整体叶轮的五轴数控编程及加工(

合集下载

数控加工工艺及设备PPT课件:整体叶轮五轴加工中心加工工艺编制及程序生成

数控加工工艺及设备PPT课件:整体叶轮五轴加工中心加工工艺编制及程序生成

表2-4-4 整体叶轮数控加工合理的装夹方案
装夹序号
装夹方法
定位基准
使用夹具
表2-4-12 学生任务6参考答案:整体叶轮五轴加工中心加工合理的装夹方案
在五轴加工中心数控回转盘上安装专用夹具 夹紧工件,工件以底部外圆柱面+底面为定位基 准,底部中心M10螺纹锁紧。
装夹序号 1
装夹方法 底部中心 M10 螺纹锁紧
序号 1 2 3 4 5 6 7 8 9 10
表面名称
使用刀具名称 刀尖圆弧半径 刀具半径
表2-4-11学生任务5参考答案:整体叶轮数控加工选用的刀具及
参数
序号
加工内容
使用刀具名称
刀角半径 刀具半径
五轴加工用包络毛坯的粗加工
400R C32-32-160
1
(三轴数控加工)
(Ф 32 立铣刀杆)
0.8
D8R4 (Ф 8 球铣刀)
4
4
精加工叶片
D8R4
7
(此工序可完成 9 个叶精片加的工侧叶面片和前缘面的精加工)
(Ф 8 球铣刀)
4
4
(特别说明:此工序可完成 9 个叶片的侧面和前
D6R3
8
叶轮叶根圆角清根 缘面的精加工)
(Ф 6 球铣刀)
3
3
学生任务6:填写表2-4-4 整体叶轮数控加工合理的装 夹方案
表面加工刀路生成 CAVITY_方MI式LL ZLEVEL_PROFILE
ZLEVEL_PROFILE MULTI_BLADE_ROUG H HUB_FINISH BLADE_FINISH BLADE_FINISH BLEND_FINISH
学生任务4:填写整体叶轮加工 选来自的设备及主要规格和技术参数表2-4-1 整体叶轮需加工部位及表面

基于UG NX的整体叶轮五轴数控加工

基于UG NX的整体叶轮五轴数控加工

1 前言叶轮是压缩机、透平机和泵等的核心部件,其加工质量的优劣对压缩机的性能有着决定性的影响。

20世纪80年代中期,在先进透平机械的结构设计中,出现了“三元整体叶轮”结构。

三元叶轮是根据透平式流体机械内部流体的三元真实流动状况而设计的,能大幅度地降低能耗。

整体式三元叶轮是指轮毂和叶片在同一毛坯上,具有结构紧凑、曲面误差小、强度高等优点。

由于叶轮采取了整体式结构,而叶片的形状又是机械加工中较难加工的复杂形状曲面构成的,因此加工时轨迹规划的约束条件比较多,相邻叶片空间较小,加工时极易发生碰撞干涉,自动生成无干涉刀位轨迹较困难。

目前国外一般应用整体叶轮的五坐标加工专用软件,主要有美国叶轮制造公司NREC推出的专用软件包:MAX-5,MAX-AB;瑞士Starrag生产的数控机床所带的整体叶轮加工模块,还有Hypermill等专用叶轮加工软件。

此外,一些通用的软件如:UG、CATIA、PRO/E、 MasterCAM等也能用于整体叶轮的加工。

本文选用UG NX4.0对整体叶轮进行加工轨迹规划。

2 加工工艺及装备分析2.1 加工工艺流程规划叶轮的一般构成形式是若干组叶片均匀分布在轮毂上,相邻两个叶片间构成流道,叶片与轮毂的连接处有一个过渡圆角,使叶片与轮毂之间光滑连接。

