高考典型题型训练——立体几何中求角与距离

合集下载

2019-2020年高考数学 7.8 立体几何中的向量方法(二)——求空间角和距离练习

2019-2020年高考数学 7.8 立体几何中的向量方法(二)——求空间角和距离练习

2019-2020年高考数学 7.8 立体几何中的向量方法(二)——求空间角和距离练习——求空间角和距离(25分钟60分)一、选择题(每小题5分,共25分)1.长方体ABCD-A1B1C1D1中,AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为()A. B. C. D.【解析】选B.建立空间直角坐标系如图.则A(1,0,0),E(0,2,1),B(1,2,0),C1(0,2,2).=(-1,0,2),=(-1,2,1),cos<,>==.所以异面直线BC1与AE所成角的余弦值为.2.(xx·宁波模拟)已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A. B. C. D.【解析】选A.以D为原点,建立如图所示的空间直角坐标系,设AB=1,则=(1,1,0),=(0,1,2),=(0,1,0),设平面DBC1的法向量为n=(x,y,z),则取z=1,则y=-2,x=2,所以n=(2,-2,1),所以sinθ====.【一题多解】本题还可以采用如下方法解答.方法一:选A.设AB=1,则AA1=2.设AC∩BD=O,连接C1O,过C作CH⊥C1O于H,连接DH,显然△C1DB是等腰三角形,所以C1O⊥BD,又C1C⊥BD,因为C1O∩C1C=C1,所以BD⊥平面C1CO,CH⊂平面C1CO,所以BD⊥CH,而CH⊥C1O,BD∩C1O=O,所以CH⊥平面C1BD,所以∠CDH是CD与平面C1BD所成的角,在Rt△C1OC中,OC=,C1C=2,所以C1O==,由C1C·OC=C1O·CH知CH==,在Rt△CDH中,sin∠CDH==.方法二:选A.设点C到平面C1BD的距离为h,CD与平面C1BD所成的角为θ,由=知·h=S△CBD·C1C,所以h=,所以sinθ==.3.已知长方体ABCD-A1B1C1D1中,AB=BC=4,CC1=2,则直线BC1和平面DBB1D1所成角的正弦值为()A. B.C. D.【解题提示】以A为原点建立空间直角坐标系,分别求出直线BC1的方向向量与平面DBB1D1的法向量,用空间向量的直线与平面所成角的夹角公式计算得解.【解析】选C.如图建立空间直角坐标系,则B(4,0,0),C(4,4,0),C1(4,4,2),显然AC⊥平面BB1D1D,所以=(4,4,0)为平面BB1D1D的一个法向量.又=(0,4,2).所以cos<,>===.即直线BC1和平面DBB1D1所成角的正弦值为.4.(xx·厦门模拟)二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=2,则该二面角的大小为()A.150°B.45°C.60°D.120°【解析】选C.由条件知·=0,·=0,因为=++.所以||2=||2+||2+||2+2·+2·+2·=62+42+82+2×6×8cos<,>=(2)2.所以cos<,>=-,则<,>=120°,即<,>=60°.所以二面角的大小为60°.5.(xx·北京模拟)在四面体P-ABC中,PA,PB,PC两两垂直,设PA=PB=PC=a,则点P到平面ABC的距离为()A. B.a C. D.a【解题提示】以P为原点建立空间直角坐标系,利用空间向量法求解.【解析】选B.根据题意,可建立如图所示的空间直角坐标系Pxyz,则P(0,0,0),A(a,0,0),B(0,a,0),C(0,0,a).所以=(-a,a,0),=(-a,0,a),=(a,0,0).设平面ABC的法向量为n=(x,y,z).由得得令x=1,所以n=(1,1,1),所以P到平面ABC的距离d===a.二、填空题(每小题5分,共15分)6.如图,在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为.【解析】以C1为原点,C1A1,C1B1,C1C所在直线分别为x,y,z轴建立空间直角坐标系,则平面AA1C1C的法向量为n=(0,1,0),AM=-(1,0,)=,则直线AM与平面AA1C1C所成角θ的正弦值为sinθ=|cos<,n>|==,所以tanθ=.答案:7.已知点E,F分别在正方体ABCD -A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC 所成的二面角的正切值为.【解析】如图,建立空间直角坐标系Dxyz,设DA=1,由已知条件得A(1,0,0),E,F,=,=,设平面AEF的法向量为n=(x,y,z),面AEF与面ABC所成的二面角为θ,由图知θ为锐角,由得令y=1,z=-3,x=-1,则n=(-1,1,-3),平面ABC的法向量为m=(0,0,-1),cosθ=|cos<n,m>|=,tanθ=.答案:8.(xx·石家庄模拟)如图所示,正方体ABCD-A1B1C1D1的棱长为1,E是A1B1上的点,则点E到平面ABC1D1的距离是.【解析】以点D为坐标原点,DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,设点E(1,a,1)(0≤a≤1),连接D1E,则=(1,a,0).连接A1D,易知A1D⊥平面ABC1D1,则=(1,0,1)为平面ABC1D1的一个法向量.所以点E到平面ABC1D1的距离是d==.答案:三、解答题(每小题10分,共20分)9.(xx·湖南高考)如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD.(2)若∠CBA=60°,求二面角C1-OB1-D的余弦值.【解题提示】(1)利用矩形的邻边垂直,及线线平行证明OO1⊥AC,OO1⊥BD.(2)由二面角的定义或者向量法求二面角的余弦值.【解析】(1)因为四边形ACC1A1和四边形BDD1B1均为矩形,所以CC1⊥AC,DD1⊥BD,又CC1∥DD1∥OO1,所以OO1⊥AC,OO1⊥BD,因为AC∩BD=O,所以O1O⊥底面ABCD.(2)方法一:如图,过O1作O1H⊥B1O,垂足为H,连接C1H,由(1)可得OO1⊥A1C1,由于A1B1C1D1是菱形,所以B1D1⊥A1C1,所以A1C1⊥平面B1D1DB,所以由三垂线定理得HC1⊥B1O,所以∠O1HC1就是二面角C1-OB1-D的平面角.设棱柱的棱长为2,因为∠CBA=60°,所以OB=,OC=1,OB1=,在直角三角形O1OB1中,O1H==,因为O1C1=1,所以C1H===,所以cos∠C1HO1==,即二面角C1-OB1-D的余弦值为.方法二:因为四棱柱的所有棱长都相等,所以四边形ABCD为菱形,AC⊥BD,又O1O⊥底面ABCD,所以OB,OC,OO1两两垂直.