植物生理学简答题整理
(新)植物生理学简答题试题库(附答案解析)

(新)植物生理学简答题试题库(附答案解析)1.什么是胁迫(逆境)蛋白?其生理意义如何?近年来由于分子生物学技术的渗透,抗性生理的分子基础研究有了进展,发现多种逆境因子(如高温、缺氧、紫外线、病原菌、低温、干旱、化合物、活性氧胁迫等)抑制原来正常蛋白质的合成,而诱导合成一些新的蛋白质,这就是胁迫蛋白。
这类蛋白除部分已被确定为适应过程必需的酶外,大部分其生理功能不清楚。
2.证明细胞分裂素是在根尖合成的依据有哪些?(1)许多植物(如葡萄、向日葵等)的伤流中有细胞分裂素,可持续数天。
(2)测定豌豆根各切段的细胞分裂素含量,在根尖0~1mm切段的细胞分裂素含量较远根尖切段的高。
(3)无菌培养水稻根尖,根可向培养基中分泌细胞分裂素。
3.试说明有机物运输分配的规律总和来说是由源到库,植物在不同生长发育时期,不同部位组成不同的源库单位,以保证和协调植物的生长发育,总结其运输规律(1)优先运往生长中心;(2)就近运输;(3)纵向同侧运输(与输导组织的结构有关);(4)同化物的再分配即衰老和过度组织(或器官)内的有机物可撤离以保证生长中心之需。
4.从干旱条件下植物可能通过细胞失水或细胞累积溶质两条途径降低水势的事实出发,阐述测定水势中各组分的值比测定总水势更能反映植物水分状况的观点。
当在细胞失水时,、同时降低,引起总水势降低;但当累积溶质时,降低而不变,也引起总水势降低,此时失水很少。
从上述可看出,具有相同总水势的细胞,其水分状况会相差极大。
细胞水分含量的多少与静水压力相关,只有细胞膨压大小更能反映细胞生理活动。
在上述情况下,总水势不能反映水分状况对生理活动的影响。
5.植物为什么选择蔗糖为物质运输的主要物质?它是光合作用的产物。
它是非还原糖,化学性质稳定。
溶解性高。
比葡萄糖等有优越的物理性质,如表面张力低,粘度低等。
6.植物受盐害的原因是什么?造成缺水的胁迫;造成离子的胁迫。
7. 花粉富含水解酶类,其生理意义是什么?花粉体积小,所携带营养物质有限,不能营独立生活。
植物生理学简答题(完整版)

1一月二月三月产品名称数量金额利润产品名称数量金额利润产品名称数量金额利润合计合计合计四月五月六月产品名称数量金额利润产品名称数量金额利润产品名称数量金额利润合计合计合计绪论1.植物生理学的发展大致经历了哪几个阶段?2.21世纪植物生理学的发展趋势如何?3.近年来,由于生物化学和分子生物学的迅速发展,有人担心植物生理学将被其取代,谈谈你的观点。
参考答案1.答:植物生理学的发展大致经历了以下三个阶段:第一阶段:植物生理学的奠基阶段。
该阶段是指从植物生理学学尚未形成独立的科学体系之前,到矿质营养学说的建立。
第二阶段:植物生理学诞生与成长阶段。
该阶段是从1840年Liebig建立营养学说时起,到19世纪末植物生理学逐渐形成独立体系。
第三阶段:植物生理学的发展阶段。
从20世纪初到现在,植物生理学逐渐在植物学科中占中心地位,所有各个植物学的分支都离不开植物生理学。
2.答:.①与其他学科交叉渗透,从研究生物大分子到阐明个体生命活动功能、生产应用,并与环境生态相结合等方面。
微观方面,植物生命活动本质方面的研究向分子水平深入并不断综合。
在宏观方面,植物生理学与环境科学、生态学等密切结合,由植物个体扩大到群体,即人类地球-生物圈的大范围,大大扩展了植物生理学的研究范畴。
②对植物信号传递和转导的深入研究,将为揭示植物生命活动本质、调控植物生长发育开辟新的途径。
在21世纪,对光信号、植物激素信号、重力信号、电波信号及化学信号等所诱导的信号传递和转导机制的深入研究,将会揭开植物生理学崭新的一页。