叶片曲面为直纹面或自由曲面。

整体叶轮的几何形状比较复杂,一般流道较狭窄且叶片扭曲程度大,容易发生干涉碰撞。

因此主要难点在于流道和叶片的加工,刀具空间、刀尖点位和刀轴方位要精确控制,才能加工到其几何形状的每个角落,并使刀具合理摆动,避免发生干涉碰撞。

叶轮加工首先由最初的毛坯——棒料、铸造件或者锻压件采用车床进行外轮廓的车削加工,得到叶轮回转体的基本形状。

通过对叶轮结构和加工工艺的分析,叶轮加工主要由粗加工叶片间流道(叶轮开粗)、流道曲面的半精加工、叶片精加工、流道精加工和倒圆部分的清根加工等工序组成。

2.2 刀具选择刀具刚性和几何形状是叶轮加工刀具选择的主要因素,在流道尺寸允许的情况下尽可能采用大直径的刀具。

基于hyperMILL的半开式整体叶轮五轴数控编程与加工技术_赵文明

基于hyperMILL的半开式整体叶轮五轴数控编程与加工技术_赵文明
基于hypermill的半开式整体叶轮五轴数控编程与加工技术表2各加工工序使用的刀具及加工参数序号工序名称刀具主轴转速rmin进给量xymmmin步距mm1毛坯面粗加工10平底立铣刀60003500052毛坯面精加工10球头铣刀40001600023叶轮粗加工10球头铣刀70004000154叶轮粗加工6球头铣刀3000120015叶片半精加工6球头铣刀30001200066叶轮盖半精加工6球头铣刀30001200067叶片精加工6球头铣刀300012000158流道精加工6球头铣刀30001200089叶轮盖精加工6球头铣刀300012000153
2
刀具选择
3. 2
整体叶轮加工工序以及加工参数确定
选择合适的刀具材料和刀具类型不仅可以保证加 而且能够满足零件的加工质量。 刀具的选择 工效率, 需要充分考虑整体叶轮的形状、 材料等各个方面的因 素。整体叶轮铣削加工刀具的选取可遵循以下原则: ①粗加工时, 在流道尺寸允许的情况下尽可能采用大 直径刀具, 以提高加工效率; ②在满足叶片高度的情况 为保证刀具有足够的刚度, 其悬伸长度应尽可能 下,
图3 图2 半开式整体叶轮模型
hyperMILL 数控编程及加工过程
整体叶轮结构复杂, 其数控编程和加工的难点主 要体现在: ①相邻叶片间的距离较小, 加工时易产生干 涉, 生成无干涉的刀具轨迹较困难; ② 叶片厚度小, 在 精加工过程中会出现加工变形和振动等问题, 使叶片 表面的加工质量降低; ③叶片的扭曲度较大, 使刀具轴 [ 89 ] 。 线矢量的计算复杂
基于 hyperMILL 的半开式整体叶轮五轴 * 数控编程与加工技术
赵文明, 庄 鹏, 鞠岗岗, 刘战强
( 山东大学 机械工程学院 高效洁净机械制造教育部重点实验室 , 济南 250061 ) 摘要: 整体叶轮是航空发动机和各类透平机械的关键零部件 。 针对整体叶轮因结构复杂而导致数控 编程和加工难度大的特点, 首先, 以半开式整体叶轮为例, 在 hyperMILL 软件中进行五轴数控编程。 然后, 编程得到的刀具轨迹经过内部机床仿真验证 , 利用后处理器将刀位 ( CL) 文件转换成机床可识 别的 NC 加工代码。最后, 在 DMU - 70V 五轴加工中心上对 Al7050 铝合金整体叶轮进行加工。加工 过程中没有出现干涉、 过切、 欠切等问题。结果表明 hyperMILL 可以简化编程的过程, 提高编程和加 工的效率, 为其它同类复杂零件的编程加工提供了依据 。 关键词: 整体叶轮; 数控编程; 五轴加工; hyperMILL 中图分类号: TH164 ; TG659 文献标识码: A

整体叶轮五轴数控加工技术的研究

整体叶轮五轴数控加工技术的研究
工验 证 。
关 键词 : 叶轮
三 维建模
五轴 加 工 加 工仿真 后 置处 理 文献标 识码 : B
中图分 类号 : T G6 1 + 9
S t u d y o n t h e f i v e - a x i s NC ma c h i n i n g t e c h n o l o g y f o r i n t e g r a l i mp e l l e r