如图,以O为原点,OB,OC,OO1所在直线分别为x,y,z轴,建立空间直角坐标系.设棱长为2,因为∠CBA=60°,所以OB=,OC=1,所以O,B1,C1,平面BDD1B1的一个法向量为n=,设平面OC1B1的法向量为m=,则由m⊥,m⊥,所以x+2z=0,y+2z=0,取z=-,则x=2,y=2,所以m=,所以cos<m,n>===.由图形可知二面角C1-OB1-D为锐二面角,所以二面角C1-OB1-D的余弦值为.10.(xx·杭州模拟)如图,将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=a,(1)若a=2,求证:AB∥平面CDE.(2)求实数a的值,使得二面角A-EC-D的大小为60°.【解析】(1)如图建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(1,1,),D(0,2,0),E(0,0,2),=(2,0,0),=(0,-2,2),=(1,-1,),设平面CDE的一个法向量为n1=(x,y,z),则有-2y+2z=0,x-y+z=0,取z=时,n1=(0,2,),所以·n1=0,又AB不在平面CDE内,所以AB∥平面CDE.(2)如图建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(1,1,),D(0,2,0),E(0,0,a),=(0,-2,a),=(1,-1,),设平面CDE的一个法向量为n2=(x,y,z),则有-2y+az=0,x-y+z=0,取z=2时,n2=(a-2,a,2),又平面AEC的一个法向量为n3=(-1,1,0),因为二面角A-EC-D的大小为60°,所以=,即a2-2a-2=0, 解得a=±2.(20分钟40分)1.(5分)如图,在四面体ABCD中,AB=1,AD=2,BC=3,CD=2,∠ABC=∠DCB=,则二面角A-BC-D的大小为()A. B.C. D.【解析】选 B.二面角A-BC-D的大小等于AB与CD所成角的大小.=++.而=+++2||||·cos<,>,即12=1+9+4+2×1×2cos<,>,所以cos<,>=-,所以AB与CD所成角为,即二面角A-BC-D的大小为.2.(5分)(xx·北京模拟)已知在长方体ABCD-A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到平面AB1D1的距离是.【解析】如图所示建立空间直角坐标系Dxyz,则A1(2,0,4),A(2,0,0),B1(2,2,4),D1(0,0,4),=(-2,0,4),=(0,2,4),=(0,0,4),设平面AB1D1的法向量为n=(x,y,z),则即解得x=2z且y=-2z,不妨设n=(2,-2,1),设点A1到平面AB1D1的距离为d,则d==.答案:3.(5分)(xx·郑州模拟)正四棱锥S -ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC的夹角的大小为.【解析】如图所示,以O为原点建立空间直角坐标系Oxyz.设OD=SO=OA=OB=OC=a,则A(a,0,0),B(0,a,0),C(-a,0,0),P.则=(2a,0,0),=,=(a,a,0).设平面PAC的法向量为n,可求得n=(0,1,1),则cos<,n>===.所以<,n>=60°,所以直线BC与平面PAC的夹角为90°-60°=30°.答案:30°4.(12分)(能力挑战题)如图,在平行四边形ABCD中,AB=2BC=2,∠ABC=120°,M,N分别为线段AB,CD的中点,连接AN,DM交于点O,将△ADM沿直线DM翻折成△A′DM.使平面A′DM⊥平面BCD,F为线段A′C的中点.(1)求证:ON⊥平面A′DM.(2)求证:BF∥平面A′DM.(3)求直线FO与平面A′DM所成的角.【解析】(1)连接MN,由平面几何知四边形AMND是菱形.所以AN⊥DM.因为平面A′DM⊥平面ABCD,DM是交线,AN⊂平面ABCD,所以AN⊥平面A′DM,即ON⊥平面A′DM.(2)取A′D的中点E,连接EF,EM,因为F是A′C中点,所以EFCD.又M是AB中点,所以在平行四边形ABCD中,BMCD,所以EF BM,所以四边形EFBM是平行四边形.所以BF∥EM,因为EM⊂平面A′DM,BF⊄平面A′DM,所以BF∥平面A′DM.(3)因为AB=2BC=2,M是AB中点,所以A′D=A′M=1.因为菱形ADNM中O是DM中点,所以A′O⊥DM,因为平面A′DM⊥平面ABCD,所以A′O⊥平面ABCD.以ON为x轴,OM为y轴,OA′为z轴建立空间直角坐标系,∠ADN=∠ABC=120°,在△ADN中,AD=DN=1,所以AN==.同理求得DM=AD=AM=1,所以N,D,A′,因为N是CD的中点,所以C.因为F是A′C的中点,所以F.因为NO⊥平面A′DM,所以平面A′DM的一个法向量=.因为=,所以||==1.设OF与平面A′DM所成的角为θ,0<θ<,则sinθ=|cos<,>|===,所以θ=.所以直线FO与平面A′DM所成的角为.5.(13分)(xx·江西高考)如图,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD.(2)若∠BPC=90°,PB=,PC=2,问AB为何值时,四棱锥P-ABCD的体积最大?并求此时平面PBC与平面DPC 夹角的余弦值.【解题提示】(1)利用面面垂直的性质定理证明AB⊥平面PAD即可.(2)借助两平面垂直的性质,作PO⊥AD,即四棱锥的高找到,过点O作OM⊥BC于点M,连接PM.则四棱锥的体积能用AB的长度表示,即可建立体积与AB的函数,借助二次函数知识求最值;此时可建立空间直角坐标系,利用坐标法求解.【解析】(1)因为ABCD为矩形,所以AB⊥AD,又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以AB⊥平面PAD,又PD⊂平面PAD,所以AB⊥PD.(2)过点P作PO⊥AD于点O,则PO⊥平面ABCD,过点O作OM⊥BC于点M,连接PM.则PM⊥BC,因为∠BPC=90°,PB=,PC=2,所以BC=,PM=,设AB=t,则在Rt△POM中,PO=,所以VP-ABCD=·t··=,所以当t2=,即t=时,VP-ABCD最大为.此时PO=AB=,且PO,OA,OM两两垂直,以OA,OM,OP所在直线为x,y,z轴建立空间直角坐标系Oxyz, 则P,D,C,B.所以=,=,=.设平面PCD的一个法向量m=(x1,y1,z1),则即令x1=1,则m=(1,0,-2),|m|=;同理设平面PBC的一个法向量n=(x2,y2,z2),即令y2=1,则n=(0,1,1),|n|=,设平面PBC与平面DPC夹角为θ,显然θ为锐角,且cosθ===..。