③植物生命活动过程中物质代谢和能量转换的分子机制及其基因表达调控仍将是研究的重点。
在新世纪里,对植物生命活动过程中物质代谢和能量代谢转换的深入研究占有特别重要的位置。
目前,将光和能量转换机制与生理生态联系起来进行研究正在走向高潮,从而将光和能量转换机制研究与解决人类面临的粮食、能源问题紧密联系起来,以便在生产中发挥更大的指导作用。
植物生理学简答题

简答题1、简述氧化酶的生物学特性与适应性。
植物体内含有多种呼吸氧化酶,这些酶各有其生物学特性(如对温度的要求和对氧气的反应,所以就能使植物体在一定范围内适应各种外界条件。
以对温度的要求来说,黄酶对温度变化反应不敏感,温度降低时黄酶活性降低不多,故在低温下生长的植物及其器官以这种酶为主,而细胞色素氧化酶对温度变化的反应最敏感。
在果实成熟过程中酶系统的更替正好反映了酶系统对温度的适应。
例如,柑橘的果实有细胞色素氧化酶、多酚氧化酶和黄酶,在果实末成熟时,气温尚高,呼吸氧化是以细胞色素氧化酶为主;到果实成熟时,气温渐低,则以黄酶为主.这就保证了成熟后期呼吸活动的水平,同时也反映了植物对低温的适应。
以对氧浓度的要求来说,细胞色素氧化酶对氧的亲和力最强,所以在低氧浓度的情况下,仍能发挥良好的作用;而酚氧化酶和黄酶对氧的亲和力弱,只有在较高氧浓度下才能顺利地发挥作用。
苹果果肉中酶的分布也正好反映了酶对氧供应的适应,内层以细胞色素氧化酶为主,表层以黄酶和酚氧化酶为主。
水稻幼苗之所以能够适应淹水低氧条件,是因为在低氧时细胞色素氧化酶活性加强而黄酶活性降低之故。
2、长期进行无氧呼吸会导致植株死亡的原因是什么?长时间的无氧呼吸会使植物受伤死亡的原因:第一,无氧呼吸产生酒精,酒精使细胞质的蛋白质变性;第二,因为无氧呼吸利用每摩尔葡萄糖产生的能量很少,相当于有氧呼吸的百分之几(约8%),植物要维持正常的生理需要,就要消耗更多的有机物,这样,植物体内养料耗损过多;第三,没有丙酮酸氧化过程,许多由这个过程的中间产物形成的物质就无法继续合成。
作物受涝死亡,主要原因就在于无氧呼吸时间过久。
3.举出三种测定光合速率的方法,并简述其原理及优缺点。
(1)改良半叶法,选择生长健壮、对称性较好的叶片,在其一半打取小圆片若干,烘干称重,并用三氯醋酸对叶柄进行化学环割,以阻止光合产物外运,到下午用同样方法对另一半叶片的相对称部位取相同数目的小圆片,烘干称重,两者之差,即为这段时间内这些小圆片累积的有机物质量。
植物生理学简答题

简答题1、简述氧化酶的生物学特性与适应性。
植物体含有多种呼吸氧化酶,这些酶各有其生物学特性(如对温度的要求和对氧气的反应,所以就能使植物体在一定围适应各种外界条件。
以对温度的要求来说,黄酶对温度变化反应不敏感,温度降低时黄酶活性降低不多,故在低温下生长的植物及其器官以这种酶为主,而细胞色素氧化酶对温度变化的反应最敏感。
在果实成熟过程中酶系统的更替正好反映了酶系统对温度的适应。
例如,柑橘的果实有细胞色素氧化酶、多酚氧化酶和黄酶,在果实末成熟时,气温尚高,呼吸氧化是以细胞色素氧化酶为主;到果实成熟时,气温渐低,则以黄酶为主.这就保证了成熟后期呼吸活动的水平,同时也反映了植物对低温的适应。
以对氧浓度的要求来说,细胞色素氧化酶对氧的亲和力最强,所以在低氧浓度的情况下,仍能发挥良好的作用;而酚氧化酶和黄酶对氧的亲和力弱,只有在较高氧浓度下才能顺利地发挥作用。
苹果果肉中酶的分布也正好反映了酶对氧供应的适应,层以细胞色素氧化酶为主,表层以黄酶和酚氧化酶为主。
水稻幼苗之所以能够适应淹水低氧条件,是因为在低氧时细胞色素氧化酶活性加强而黄酶活性降低之故。