ห้องสมุดไป่ตู้
a x i s NC ma c h i n e .Wi t h t h e h e l p o f UG s o f t wa r e, a u t o ma t i c p r o g r a mmi n g a n d t o o l p a t h we r e c a r r i e d
工艺与检测 T e c h n 0 I o g v a n d T e s t
整体 叶轮 五轴 数 控 加 工技 术 的研 究
丁 刚强
( 柳 州五菱 汽车 工业有 限公 司制造 工程部 , 广西 柳州 5 4 5 0 0 7 )
摘 要: 整体 叶轮是 典型 的航 空航 天 复杂 零件 。为 了进行 整体 叶轮 的数 控 加 工 , 用P r o / E对 其进 行 了参 数 化建模 。在 深入 分析整 体 叶轮加 工工艺 的基础 上 , 确 定 了五轴数 控机 床加 工叶轮 的工艺流 程 。使用 U G 软件 实现 了 自动编程 , 生成 了刀 路轨迹 。通 过后置 处 理生 成 G 代 码 , 并在 实 际机 床上 进 行 了加
c e s s i n g
整体 叶轮是 燃气 发 动 机 中 的一 种 关键 零 件 , 其 作 用是 南外 界供 给的机 械功连 续不 断地将 气体 压缩并 传 输 出去 。气体 经进 气管 进 人 工作 轮 , 在 工 作 轮 中 因受 到 叶片 的作用力 而 压 力 升高 , 速 度 增 加 。因 此对 叶轮

基于UGNX的整体叶轮逆向建模与五轴编程

基于UGNX的整体叶轮逆向建模与五轴编程

基于UGNX的整体叶轮逆向建模与五轴编程张瑜;董保香;蓝艳华【摘要】The RE/CAD/CAM of multi‐blade impeller is very difficult because of complex sur‐face .The 3D impeller was modeled based on the key points of impeller samples ,and the 5‐axis tool path were given based on mill‐multi‐blade operation in UNGX/CAM .The correct impeller were machined by 5‐axis MC after the interference and cutting simulation by UG/IS&V .This method is suitable for RE/CAD/CAM of other types .%复杂的叶片曲面导致整体叶轮的测量、逆向再设计及数控编程非常困难。