高考数学复习-立体几何中的向量方法(Ⅱ)—求空间角与距离(测试题)

高考数学复习-立体几何中的向量方法(Ⅱ)—求空间角与距离(测试题)

班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共8小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( ) A.1010 B.15 C.31010 D.352.已知直二面角α­l ­β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l ,D 为垂足,若AB =2,AC =BD =1, 则CD =( ).A .2 B. 3 C. 2 D .13.如图,在四面体ABCD 中,AB =1,AD =23,BC =3,CD =2.∠ABC =∠DCB =π2,则二面角A -BC -D 的大小为( ). A.π6 B.π3 C.5π3D.5π64.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( )A. 110B. 25C. 3010D. 225.已知正四棱柱1111ABCD A B C D -中,12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B .33C .23D .136.已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为49,底面是边长为3的正三角形,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为 A.125π B.3π C.4π D.6π 7.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 ( )A .14B .24C .34D .12 8.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( )A .32B .22C .33D .233二、填空题(本大题共7小题,共36分).9. (4分)【2015-2016学年湖北省襄阳市白水高中】如图所示,PD 垂直于正方形ABCD 所在平面,AB=2,E 为PB 的中点,cos <,>=,若以DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为 .10. (4分) 在长方体ABCD —A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________.11.(4分)已知正方体的棱长是,则直线与间的距离为 。

高考第一轮复习第三十六讲立体几何中的角和距离

高考第一轮复习第三十六讲立体几何中的角和距离

- 130 -第三十六讲 立体几何中的角和距离题型一 异面直线所成角的计算问题例1、已知正四面体P-ABC 的棱长为a ,D 、E 分别是AB 、PC 的中点,求异面直线AE 与CD 所成角的余弦值。

例2、在单位正方体1111D C B A ABCD -中,求:(1)异面直线AB 与1CC 所成的角和距离;(2)异面直线AB 与11C A 所成的角和距离;(3)面直线AB 与C B 1所成的角和距离;(4)若N Q 、分别为棱1AA 与1BB 的中点,θ为直线CQ 与N D 1所成的角,求θsin 的值;(5)若将正方体改为长方体,1,21===AA BC AB ,求AC 与1BD 所成的角。

例3、(1)已知异面直线a 与b 所成角为50°,P 为空间一定点,则过点P 且与a 、b 都成30°角的直线有且仅有( )A 、1条B 、2条C 、3条D 、4条(2)已知异面直线a 、b 成60°角,过空间中任一点O 作直线l 与a 、b 都成︒60角,则直线l 有且仅有( )A 、1条B 、2条C 、3条D 、4条小结:求异面直线所成的角,通常采用平移法,使其成为相交直线所成的角,然后再将其归结到三角形中去求解。

必须注意所成角的范围:- 131 -20πθ≤<。

题型二 直线与平面所成角的计算问题例4、在正方体ABCD-A 1B 1C 1D 1中,求A 1B 和平面A 1B 1CD 所成的角。

小结:直线与平面所成的角一般通过直线在平面内的射影转化为两条相交直线所成角的度量为题来解决。

题型三 二面角的计算例5、已知在三棱锥P-ABC 中,PC ⊥平面ABC ,AB=BC=CA=PC ,求二面角B-AP-C 的大小。

小结:求二面角的大小关键是确定二面角的平面角,确定二面角的基本方法有:①定义法;②三垂线定理法;③垂面法;④利用异面直线上两点间的距离公式;⑤利用面积射影定理:ss 'cos =θ。

专题45 立体几何中的向量方法(二)—求空间角和距离-2020年领军高考数学一轮复习(文理通用)

专题45 立体几何中的向量方法(二)—求空间角和距离-2020年领军高考数学一轮复习(文理通用)