2、长期进行无氧呼吸会导致植株死亡的原因是什么?长时间的无氧呼吸会使植物受伤死亡的原因:第一,无氧呼吸产生酒精,酒精使细胞质的蛋白质变性;第二,因为无氧呼吸利用每摩尔葡萄糖产生的能量很少,相当于有氧呼吸的百分之几(约8%),植物要维持正常的生理需要,就要消耗更多的有机物,这样,植物体养料耗损过多;第三,没有丙酮酸氧化过程,许多由这个过程的中间产物形成的物质就无法继续合成。
作物受涝死亡,主要原因就在于无氧呼吸时间过久。
3.举出三种测定光合速率的方法,并简述其原理及优缺点。
(1)改良半叶法,选择生长健壮、对称性较好的叶片,在其一半打取小圆片若干,烘干称重,并用三氯醋酸对叶柄进行化学环割,以阻止光合产物外运,到下午用同样方法对另一半叶片的相对称部位取相同数目的小圆片,烘干称重,两者之差,即为这段时间这些小圆片累积的有机物质量。
植物生理学简答题整理

概念:植物在干旱条件下维持正常生理功能的能力 影响因素:遗传因素、环境因素、水分状况等
概念:植物在盐碱环境 下生存和生长的能力
影响因素:植物种类、 土壤盐碱度、水分供应、 养分状况、环境温度等
农业防治:通过合 理的轮作、施肥等 农业措施,提高植 物的抗病虫害能力。
生物防治:利用天 敌、微生物等生物 资源进行病虫害防 治,如利用寄生蜂、 微生物农药等。
蒸腾作用能够 降低植物体的 温度,避免过 度升温,同时 也有助于植物 体内水分的运
输。
蒸腾作用对于 植物的生长和 发育具有重要 意义,能够促 进植物对营养 物质的吸收和
运输。
气孔开闭:通过气孔开闭调节蒸 腾作用,以适应环境变化
叶片结构:叶片结构对蒸腾作用 有重要影响,如叶片的形状、大 小、角质层等
光合作用是植物通 过叶绿体吸收光能, 将二氧化碳和水转 化为有机物和氧气 的过程。
光合作用是植物生 长和发育的基础, 为植物提供能量和 营养物质。
光合作用是生物圈 中最重要的化学反 应之一,为人类和 其他生物提供食物 和氧气。
光合作用的效率受 到光照、温度、水 分、养分等多种因 素的影响。
叶绿体:光合作用的主要场所,含有光合色素和酶,负责吸收光能并 转化为化学能 细胞质基质:在细胞质中进行的一些与光合作用相关的反应
线粒体:植物 细胞中重要的 细胞器,是呼 吸作用的主要
场所
细胞质基质: 呼吸作用的第 二场所,含有 与呼吸作用相
关的酶
乙醛酸循环体: 存在于植物细 胞中,与呼吸
作用相关
液泡:虽然不 是直接参与呼 吸作用的场所, 但影响植物的 代谢和呼吸作
用
二氧化碳 能量
水 有机物
温度:呼吸作用是生物体内有机 物氧化分解的过程,在适宜的温 度下进行,温度升高,呼吸作用 加强
植物生理学 简答题

1、合理灌溉为何能够提高作物的产量?课本P262、植物细胞吸收矿质营养的机理?课本p35-403、蔬菜中亚硝酸的来源?蔬菜分别处于有氧和无氧环境中一天后,所含的亚硝酸浓度是否相同?答:绿色蔬菜的叶子中含有大量的氮,主要存在形式是硝基和硝酸盐。
蔬菜采摘收割后,一些细胞死亡放出氢离子,是硝酸根的氧化性增强,氧化了一些物质,自身被还原成亚硝酸根。
因此新鲜蔬菜如果放置几天,亚硝酸盐含量会急剧上升。
如果处在无氧环境中,大量细胞窒息而死,放出较多的氢离子和硝酸根,导致无恙环境中的蔬菜亚硝酸根的浓度比有氧环境中的蔬菜含量要高很多。
4、肥料的三要素?为什么?答:植物生长需要量较大而且有着重要生理作用的3种矿质元素,氮、磷、钾常称作肥料三要素。
氮是氨基酸、蛋白质、酶、核酸及其它含氮物质的组成部分;磷是核苷酸、核酸、磷脂的组成成分;钾不参与植物体内有机分子的组成,但它是许多酶的活化剂,另外,对气孔的开放是必需的。
