴a=m 2+2n 2
,b=2mn.这样小明就找到了一种把部分a+b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:
(1)当a 、b 、m 、n 均为正整数时,若a +b 3=2)3(n m +,用含m 、n 的式子分别表示a 、
b ,得:a = ,b = ;
(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空: + 3 =( + 3)2;
(3)若a +43=2)3(n m +,且a 、m 、n 均为正整数,求a 的值.
专题二 利用二次根式的性质将代数式化简
4. 化简二次根式2
2a a a 的结果是( ) A. 2a B. 2a C. 2a D. 2a
5.如图,实数a .b 在数轴上的位置,
化简:222)(b a b a -+-.
答案:
** 【解析】 从图示中知道,(4,2)所表示的数是.∵前20排共有1+2+3+4+…+20=210个数,∴(21,2)表示的是第210+2=212个数.∵这些数字按照1、、、的顺序循环出现,212÷4=53,∴(21,2)表示的数是.∴(4,2)与(21,2)表示的两数之积是.
2.解:(1)44441515+=.验证:24644444415151515
⨯+===. (2)2211
a a a a a a +=--(a 为任意自然数,且2a ≥). 验证:3322221111
a a a a a a a a a a a a -++===----. (3)333311-=-+
a a a a a a (a 为任意自然数,且2a ≥). 验证:33334433331
111a a a a a a a a a a a a -++===----. 11
n n n n a a a a a a +=--(a 为任意自然数,且2a ≥). 验证:n n n n n n n n n n a a a a a a a a a a a a 1
11111-=-=-+-=-+++. 3. 解:(1)223n m + 2mn (2)21 12 3 2
(3) ∵223n m a +=,4=2mn, ∴mn=2. ∵ m,n 为正整数,∴m=1,n=2或m=2,n=1, ∴a=13或a=7.
** 【解析】若二次根式有意义,则≥0,-a-2≥0,解得a≤-2,∴原式==.故选B .
5.解:由图知,a <0,b >0,∴a ﹣b <0, ∴222)(b a b a -+-=|a |﹣|b |+|a ﹣b |=(﹣a )﹣b +(b ﹣a )=﹣2a .。