专题45立体几何中的向量方法(二)——求空间角和距离 最新考纲1.能用向量方法解决直线与直线、直线与平面、平面与平面所成角的计算问题.2.了解向量方法在研究立体几何问题中的应用.基础知识融会贯通1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【知识拓展】利用空间向量求距离(供选用) (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=x 1-x 22+y 1-y 22+z 1-z 22.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |.重点难点突破【题型一】求异面直线所成的角【典型例题】如图,直棱柱(侧棱垂直于底面的棱柱) ABC ﹣A 1B 1C 1,在底面ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别为A 1B 1,A 1A 的中点. (1)求的值;(2)求证:BN ⊥平面C 1MN .【再练一题】如图,BC =2,原点O 是BC 的中点,点A 的坐标为(,,0),点D 在平面yOx 上,且∠BDC =90°,∠DCB =30°. (1)求向量的坐标.(2)求与的夹角的余弦值.思维升华用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.【题型二】求直线与平面所成的角【典型例题】如图所示,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,BC=BA AD=m,VA⊥平面ABCD.(1)求证:CD⊥平面VAC;(2)若VA m,求CV与平面VAD所成角的大小.【再练一题】如图,四棱锥P﹣ABCD中,底面为直角梯形,AB∥CD,∠BAD=90°,AB=2CD=4,P A⊥CD,在锐角△P AD 中,E是边PD上一点,且AD=PD=3ED.(1)求证:PB∥平面ACE;(2)当P A的长为何值时,AC与平面PCD所成的角为30°?思维升华利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.【题型三】求二面角【典型例题】四棱锥P﹣ABCD中,平面PCD⊥平面ABCD,四边形ABCD为矩形,AB=4,AD=3,∠P AB=90°.(1)求证:PD⊥平面ABCD;(2)若直线BD与平面P AB所成角的正弦值为,求二面角C﹣P A﹣D的余弦值.【再练一题】如图在直角△ABC中,B为直角,AB=2BC,E,F分别为AB,AC的中点,将△AEF沿EF折起,使点A 到达点D的位置,连接BD,CD,M为CD的中点.(Ⅰ)证明:MF⊥面BCD;(Ⅱ)若DE⊥BE,求二面角E﹣MF﹣C的余弦值.思维升华利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【题型四】求空间距离【典型例题】四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,P A=PB=PD.(1)求证:PD⊥AB;(2)若AB=6,PC=8,E是BD的中点,求点E到平面PCD的距离.【再练一题】如图,P A⊥平面ABCD,四边形ABCD是正方形,P A=AD=2,M、N分别是A B.PC的中点.(1)求证:平面MND⊥平面PCD;(2)求点P到平面MND的距离.思维升华求点面距一般有以下三种方法:(1)作点到面的垂线,点到垂足的距离即为点到平面的距离.(2)等体积法.(3)向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.基础知识训练1.【天津市部分区2019届高三联考一模】在如图所示的几何体中,四边形ABCD 是正方形,四边形ADPQ 是梯形,PD ∥QA ,2PDA π∠=,平面ADPQ ⊥平面ABCD ,且22AD PD QA ===.(Ⅰ)求证:QB ∥平面PDC ; (Ⅱ)求二面角C PB Q −−的大小;(Ⅲ)已知点H 在棱PD 上,且异面直线AH 与PB ,求线段DH 的长. 2.【山东省淄博市部分学校2019届高三5月阶段性检测(三模)】已知正方形的边长为4,,E F 分别为,AD BC 的中点,以EF 为棱将正方形ABCD 折成如图所示的60的二面角,点M 在线段AB 上.(1)若M 为AB 的中点,且直线MF ,由,,A D E 三点所确定平面的交点为O ,试确定点O 的位置,并证明直线//OD 平面EMC ;(2)是否存在点M ,使得直线DE 与平面EMC 所成的角为60;若存在,求此时二面角M EC F −−的余弦值,若不存在,说明理由.3.【陕西省汉中市2019届高三全真模拟考试】如图,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,//EF AB ,90BAF ∠=︒,2AD =,1AB AF ==,点P 在线段DF 上.(1)求证:AF ⊥平面ABCD ;(2)若二面角D AP C −−的余弦值为3,求PF 的长度. 4.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】如图,三棱柱111ABC A B C −中,平面11ACC A ⊥平面ABC ,12AA AC CB ==,90ACB ∠=︒.(1)求证:平面11AB C ⊥平面11A B C ;(2)若1A A 与平面ABC 所成的线面角为60︒,求二面角11C AB C −−的余弦值.5.【辽宁省葫芦岛市普通高中2019届高三第二次模拟考试】如图,在多面体ABCDEF 中,平面ADEF ⊥平面ABCD .四边形ADEF 为正方形,四边形ABCD 为梯形,且//AD BC ,ABD ∆是边长为1的等边三角形,M 为线段BD 中点,3BC =.(1)求证:AF BD ⊥;(2)求直线MF 与平面CDE 所成角的正弦值;(3)线段BD 上是否存在点N ,使得直线//CE 平面AFN ?若存在,求BNBD的值;若不存在,请说明理由.6.【山东省安丘市、诸城市、五莲县、兰山区2019届高三5月校级联合考试】如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中45BAE GAD ∠=∠=︒,22AB AD ==,60BAD ∠=︒.(1)求证:平面BDG ⊥平面ADG ; (2)求直线GB 与平面AEFG 所成角的正弦值.7.【西藏拉萨市2019届高三第三次模拟考试】如图,等边三角形PAC 所在平面与梯形ABCD 所在平面互相垂直,且有AD BC ∥,2AB AD DC ===,4BC =.(1)证明:平面PAB ⊥平面PAC ; (2)求二面角B PC D −−的余弦值.8.【内蒙古呼伦贝尔市2019届高三模拟统一考试(一)】如图,在直三棱柱111ABC A B C −中,D 、E 、F 、G 分别是BC 、11B C 、1AA 、1CC 中点.且AB AC ==,14BC AA ==.(1)求证:BC ⊥平面ADE ; (2)求二面角1G EF B −−的余弦值.9.【广东省肇庆市2019届高中毕业班第三次统一检测】如图,在三棱柱111ABC A B C −中,侧面11ABB A 是菱形,160BAA ∠=︒,E 是棱1BB 的中点,CA CB =,F 在线段AC 上,且2AF FC =.(1)证明:1//CB 面1A EF ;(2)若CA CB ⊥,面CAB ⊥面11ABB A ,求二面角1F A E A −−的余弦值.10.【广东省潮州市2019届高三第二次模拟考试】如图,菱形ABCD 与正三角形BCE 的边长均为2,它们所在平面互相垂直,FD ⊥平面ABCD ,EF 平面ABCD .(1)求证:平面ACF ⊥平面BDF ;(2)若60CBA ∠=︒,求二面角A BC F −−的大小.11.【山东省栖霞市2019届高三高考模拟卷】如图,在三棱锥V ABC −中,,90,2VC AB ABC AB BC ︒<∠===,侧面ACV ⊥底面ABC ,45ACV ︒∠=,D 为线段AB 上一点,且满足AD CV =.(1)若E 为AC 的中点,求证:BE CV ⊥; (2)当DV 最小时,求二面角A BC V −−的余弦值.12.【河南省百校联盟2019届高三考前仿真试卷】如图,在几何体1111ACD A B C D −中,四边形1111ADD A CDD C ,为矩形,平面11ADD A ⊥平面11CDD C ,11B A ⊥平面11ADD A ,1111,2AD CD AA A B ====,E 为棱1AA 的中点.(Ⅰ)证明:11B C ⊥平面1CC E ;(Ⅱ)求直线11B C 与平面1B CE 所成角的正弦值.13.【江西省上饶市横峰中学2019届高三考前模拟考试】如图,在三棱锥P ABC −中,20{28x x −>−≥,2AB BC =,D 为线段AB 上一点,且3AD DB =,PD ⊥平面ABC ,PA 与平面ABC 所成的角为45.(1)求证:平面PAB ⊥平面PCD ;(2)求二面角P AC D −−的平面角的余弦值。