缺乏这三要素,植物体常表现出一系列症状。
缺氮时,叶色发黄,植株生长缓慢,茎叶细小,分枝少,产量低;若氮肥过多,植株徒长,成熟期延迟。
缺磷时,叶色暗绿,常发展成红色或紫色,花期、成熟期延迟,花、果、种子减少。
缺钾叶片失绿,出现大、小斑点的死组织;茎秆柔弱,易倒伏,抗旱性、抗寒性差。
5、为什么植物缺钙、铁等元素时,缺素症最先表现在幼叶上?课本P446、植物细胞内NADH的去路有哪些?有氧条件下,在三羧酸循环中,氧化磷酸化放能供ATP的生成。
无氧/缺氧条件下,在糖酵解过程中,见上图7、进行果蔬储藏时,应如何调节其呼吸?为什么?采收后的果蔬具有生理活动的重要标志是进行呼吸作用。
呼吸作用是果蔬采收后最主要的代谢过程,它制约与影响其他生理生化过程。
果蔬进行呼吸作用是在一系列酶的催化作用下,把复杂的有机物质逐步降解为二氧化碳、水等简单物质,同时释放出能量,以维持正常的生命活动。
可以说,没有呼吸作用,就没有果蔬的生命,没有果蔬生命,也就谈不到贮藏保鲜了。
植物生理学简答题整理
1. 简述水分在植物生命活动中的作用。
(1)水是植物细胞的主要组成成分;(2)水分是植物体内代谢过程的反应物质。
水是光合作用的直接原料, 水参与呼吸作用、有机物质的合成与分解过程。
(3)细胞分裂和伸长都需要水分。
(4)水分是植物对物质吸收和运输及生化反应的溶剂。
(5)水分能使植物保持固有姿态。
(6)可以通过水的理化特性以调节植物周围的大气温度、湿度等。
对维持植物体温稳定和降低体温也有重要作用。
2.简述影响根系吸水的土壤条件1.土壤中可用水量: 当土壤中可用水分含量降低时, 土壤溶液与根部细胞间的水势差减小, 根系吸水缓慢2.土壤通气状况: 土壤通气状况不好, 土壤缺氧和二氧化碳浓度过高, 使根系细胞呼吸速率下降, 引起根系吸水困难。
3.土壤温度:低温不利于根系吸水, 因为低温下细胞原生质黏度增加, 水分扩散阻力加大;同时根呼吸速率下降, 影响根压产生, 主动吸水减弱。
高温也不利于根系吸水, 土温过高加速根的老化进程, 根细胞中的各种酶蛋白高温变形失活。
4.土壤溶液浓度: 土壤溶液浓度过高引起水势降低, 当土壤溶液水势与根部细胞的水势时, 还会造成根系失水。
3、导管中水分的运输何以能连续不断?由于植物体叶片的蒸腾失水产生很大的负净水压, 将导管中的水柱向上拉动, 形成水分的向上运输;水分子间有相互吸引的内聚力, 该力很大, 可达20 MPa以上;同时, 水柱本身有重量, 受向下的重力影响, 这样, 上拉的力量与下拖的力量共同作用于导管水柱, 水柱上就会产生张力, 但水分子内聚力远大于水柱张力。
此外, 水分子与导管或管胞细胞壁纤维素分子间还具有很大的附着力, 因而维持了导管中水柱的连续性, 使得导管水柱连续不断, 这就是内聚力-张力学说。
4. 试述蒸腾作用的生理意义。
答: (1)是植物对水分吸收和运输的主要动力。
(2)促进植物对矿物质和有机物的吸收及其在植物体内的转运。
(3)能够降低叶片的温度, 以免灼伤。
植物生理学简答题整理
植物生理学简答题1.简述水分在植物生命活动中得作用。
(1)水就是植物细胞得主要组成成分;(2)水分就是植物体内代谢过程得反应物质,参与呼吸作用,光合作用等过程。
(3)细胞分裂与伸长都需要水分、(4)水分就是植物对物质吸收与运输及生化反应得溶剂。
(5)水分能使植物保持固有姿态、(6)可以通过水得理化特性以调节植物周围得大气温度、湿度等。
对维持植物体温稳定与降低体温也有重要作用。