通过测量整体叶轮样品关键特征点,基于UGNX对点云进行逆向并用曲面模块生成了三维模型,应用UG/CAM中叶轮加工专用模块,实现了叶轮五轴数控编程。

在利用IS&V 消除干涉、过切等现象的前提下,用五轴加工中心加工出了叶轮。

本方法也适合其他同类型的整体叶轮逆向、设计及五轴数控编程。

【期刊名称】《山东理工大学学报(自然科学版)》【年(卷),期】2015(000)001【总页数】4页(P75-78)【关键词】整体叶轮;UGNX;五轴编程【作者】张瑜;董保香;蓝艳华【作者单位】日照广播电视大学考试中心,山东日照276826;淄博职业学院电子电气工程学院,山东淄博255000;日照市科学技术协会,山东日照276826【正文语种】中文【中图分类】TG659叶轮类零件作为透平机械的核心部件,是一种造型比较规范、具有典型性的通道类复杂零件,其工作型面通常为空间曲面,所以如何设计及加工制造一直是国内外公认的技术难题[1].叶轮设计涉及空气动力学、流体力学等多个学科,随着设计理论和方法的不断进步,工作型面越来越复杂,这对加工制造提出了更高的要求[2].本文基于UGNX8.0对整体叶轮的逆向、三维建模、五轴数控编程、机床加工仿真进行较为全面的研究.逆向工程(Reverse Engineering)是指用一定的测量手段对实物或模型进行测量,根据测量数据通过三维几何建模方法重构实物[3].本文中的叶轮是某进口风机上的零部件,转速较高,动平衡要求高、精度高.利用三维扫描测量仪,准确地测量如图1样件表面数据及轮廓外形,得到如图2所示的点云.在UG/CAM中的mill_multi_blade加工中,使用多叶片工序来加工如叶轮、叶盘等含多个叶片的部件.多叶片铣加工工序专用于加工叶片类型的部件,而且对于这些类型部件,此工序的加工效率最高,可以创建用于执行粗加工、剩余铣、叶毂精加工、圆角精加工以及叶片和分流叶片精加工的工序.多叶片铣加工工序可实现:刀轴光顺、刀轨光顺、IPW(In Process Workpiece)、刀柄碰撞检查和避让、预期结果预览,可以指定以下几何体:多个分流叶片、带底切的弯叶片、含一个或多个曲面的叶片、UV栅格未整齐排列的曲面、自动修复缝隙和重叠.2.1 定义工件几何体及刀具加工整体叶轮时,首先把毛坯加工成回转圆柱体,然后再把该回转体加工为整体叶轮.在MULTI_BLADE_GEOM几何体中定义叶毂、一个主叶片、一组分流叶片,然后指定主叶片数.默认旋转轴为+ZM.注意选择主叶片的时候,只需要选择一组叶片就可.选择分流道叶片的时候要注意选择该主叶片右边的分流道叶片,如图5所示.指定分流叶片时要分别指定壁面和圆角.刀具分别定义为直径10、直径8、直径6的球头铣刀.2.2 毛坯粗加工毛坯粗加工的目的是把圆柱形坯料加工成回转体形状以便叶轮加工,可采用车削或者铣削加工方式.采用铣削方式时,粗加工可用型腔铣的CAVITY_MILL快速去除大部分材料,然后用ZLEVEL_PROFILE进一步加工.生成的刀路轨迹如图6所示. 2.3 流道粗加工多叶片粗加工工序是部件类型特定的粗加工工序.这种工序允许对多叶片类型的部件进行多层、多轴粗加工.粗加工是自上而下进行的,可定义多层切削、切削模式、深度、起点和切削方向、刀轴前倾角/后倾角和侧倾角、刀轨和刀轴光顺、毛坯几何体或IPW.所生成的刀路轨迹如图7所示.2.4 流道精加工使用流道精加工工序可为多个流道创建精加工刀轨,通过选择合适的切削模式、起点和切削方向、刀轴前倾角/后倾角和侧倾角、刀轨和刀轴光顺得到如图8所示精加工刀路轨迹.在流道精加工工序中不需要包覆几何体,不加工圆角(圆角加工属于叶片精加工工序的范畴,流道精加工不切削相邻叶片的圆角).2.5 叶片精加工使用叶片精加工工序可自叶片和叶片圆角向下精加工到叶毂.叶片精加工是特定于部件类型的精加工工序,这些工序允许对多叶片类型部件的叶片或分流叶片进行多轴精加工.可以定义切削侧、切削模式、切削层、起点和切削方向、刀轴前倾角/后倾角和侧倾角.生成的刀路轨迹如图9所示.2.6 主叶片圆角精加工使用多叶片圆角精加工工序精加工多叶片叶轮和叶盘的圆角区域.加工时可以先使用较大的刀具精加工叶片,然后使用较小的刀具精加工叶片和轮毂之间的区域.操作选用BLEND_FINISH,圆角精加工中,要加工的几何体选择叶根圆角,选择合适的驱动模式、刀毂编号、叶片编号、步距、切削模式、顺序、切削方向、起点等.生成的刀路轨迹如图10所示.UGNX/IS&V(Integrated Simulation and Verification)模块是一个功能强大的集成仿真验证专用模块,用于模拟刀具路径以及整个数控机床的切削过程.它可以建立与实际生产加工中的数控机床完全一致的精确运动模型,以使模拟仿真结果完全符合实际情况[4].在此过程中可以捕捉在加工过程中产生的任何问题,然后把这些问题反馈给设计人员以修改零件;可以检测任何机床部件之间的干涉碰撞,例如工装、刀具、工件等;可以预览所有的加工操作,例如宏、子程序、循环、M、G、H等命令,提高了加工质量,消除了昂贵并且耗时的试加工验证和干切削验证,减小了机床、工件、夹具损坏的可能性.图11是采用系统提供的机床进行的IS&V 仿真.针对逆向模型,采用如上方法编制的程序,用五轴联动加工中心加工的整体叶轮如图12所示.针对整体叶轮样品,应用三坐标测量机测量出关键点云,基于UGNX对点云做逆向建立了三维模型.对带分流道的典型复杂叶轮,进行了五轴数控编程,实现了流道、主叶片及流道圆角的五轴编程与加工.通过UG/IS&V机床加工仿真,分析机床加工过程,排除错误,最终加工出了合格的整体叶轮.【相关文献】[1] 修春松,安鲁陵,戚家亮. 整体叶轮鼓形刀五坐标数控加工刀位轨迹生成[J]. 机械制造与自动化,2011(4):165-168.[2] 张世民,郭锐锋,彭健钧. 五轴数控加工仿真中刀具扫掠体的计算[J]. 组合机床与自动化加工技术, 2010(6):10-13.[3] 姬俊锋. 复杂整体叶轮数控加工关键技术研究[D]. 南京:南京航空航天大学,2009.[4] 陈文涛,夏芳臣,涂海宁. 基于UG&VERICUT整体式叶轮五轴数控加工与仿真[J]. 组合机床与自动化加工技术,2012(2):102-105.。