立体几何中的角度与距离问题

立体几何中的角度与距离问题

立体几何中的角度与距离问题【基础知识】一.空间角度问题(一)理解空间中各种角的定义及其取值范围1.异面直线所成的角、直线与平面所成的角及二面角的概念。

2.各种角的取值范围:(1)异面直线所成的角的取值范围是:0°< θ ≤90°;(2)直线于平面所成的角的取值范围是: 0°≤ θ ≤90°;(3)二面角的大小可以用它的平面角来度量,通常认为二面角平面角的取值范围是: 0°< θ ≤180° (二)空间中的角的计算1、用直接法求角的一般步骤是:(1)找出或做出有关角的图形;(2)证明它符合定义(3)计算(一般通过解三角形)2、异面直线所成的角:用平移转化的方法使它成为相交直线所成的角。

当异面直线垂直时,运用直线垂直平面的定义或三垂线定理(或逆定理)判定所成角是90°.3. 斜线和平面所成的角是一个直角三角形所成的锐角,它的三条边分别是平面的垂线段/斜线段及斜线段在平面内的射影。

4. 二面角要转化为其平面角,掌握以下三种基本做法:(1)直接利用定义;(2)利用三垂线定理及其逆定理(3)作棱的垂面另外,还要特别注意观察图形本身是否已含有所求的平面角注意:1.空间各种角的计算方法都是转化为平面角来计算的,应熟练掌握这种转化。

2.计算题必须有推理过程。

二.空间距离问题1.立体几何中的各种距离有:(1)点到直线的距离(2)点到平面的距离(3)平行直线间的距离(4)异面直线间的距离(5)直线与平面的距离(6)两个平面间的距离(7)球面上两点间距离2.空间七种距离求法,通常是转化为平面上两点间的距离:(1)找出或作出有关距离的图形;(2)证明它们就是所求的距离;(3)利用平面几何和解三角形的知识在平面内计算α βAOP A BOP αβ (1)(2)(3)3. 求异面直线距离(1)定义:关键确定公垂线段(2)转化为直线和平面间距离(过a 而与b 平行的平面)(3)转化为平面间距离(4)极值法4. 求点面距离其法有二:(1)直接法,确定垂足的位置(2)等体积法,同一个三棱锥,从不同的角度选择底和高计算体积并加以比较即可。

高中立体几何证明方法及例题

高中立体几何证明方法及例题

1.空间角与空间距离在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。

2.立体几体的探索性问题立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。

近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。

对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。

对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。

(一)平行与垂直关系的论证由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。

1.线线、线面、面面平行关系的转化:面面平行性质α//βαI γ=a ,βI γ⎫⎬⇒a =b ⎭//baa //b⎫⎬ba ⊄α,b ⊂α⎭α⇒a //αa ⊂α,b ⊂αAb a I b =Aαaa //β,b //ββ⎫⎪⎬⎪⎭(a//b,b//c线线∥⇒a //c)公理4线面平行判定线面平行性质线面∥⇒α//β面面平行判定1面面∥面面平行性质面面平行性质1α//γ⎫β//γ⎭⎫⎪a ⊂β⎬αI β=b ⎪⎭a //α⇒a //bα//β⎫a ⊂α⎭⎬⎬⇒α//β⇒a //β2.线线、线面、面面垂直关系的转化:⎫⎪a Ib =O ⎬l ⊥a ,l ⊥b ⎪⎭a ,b ⊂α⇒l ⊥α⎫⎬⇒α⊥βa ⊂β⎭a ⊥α面面⊥三垂线定理、逆定理线线⊥PA ⊥α,AO 为PO 在α内射影a ⊂α则a ⊥OA ⇒a ⊥PO a ⊥PO ⇒a ⊥AOl ⊥α线面垂直判定1线面垂直定义线面⊥α⊥β面面垂直判定面面垂直性质,推论2⎫⎬a ⊂α⎭⇒l ⊥a⎫⎪αI β=b ⎬⇒a ⊥αa ⊂β,a ⊥b ⎪⎭α⊥γβ⊥γαI β⎫⎪⎬⇒a ⊥γ=a ⎪⎭面面垂直定义αI β=l ,且二面角α-l -β⎫成直二面角⎬⇒α⊥β⎭3.平行与垂直关系的转化:a //b ⎫a ⊥αa ⊥α⎫⇒b ⊥αa⎬⎭⎬⇒αa ⊥β⎭//β线线∥线面垂直判定2线面垂直性质2a ⊥α⎫线面⊥面面平行判定2面面平行性质3面面∥⎬⇒a //b b ⊥α⎭α//β⎫a ⊥α⎬a ⊥β⎭4.应用以上“转化”的基本思路——“由求证想判定,由已知想性质。