2、简述影响根系吸水得土壤条件(1)土壤中可用水量:当土壤中可用水分含量降低时,土壤溶液与根部细胞间得水势差减小,根系吸水缓慢(2)土壤通气状况:土壤通气状况不好,土壤缺氧与二氧化碳浓度过高,使根系细胞呼吸速率下降,引起根系吸水困难。
(3)土壤温度:低温不利于根系吸水,因为低温下细胞原生质黏度增加,水分扩散阻力加大;同时根呼吸速率下降,影响根压产生,主动吸水减弱、高温也不利于根系吸水,土温过高加速根得老化进程,根细胞中得各种酶蛋白高温变形失活。
(4)土壤溶液浓度:土壤溶液浓度过高引起水势降低,当土壤溶液水势与根部细胞得水势时,还会造成根系失水、3、导管中水分得运输何以能连续不断?由于植物体叶片得蒸腾失水产生很大得负净水压,将导管中得水柱向上拉动,形成水分得向上运输;水分子间有相互吸引得内聚力,该力很大,可达20MPa以上;同时,水柱本身有重量,受向下得重力影响,这样,上拉得力量与下拖得力量共同作用于导管水柱,水柱上就会产生张力,但水分子内聚力远大于水柱张力。
此外,水分子与导管或管胞细胞壁纤维素分子间还具有很大得附着力,因而维持了导管中水柱得连续性,使得导管水柱连续不断,这就就是内聚力-张力学说。
4.试述蒸腾作用得生理意义。
(1)就是植物对水分吸收与运输得主要动力。
(2)促进植物对矿物质与有机物得吸收及其在植物体内得转运、(3)能够降低叶片得温度,以免灼伤。
5、根系吸水有哪些途径并简述其概念。
答:有3条途径:质外体途径:指水分通过细胞壁,细胞间隙等部分得移动方式。
植物生理学简答题
1、用酸生长学说简述生长素促进植物细胞生长的作用机理。
答:IAA通过激活细胞膜H+—ATPase向外分泌H+,引起细胞壁环境的酸化,进而激活了一种乃至多种适宜低pH的壁水解酶,如水解果胶的β-半乳糖苷酶和水解多糖的β-1,4-葡萄糖酶的活性成倍增加;纤维素微纤丝的氢键易断裂,联系松弛,因而细胞壁可塑性增加,液泡吸水扩大,细胞伸长。
(208p)2、植物的蒸腾作用的生理意义?答:蒸腾作用在植物生命活动中具有重要的生理意义:第一,蒸腾作用失水所造成的水势梯度产生的蒸腾拉力是植物被动吸水和运输水分的主要驱动力,特别是高大的植物,如果没有蒸腾作用,植物较高的部分很难得到水分;第二,蒸腾作用借助于水的高汽化热特性,能够降低植物体和叶片温度,使其免遭高温强光灼伤;第三,蒸腾作用引起的上升液流,有助于根部从土壤中吸收的无机离子和有机物以及根中合成的有机物转运到植物体的各部分,满足生命活动需要。
(54p)3、一般可将光合作用分为哪三大阶段?并简述各阶段中的能量转换过程及相互间的关系。
答:整个光合作用可大致分为3个步骤:①原初反应。
②电子传递(含水的光解、放氧)和光合磷酸化。
③碳同化过程。
原初反应:聚光色素分子吸收光子而被激发,以“激子传递”和“共振传递”两种方式沿着能量水平较低的方向进行能量传递。
在反应中心激发反应中心色素分子(可直接吸收光子)而发生电荷分离,将光能转变为电能。
电子传递和光合磷酸化:电子经过一系列电子传递体的传递,引起水的裂解放氧和NADP+还原成NADPH,并通过光合磷酸化形成ATP,把电能转化为活跃的化学能。
碳同化:光反应形成的同化力(ATP 和NADPH)将CO2转化为糖类即将活跃的化学能转化为稳定的化学能。
(152p)4、简述在胞内信号转导中CaM的作用方式。
答:CaM是一种耐热、酸性小分子可溶性球蛋白。
每个CaM分子具有4个Ca2+结合位点,CaM必须与Ca2+结合后发生构象改变才具有生理活性。
植物生理简答题
第一章
1.细胞壁的功能:稳定细胞形态和保护作用;控制细胞生长扩大;参与胞内外信息的传递;防御功能;识别作用;参参与物质运输。
2.植物细胞膜的生理功能有哪些?