UG五轴编程教程课件成总专业叶轮

UG五轴编程教程课件成总专业叶轮

UG五轴编程教程课件成总专业叶轮目录一、UG软件简介及安装配置 (3)1. UG软件的发展历程和特点 (4)2. 软件安装与配置要求 (5)3. 用户界面及主要功能模块介绍 (5)二、基础编程概念与技能 (6)1. 编程基础概念解析 (8)1.1 编程定义及作用 (9)1.2 编程与CAD/CAM关系 (10)1.3 数控机床简介 (12)2. 技能要点掌握 (13)2.1 数控加工基本流程了解 (14)2.2 刀具选择及参数设置技巧 (15)2.3 加工工艺路线规划方法 (16)三、UG五轴编程入门 (17)1. 五轴加工概述及优势分析 (20)2. 五轴加工坐标系设置与转换方法 (21)3. 五轴联动数控机床操作界面介绍 (22)4. 五轴编程基本步骤与流程 (23)四、叶轮加工技术要点解析 (24)1. 叶轮结构特点及加工要求 (26)2. 叶轮加工工艺流程规划 (27)3. 专用工具与夹具选择及使用方法 (28)4. 加工过程中的注意事项与常见问题解决方案 (29)五、UG五轴编程进阶技巧与案例实战 (31)1. 编程技巧提升 (32)1.1 优化编程路径,提高加工效率 (33)1.2 复杂曲面加工策略应用实例分享 (34)1.3 刀具路径优化与调整方法 (36)2. 案例实战演练 (37)2.1 实例一 (38)2.2 实例二 (39)2.3 实例三 (40)六、高级功能拓展与探索 (40)1. 高级功能介绍及应用场景分析 (42)2. 拓展模块学习与探索方法建议 (43)3. 行业发展趋势预测与展望 (44)七、课程总结与复习要点 (46)1. 课程重点内容回顾与总结 (47)2. 复习要点提示及学习建议 (48)一、UG软件简介及安装配置UG(Unigraphics)是一款由美国UGS公司推出的强大的CADCAMCAE高端软件,广泛应用于汽车、航空航天、机械、电子等工程领域。