高考真题(立体几何中空间角问题[题目])

高考真题(立体几何中空间角问题[题目])

解答题1. 如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2,60AB BAD =∠=o .(Ⅰ)求证:BD ⊥平面;PAC(Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.2. 如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,︒=∠45CDA .(I )求证:平面P AB ⊥平面P AD ;(II )设AB =AP .(i )若直线PB 与平面PCD 所成的角为︒30,求线段AB 的长;(ii )在线段AD 上是否存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由。

3. 如图5.在椎体P -ABCD 中,ABCD 是边长为1的棱形,且∠DAB =60︒,2PA PD ==,PB =2, E ,F 分别是BC ,PC 的中点.(1) 证明:AD ⊥平面DEF ;(2) 求二面角P -AD -B 的余弦值.4. 如图,已知正三棱柱111ABC A B C -的各棱长都是4,E 是BC 的中点,动点F 在侧棱1CC 上,且不与点C 重合.(Ⅰ)当CF =1时,求证:EF ⊥1A C ;(Ⅱ)设二面角C AF E --的大小为θ,求tan θ的最小值.A B DC FPE5. 如图,在圆锥PO中,已知PO=2,⊙O的直径2AB=,C是»AB的中点,D为AC 的中点.(Ⅰ)证明:平面POD⊥平面PAC;(Ⅱ)求二面角B PA C--的余弦值。

6. 如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=12 PD.(I)证明:平面PQC⊥平面DCQ;(II)求二面角Q—BP—C的余弦值.8. 如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(I )证明:PA BD ⊥;(II )若PD =AD ,求二面角A -PB -C 的余弦值.9. 在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB =90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.10. 如图,在ABC ∆中,60,90,ABC BAC AD ∠=∠=o o 是BC 上的高,沿AD 把ABC ∆折起,使90BCD ∠=o 。

立体几何中的向量方法(2)——求空间角和距离

立体几何中的向量方法(2)——求空间角和距离

立体几何中的向量方法(二)——求空间角和距离【基础检测】1.思维辨析(在括号内打“√”或“×”).(1)两直线的方向向量所成的角就是两条直线所成的角.( )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( ) (3)两个平面的法向量所成的角是这两个平面所成的角.( )(4)两异面直线夹角的范围是⎝⎛⎦⎤0,π2,直线与平面所成角的范围是⎣⎡⎦⎤0,π2,二面角的范围是[0,π].( )2.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150°3.正三棱柱(如右图,底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为__ __.4.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为__ __.5.P 是二面角α-AB -β棱上一点,分别在平面α,β上引射线PM ,PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为__ __.【例题精讲】题型一求异面直线所成的角用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.【例1】(2017·江苏卷)如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=3,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B-A1D-A的正弦值.题型二求直线与平面所成的角利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所成的锐角,取其余角就是斜线和平面所成的角.【例2】如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的底面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.题型三求二面角求二面角最常用的方法就是分别求出二面角的两个半平面所在面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.【例3】(2017·浙江卷)如图,已知正四面体D-ABC(所有棱长均相等的三棱锥),P,Q,R分别为AB,BC,CA上的点,AP=PB,BQQC=CRRA=2.分别记二面角D-PR-Q,D-PQ-R,D-QR-P的平面角为α,β,γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α【例4】(2017·北京卷)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面P AD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,P A=PD=6,AB=4.(1)求证:M为PB的中点;(2)求二面角为B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.【例5】 (2017·全国卷Ⅱ)如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值.题型四 求空间距离求点面距一般有以下三种方法:①作点到面的垂线,点到垂足的距离即为点到平面的距离;②等体积法;③向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.【例6】 如图,三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)设AA 1=2,A 1B 1的中点为P ,求点P 到平面BDC 1的距离.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C A1EB1C1高考典型题型训练——立体几何中求角与距离1. 四棱锥P —ABCD 的底面是边长为a 的正方形,PB ⊥面ABCD. (1)若面PAD 与面ABCD 所成的二面角为60°,求这个四棱锥的体积;(2)证明无论四棱锥的高怎样变化,面PAD 与面PCD 所成的二面角恒大于90°2如图,直三棱柱ABC-A 1B 1C 1的底面ABC 为等腰直角三角形,∠ACB=900,AC=1,C 点到AB 1的距离为CE=23,D 为AB 的中点. (1)求证:AB 1⊥平面CED ;(2)求异面直线AB 1与CD 之间的距离;(3)求二面角B 1—AC —B 的平面角.3. 如图a—l—β是120°的二面角,A,B两点在棱上,AB=2,D在α内,三角形ABD是等腰直角三角形,∠DAB=90°,C在β内,∆ABC是等腰直角三角形∠ACB=.900(I)求三棱锥D—ABC的体积;(2)求二面角D—AC—B的大小;(3)求异面直线AB、CD所成的角.4. 在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分折成一个无盖的正三棱柱形容器,如图②.则当容器的高为多少时,可使这个容器的容积最大,并求出容积的最大值.图①图②5. 已知三棱锥P—ABC中,PC⊥底面ABC,AB=BC,D、F分别为AC、PC的中点,DE⊥AP于E.(1)求证:AP⊥平面BDE;(2)求证:平面BDE⊥平面BDF;(3)若AE∶EP=1∶2,求截面BEF分三棱锥P—ABC所成两部分的体积比.6. 如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F、G分别为EB和AB的中点.(1)求证:FD∥平面ABC;(2)求证:AF⊥BD;(3) 求二面角B—FC—G的正切值.7. 如图,正方体ABCD—A1B1C1D1的棱长为1,P、Q分别是线段AD1和BD上的点,且D1P∶PA=DQ∶QB=5∶12.(1) 求证PQ∥平面CDD1C1;(2) 求证PQ⊥AD;A B C D E A 1 B 1C 1D 1 xyz(3)求线段PQ 的长.8. 如图4,在长方体ABCD -1111A B C D 中,AD=1AA =1,AB=2,点E 在棱AB上移动。