(1)分室作用
(2)代谢反应的场所(光能吸收、电子与质子传递)
(3)物质运输(跨膜运输、膜泡运输)
(5)能量转换的场所(光合、氧化磷酸化)
(5)抗逆能力(膜脂组成)
(6)信息传递与识别(膜糖)
第二章、
1.水分延植物基部导管上升高达100米,为什么水柱不断?(蒸腾拉力-内聚力-张力学说)(1)水柱的形成受两种力的作用:分子间内聚力(水分子间的氢键使水分子产生了相互吸引的力量。
300×100000pa)和张力(一个连续的水柱在断裂之前单位面积上所能承受的最大拉力。
5.30×100000pa),分子间内聚力远远大于张力,保证了导管内的水分能够形成连续的水柱。
(2)导管由纤维素、半纤维素、木质素组成(亲水物质)产生附着力,使得连续的水柱易于延导管上升。
(3)导管次生壁有不同形式的加厚,增加导管的韧性,不易变形。
因此,可以保证水柱的连续。
2.试述气孔运动的机理。
(1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
植物生理学简答题整理1.从植物生理学的角度,分析“有收无收在于水”的道理。
答:(1、)从水在植物生命中的作用上看:水分是细胞质的主要成分,是代谢作用过程的反应物质,是植物对物质吸收运输的溶剂,能够保持植物的固有形态。
(2)、从作物的需水规律上看:从分蘖期到抽穗期、灌浆期、乳熟末期都需要大量的水分,如果水分供应不知,则会减产。
2.简述肉质果实在成熟期间所发生的生理生化变化。
(1)淀粉转变成可溶性糖,使果实变甜。
(2)有机酸减少。
(3)果实软化。
这与果肉细胞壁物质的降解有关,如中层的不溶性的原果胶水解为可溶性的果胶或者果胶酸(4)挥发性物质的产生。
香气产生。
(5)涩味消失。
(6)色泽变化。
变得鲜艳。
3.根系是怎么样吸收矿质元素的。
根系对矿质元素的吸收是以细胞吸收为基础的。
首先,根系对盐分和水分相对吸收。
由于根系对盐分和水分的吸收机制不同,吸收量不成比例。
其次是,根系对矿质元素的吸收有选择性。
其三是,单盐毒害与离子对抗。
根系吸收矿质元素的部位是根尖的根毛区,因为该区域具有根毛,吸收面积大,更重要的是其内部已分化出输导组织。
根系吸收矿质元素要经过以下几个步骤:(1)把离子吸附在根部细胞表面。
阳离子同根部细胞质膜表面的-H+ 交换,阴离子同根部细胞质膜表面的HCO3- 交换。
(2)离子进入根细胞内部。
吸附在根细胞表面的离子即可被根细胞吸收后通过共质体途径进入木质部,也可以通过质外体途径扩散进入根的内皮层以外的质外体部分。
但由于根内皮层上有凯氏带,必须转入共质体才能继续向内运送至木质部;(3)离子进入导管。
离子经共质体途径最终进入木质部后,通过主动的或被动的方式由木质薄壁细胞进入导4.植物必须的矿质元素要具备什么条件答:1.缺乏该元素植物发育发生障碍不能完成生活史。
2。
除去该元素则表现专一的缺乏症,而且这种缺乏症可以预防和恢复的。
3.该元素在植物营养生理上应表现直接的效果而不是间接的。
5.1) 引起种子休眠的原因(3.5分):种皮障碍、胚休眠、抑制物质2) 生产上打破种子休眠方法(3.5分):机械破损、层积处理、药剂处理6.1)目前植物光能利用率低的原因:(4分)①漏光损失;②反射及透射损失;③蒸腾损失;④环境条件不适。
2)提高光能利用率的途径:(6 分)①增加光合面积;②延长光合时间;③提高光合效率;④减少呼吸消耗。
7.答1:①吸胀吸水阶段:为依赖原生质胶体吸胀作用的物理吸水阶段,无论种子是否通过休眠还是有无生命力,均具有此阶段(5分);②缓慢吸水阶段:种子吸水受种皮的束缚,原生质的水合度达到饱和,酶促反应与呼吸作用增强,贮藏物质开始分解,胚细胞的吸水力提高(5分);③生长吸水阶段:在贮藏物质加快转化的基础上,胚根、胚芽中的核酸、蛋白质等原生质组分合成加快,细胞吸水加强。
当胚根突破种皮后,有氧呼吸增强,种子吸水与鲜重持续增加(5分)。
8、植物受涝后,叶片为何会萎蔫或变黄?植物受涝后,叶子反而表现出缺水现象,如萎蔫或变黄,是由于土壤中充满着水,短时期内可使细胞呼吸减弱,根压的产生受到影响,因而阻碍吸水;长时间受涝,就会导致根部形成无氧呼吸,产生和累积较多的乙醇,致使根系中毒受害,吸水更少,叶片萎蔫变质,甚至引起植株死亡9、简述植物叶片水势的日变化(1)叶片水势随一天中的光照及温度的变化而变化。
(2)从黎明到中午,在光强及温度逐渐增加的同时,叶片失水量逐渐增多,水势亦相应降低;(3)从下午至傍晚,随光照减弱和温度逐渐降低,叶片的失水量减少,叶水势逐渐增高;(4)夜间黑暗条件下,温度较低,叶片水势保持较高水平。
10、答:根和地上部分的关系是既互相促进、互相依存又互相矛盾、互相制约的。
根系生长需要地上部分供给光合产物、生长素和维生素,而地上部分生长又需根部吸收的水分,矿物质、根部合成的多种氨基酸和细胞分裂素等,这就是两者相互依存、互相促进的一面,所以说树大根深、根深叶茂。
但两者又有相互矛盾、相互制约的一面,例如过分旺盛的地上部分的生长会抑制地下部分的生长,只有两者的比例比较适当,才可获得高产。
在生产上,可用人工的方法加大或降低根冠比,一般说来,降低土壤含水量、增施磷钾肥、适当减少氮肥等,都有利于加大根冠比,反之则降低根冠比。
11、答:原因有两方面:一方面是高山上水分较少,土壤也较瘠薄,肥力较低,气温也较低,且风力较大,这些因素都不利于树木纵向生长;另一方面是高山顶上因云雾较少,空气中灰尘较少,所以光照较强,紫外光也较多,由于强光特别是紫外光抑制植物茎伸长,因而高山上树木生长缓慢而矮小。
12. 答:干旱对植物带来的最严重的损害是原生质脱水,干旱对植物的伤害,具体表现如下:(1)各部位间水分重新分配,水分不足时,不同器官或不同组织间的水分,按各部位的水势高低重新分配,从而引起老叶死亡,生殖器官因缺水数目也减少,灌浆也会受阻。
(2)细胞膜在干旱胁迫下,失去半透性,引起胞内氨基酸、糖类物质的外渗。
(3)呼吸作用因缺水而增强,而氧化磷酸化解偶联,能量多以热能的形式消耗掉,影响了正常的生物合成过程。
(4)光合怍用急剧下降,主要是由于缺水导致气孔关闭,降低了对CO2的同化效率,缺水时叶绿素合成受阻,放氧现象明显减弱。
(5)蛋白质分解加强,合成减弱,Pro 大量积累。
(6)核酸代谢受破坏。
干旱使植株的DNA、RNA含量下降的主要原因是核酸的分解加强而合成减弱,ER上的核糖体显著减少。
(7)干旱还可引起植物激素变化,ABA含量明显增加。
另外,干旱还会引起机械损伤。
总之,干旱对植物的伤害可概括为直接伤害和间接伤害。
直接伤害是细胞脱水直接破坏了细胞结构,从而引起细胞受害死亡。
间接伤害是由于细胞脱水而引起的代谢失调,缺乏营养,影响了生长,加速了衰老和死亡。
13. 答:(1)涝害缺氧可以降低植物的生长量,如亚细胞结构的线粒体则发育不良。
(2)涝害缺氧导致光合作用明显下降。
(3)涝害还会引起植株发生营养失调。
一是缺氧使根吸盐能力下降,二是由于厌氧微生物的活动产生了大量的CO2与还原性的有毒物质,影响根的吸收。
同时淹水后,土壤酸度增加,引起硝化作用受阻,微量元素Mn、Zn,Fe溶解度增大,植物易中毒,死亡。
植物抗涝性的生理基础是:(1)与植物对O2的适应力有关。
很多植物通过胞间连丝系统把O2输送到根或缺O2部位,可增强抗捞性,柳树一类耐涝植物是在呼吸作用中利用NO3-作为O2的供体,以适应O2不足。
(2)植物真正对缺O2忍耐是通过代谢变化进行的。
因为缺O2对植物的危害主要是无氧呼吸产生的有毒物质,耐缺O2的植物生理生化机理就是要消除有毒物质的积累或者对有毒物质具有忍耐能力。
具体方法有:(a)改变呼吸途径,例如湿生植物一般是PPP途径占优势;(b)通过代谢来破坏或控制有毒物的合成,如通过提高乙醇脱氢酶的活性,以减少乙醇的积累。