(Ⅰ)证明:11D E A D ⊥;(Ⅱ)当E 为AB 的中点时,求点E 到面1ACD 的距离;(Ⅲ)AE 等于何值时,二面角1D EC D --的大小为4π。

9.如图,在正三棱柱ABC—A1B1C1中,各棱长都相等,D、E分别为AC1,BB1的中点。

(1)求证:DE∥平面A1B1C1;(2)求二面角A1—DE—B1的大小。

10.如图:已知直三棱柱ABC—A1B1C1,AB=AC,F为棱BB1上一点,BF∶FB1=2∶1,BF=BC=2a。

(I)若D为BC的中点,E为AD上不同于A、D的任意一点,证明EF⊥FC1;(II)试问:若AB=2a,在线段AD上的E点能否使EF与平面BB1C1C成60°角,为什么?证明你的结论11.如图,在底面是直角梯形的四棱锥P ABCD-中,AD∥BC,∠ABC=90°,且∠ADC=arcsin55,又PA⊥平面ABCD,AD=3AB=3PA=3a。

ABC1A1B1CED(I )求二面角P —CD —A 的正切值; (II )求点A 到平面PBC 的距离。

PBCA D12.在直三棱柱ABC —A 1B 1C 1中,CA=CB=CC 1=2,∠ACB=90°,E 、F 分别是BA 、BC 的中点,G 是AA 1上一点,且AC 1⊥EG. (Ⅰ)确定点G 的位置;(Ⅱ)求直线AC 1与平面EFG 所成角θ的大小.13.已知四棱锥P —ABCD ,底面ABCD 是菱形,⊥︒=∠PD DAB ,60平面ABCD ,PD=AD ,点E为AB中点,点F为PD中点. (1)证明平面PED⊥平面PAB;(2)求二面角P—AB—F的平面角的余弦值14.在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.(Ⅰ)求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O点在平面D1AP上的射影是H,求证:D1H⊥AP;(Ⅲ)求点P到平面ABD1的距离.·B1PACDA1C1D1BOH·15.如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F。

(I)证明平面;(II)证明平面EFD;(III)求二面角的大小。

16.如图,在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点.(I)试确定点F的位置,使得D1E⊥平面AB1F;(II)当D1E⊥平面AB1F时,求二面角C1—EF—A的大小(结果用反三角函数值表示).17.如图,直四棱柱ABCD-A1B1C1D1的底面是梯形,AB∥CD,AD⊥DC,CD=2,DD1=AB=1,P、Q分别是CC1、C1D1的中点。

点P到直线AD1的距离为223⑴求证:AC∥平面BPQ⑵求二面角B-PQ-D的大小18.已知长方体ABCD—A1B1C1D1中,AB=BC=4,AA1=8,E、F分别为AD和CC1的中点,O1为下底面正方形的A BCDA BCDPQ1111中心。

(Ⅰ)证明:AF⊥平面FD1B1;(Ⅱ)求异面直线EB与O1F所成角的余弦值;19. 图①是一个正方体的表面展开图,MN和PQ是两条面对角线,请在图(2)的正方体中将MN,PQ画出来,并就这个正方体解答下列各题:(1)求MN和PQ所成角的大小;(2)求四面体M—NPQ的体积与正方体的体积之比;(3)求二面角M—NQ—P的大小。