14、如何理解 C4 植物比 C3植物的光呼吸低?(为什么C4植物的光合效率一般比C3植物的高?)答:C4植物,PEP 羧化酶对 CO2亲和力高,固定 CO2的能力强,在叶肉细胞形成 C4 二羧酸后,再转运到维管束鞘细胞,脱羧后放出 CO2,就起到了 CO2 泵的作用,增加了 CO2 浓度,提高了 RuBP 羧化酶的活性,有利于 CO2 的固定和还原,不利于乙醇酸形成,不利于光呼吸进行,所以 C3 植物光呼吸测定值很低。
而 C3植物,在叶肉细胞内固定 CO2,叶肉细胞的 CO2/O2的比值较低,此时,RuBP 加氧酶活性增强,有利于光呼吸的进行,而且C3 植物中 RuBP羧化酶对CO2 亲和力低,光呼吸释放的 CO2 不易被重新固定。
15、试述提高植物光能利用率的途径和措施。
答:(一)增加光合面积:(1)合理密植,(2)改善株型。
(二)延长光合时间:(1)提高复种指数,(2)延长生育期,(3)补充人工光照。
(三)提高光合速率:(1)增加田间 CO2浓度,(2)降低光呼吸。
16、答:种子萌发必须有足够的水分、充足的氧气和适宜的温度。
此外,有些种子萌发还受光的影响。
种子吸水分为三个阶段:1)急剧吸水阶段。
2)吸水停止阶段。
3)胚根长出后重新迅速吸水阶段。
第一阶段细胞主要靠吸胀作用。
第二、三阶段是靠渗透性吸水。
17、肉质果实成熟时有哪些生理生化变化?答: (1)果实变甜。
(2) 酸味减少。
(3)涩味消失。
(4) 香味产生。
(5) 由硬变软。
这与果肉细胞壁中层的果胶质水解为可溶性的果胶有关。
(6) 色泽变艳。
18.指出感受光周期刺激的部位及反应部位,并举例证明。
感受光周期刺激的部位是成长的叶片,产生反应的部位是茎尖生长点。
例如:将菊花(短日照植物)叶片放在短日照条件下,茎尖放在长日照条件下植物开花;叶片放在长日照条件下,茎尖放在短日照条件下,不开花;整株处于短日照条件下,开花,整株处于长日照条件下,不开花。
总之,只要叶片处于短日照下,菊花就开花。
19、如何理解C4植物比C3植物的光呼吸低?(可能论述题) (重要)答:C4植物,PEP羧化酶对CO2亲和力高,固定CO2的能力强,在叶肉细胞形成C4二羧酸后,再转运到维管束鞘细胞,脱羧后放出CO2(将CO2从叶肉细胞转移到维管束鞘细胞),就起到了CO2泵的作用,增加了CO2浓度,提高了RuBP羧化酶的活性,有利于CO2的固定和还原,不利于乙醇酸形成,不利于光呼吸进行,所以C3植物光呼吸测定值很低。
而C3植物,在叶肉细胞内固定CO2,叶肉细胞的CO2/O2的比值较低,此时,RuBP加氧酶活性增强,有利于光呼吸的进行,而且C3植物中RuBP羧化酶对CO2亲和力低,光呼吸释放的CO2不易被重新固定。
20.简述生长素的主要生理作用(经常出)答:生长素主要的生理功能为:(1)促进离体胚芽鞘或幼茎段细胞的伸长生长,及促进根、茎的伸长生长(2)促及维管束分化,低浓度IAA促进韧皮部的分化,高浓度促进木质部的(3)促进侧根和不定根的发生(4)影响花和果实的发育,促进雌花增加,刺激子房发育形成果实(促进单性结实)(5)诱导叶原基的发生,从而调控叶片和叶序的形成,调控叶片的脱落(6)维持顶端优势21.简述引起种子休眠的原因有哪些?生产上如何打破种子休眠?1) 引起种子休眠的原因:种皮障碍、胚休眠、抑制物质2) 生产上打破种子休眠方法:机械破损、层积处理、药剂处理22、简述种子休眠的原因(比较重要),及解除休眠的方法(重要)答:(1)种皮限制。
种胚外的种皮、果皮以及一些其他附属对种子萌发有抑制作用,。
有些种皮有蜡质或角质层,或由于坚硬而厚的种皮阻止胚对水和氧气的吸收;(2)胚未完全发育。
有些植物如人参、当归等的种子或果实离开母体后,胚尚未发育完全,在湿润和适当低温条件下,胚继续从胚乳中吸取营养完成发育后,才能萌发。
(3)种子未完全成熟。
有些种子的胚已经发育完全,但在适宜的条件下仍不萌发,他们一定要经过一段时间休眠,在胚内发生一些生理生化变化才能萌发,通常称之为后熟过程。