20. 如图,已知四棱锥P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°。

(1)求点P到平面ABCD的距离;(2)求面APB与面CPB所成二面角的大小。

答案:1. (1)正方形ABCD是四棱锥P—ABCD的底面, 其面积为,2a从而只要算出四棱锥的高就行了.PB面ABCD,∴BA是PA在面ABCD上的射影.又DA⊥AB,∴PA⊥DA,∴∠PAB是面PAD与面ABCD所成的二面角的平面角,∠PAB=60°.而PB 是四棱锥P —ABCD 的高,PB=AB ·tg60°=3a,3233331a a a V =⋅=∴锥. (2)不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为全等三角形. 作AE ⊥DP ,垂足为E ,连结EC ,则△ADE ≌△CDE ,CEA CED CE AE ∠=∠=∴故,90, 是面PAD 与面PCD 所成的二面角的平面角.设AC 与DB 相交于点O ,连结EO ,则EO ⊥AC ,.22a AD AE OA a =<<=∴在.0)2)(2(2)2(cos ,2222<-+=⋅⋅-+=∠∆AEOA AE OA AE EC AE OA EC AE AEC AEC 中 故平面PAD 与平面PCD 所成的二面角恒大于90°.2. (1)∵D 是AB 中点,△ABC 为等腰直角三角形,∠ABC=900,∴CD ⊥AB 又AA 1⊥平面ABC ,∴CD ⊥AA 1.∴CD ⊥平面A 1B 1BA ∴CD ⊥AB 1,又CE ⊥AB 1,∴AB 1⊥平面CDE ; (2)由CD ⊥平面A 1B 1BA ∴CD ⊥DE ∵AB 1⊥平面CDE ∴DE ⊥AB 1∴DE 是异面直线AB 1与CD 的公垂线段∵CE=23,AC=1 ,∴CD=.22∴21)()(22=-=CD CE DE ; (3)连结B 1C ,易证B 1C ⊥AC ,又BC ⊥AC , ∴∠B 1CB 是二面角B 1—AC —B 的平面角.在Rt △CEA 中,CE=23,BC=AC=1, ∴∠B 1AC=600 ∴260cos 121==AB ,∴2)()(2211=-=AB AB BB , ∴211==∠BCBB CB B tg , ∴21arctg CB B =∠.3. (1) 过D 向平面β做垂线,垂足为O ,连强OA 并延长至E.DAE OA AB DA OA AD AB ∠∴⊥∴⊥,,上的射影在平面为β 为二面角a —l —β的平面角..60,120 =∠∴=∠DAO DAE 3,2=∴==DO AB AD .ABC ∆ 是等腰直角三角形,斜边AB=2.,1=∴∆ABC S 又D 到平面β的距离DO=.3.33=∴-ABC D V (2)过O 在β内作OM ⊥AC,交AC 的反向延长线于M,连结DM.则AC ⊥DM.∴∠DMO 为二面角D —AC —B 的平面角. 又在△DOA 中,OA=2cos60°=1.且.22,45=∴=∠=∠OM CAE OAM .6.6arctg DMO DMO tg =∠∴=∠∴ (3)在β平在内,过C 作AB 的平行线交AE 于F ,∠DCF 为异面直线AB 、CD 所成的角.ACF CAF DF CF AF CF AF AB ∆=∠⊥∴⊥∴⊥即又,45,, 为等腰直角三角形,又AF 等于C 到AB 的距离,即△ABC 斜边上的高,.1==∴CF AF.7.7.7120cos 2222=∠∴==∠∴=⋅-+=∴DCF tg CFDFDCF tg AF AD AF AD DF 异面直线AB,CD 所成的角为arctg .74. 设容器的高为x .则容器底面正三角形的边长为x a 32-,)32)(32(3434143)320()32(43)(2x a x a x a x x a x x V --⋅⋅⋅=<<-⋅⋅=∴54)3323234(16133a x a x a x =-+-+≤. 当且仅当 .54,183,32343max a V a x x a x ==-=时即.故当容器的高为a 183时,容器的容积最大,其最大容积为.543a5.(1)∵PC ⊥底面ABC ,BD ⊂平面ABC ,∴PC ⊥BD .由AB=BC ,D 为AC 的中点,得BD ⊥AC .又PC ∩AC=C ,∴BD ⊥平面PAC . 又PA ⊂平面、PAC ,∴BD ⊥PA .由已知DE ⊥PA ,DE ∩BD=D ,∴AP ⊥平面BDE . (2)由BD ⊥平面PAC ,DE ⊂平面PAC ,得BD ⊥DE .由D 、F 分别为AC 、PC 的中点,得DF//AP .由已知,DE ⊥AP ,∴DE ⊥DF.BD ∩DF=D ,∴DE ⊥平面BDF . 又 DE ⊂平面BDE ,∴平面BDE ⊥平面BDF . (3)设点E 和点A 到平面PBC 的距离分别为h 1和h 2.则 h 1∶h 2=EP ∶AP=2∶3,.31232313121=⋅=⋅⋅⋅⋅==∴∆∆----PBC PBFPBCA PBFE ABC P EBF P S h S h V V V V故截面BEF 分三棱锥P —ABC 所成两部分体积的比为1∶2或2∶1 6.∵F 、G 分别为EB 、AB 的中点, ∴FG=21EA ,又EA 、DC 都垂直于面ABC, FG=DC , ∴四边形FGCD 为平行四边形,∴FD ∥GC ,又GC ⊂面ABC , ∴FD ∥面ABC.(2)∵AB=EA ,且F 为EB 中点,∴AF ⊥EB ① 又FG ∥EA ,EA ⊥面ABC ∴FG ⊥面ABC ∵G 为等边△ABC ,AB 边的中点,∴AG ⊥GC. ∴AF ⊥GC 又FD ∥GC ,∴AF ⊥FD ②由①、②知AF ⊥面EBD ,又BD ⊂面EBD ,∴AF ⊥BD. (3)由(1)、(2)知FG ⊥GB ,GC ⊥GB ,∴GB ⊥面GCF.过G 作GH ⊥FC ,垂足为H ,连HB ,∴HB ⊥FC.∴∠GHB 为二面角B-FC-G 的平面角. 易求33223,23==∠∴=a a GHB tg a GH .7. (1)在平面AD 1内,作PP 1∥AD 与DD 1交于点P 1,在平面AC 内,作 QQ 1∥BC 交CD 于点Q 1,连结P 1Q 1. ∵1251==QB DQ PA P D , ∴PP 1//QQ 1 .由四边形PQQ 1P 1为平行四边形, 知PQ ∥P 1Q 1 而P 1Q 1⊂平面CDD 1C 1, 所以PQ ∥平面CDD 1C 1(2) AD ⊥平面D 1DCC 1, ∴AD ⊥P 1Q 1,又∵PQ ∥P 1Q 1, ∴AD ⊥PQ.(3)由(1)知P 1Q 1//PQ,125QB DQ C Q DQ 11==,而棱长CD=1. ∴DQ 1=175. 同理可求得 P 1D=1712. 在Rt △P 1DQ 1中,应用勾股定理, 立得P 1Q 1=1713175171222221=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+DQ D P .8. 解:建立如图所示的空间直角坐标系,设AE a =,则1(1,0,1)A ,1(0,0,1)D ,(1,,0)E a ,(1,0,0)A ,(0,2,0)C 。

相关文档
最新文档