作为一款集成化程度极高的软件,UG不仅提供了强大的建模功能,还集成了仿真、分析、制造等一系列工具,为用户提供了一个从设计到生产的全生命周期解决方案。

五轴联动加工中心操作与基础编程 第七章 叶轮零件五轴加工

五轴联动加工中心操作与基础编程 第七章 叶轮零件五轴加工

多轴数控加工技术
7.2叶轮零件五轴加工刀路设计
训练:对含叶轮特征件设计综合五轴加工刀路。训练档:叶轮加工.MCX 训练方法:多种五轴综合加工刀路定义的讲解和现场练习。(模型已建)
五轴加工的CAM刀路设计
一、口部锥面的平行到曲线五轴加工刀路定义。
要点1:选择锥底 曲面边线为边界曲 线,选择锥面为加 工面
关闭叶轮基体所在图层,然后按图所示,将封闭的叶型线框绕回转轴心线旋 转360º生成叶片柱筒实体
按图示构建截面外形轮廓,再绕叶轮轴心旋转切割已构建的叶片柱筒实体, 即可得到单个叶片的雏形。切割用线框轮廓主要用于获得叶轮上部及侧面的 叶型边界,辅助线框以能将柱筒残料全部切割掉而绘制
按图示在前视面构建挤出切割用线框,对超出基体范围的另一侧和底部实施 双向贯穿切割,仅保留叶片有效部分
槽底曲面
刀轴侧倾0゜ 底刃切削
刀轴侧倾90゜ 侧刃切削
第七章 多轴数控加工技术
7.2叶轮零件图样的几何建模
先学习叶轮模型的构建,再处理其它结构特征
按图示在前视面绘制一封闭线框后,以绕旋转轴线旋转360º构建实体的方 法即可得到叶轮基体的3D实体模型
如图所示,先找到Ф150直径柱切面与基体曲面的交线,以正前方与-Y轴交 点处正切面为构图面(前视面Z=75),按b图所示在新层中绘制叶截面的中 线、叶背和叶面型线,同时以100的距离在左上绘出中线的平行线,作为叶 型建模用的回转轴心线
七、叶轮槽槽底曲面五轴加工刀路定义-刀轴控制。
五轴加工的CAM刀路设计
七、叶轮槽槽底曲面五轴加工刀路定义-刀轴控制路径线的构建。
五轴加工的CAM刀路设计
八、叶轮槽五轴加工刀路定义-粗切分层及多槽变换。
两曲面之间
两曲线之间

浅谈基于UG的复杂曲面叶轮三维造型及五轴数控加工技术

浅谈基于UG的复杂曲面叶轮三维造型及五轴数控加工技术

叶轮数控加工仿真研究【 J 】 . 陕 西 国防 工
业 职 业技 术学 院 学 报 , 2 0 1 l , 2 1 ( 2 ) : 4 5 -
47.
工程序都应经过分 度和旋转 , 且 在 轮 毂 和
可 能存在 一些不需 要的拐点 , 即 出 现 不 光 叶 片 没 有 全 部 加 工 完 时 , 不应 进 入 下 一 个 【 4 】阎长 罡 , 贾 国高 . 基于 UG N X 4 . O 的整体
行 于 气 流 通 道 的 方 向进 行 走 刀 。 具 体 加 工
比较 完 美 地 完 成 对 整 体 叶 轮 的 三 维 造 型 。 应 用 uG软 件 对 整 体 叶 轮 进 行 五 轴 加 工 的
/C AM 软 件 , 在 的 中间位置设 置开槽加 工槽 , 铣 刀应 沿 平 但 它 作 为 一 款 通 用 的 CAD
迹 生 成研 究 【 D 】 . 哈 尔 滨 工程 大 学 硕士 学 位论文 , 2 0 l 2 .
【 3 】李俊 涛 , 吴 让利 . 基于 UG N X 6 . 0 的 整体

维造 型工作( 如 图2 所示) 。 2 . 5 光顺 曲线 实 际工作 中 , 生 成 叶 片 的 曲线 和 曲 面
工 业 技 术
建议采用 第二种方式 。 2 . 4 建立 整体 叶轮 在 完成 单个叶 片和 轮毂的 造型后 , 我
们 要 建 立 整 个 叶轮 的 CAD 模型 , 建 立 步 骤 如下: ( 1 ) 因 为 叶片 是 沿 圆周 均布 的 , 所以 需 要 根 据 叶 片 的 数 量 确 定 叶 片 沿 圆 周分 布 的
3 叶轮 的五 轴数控加工流程
( 1 ) 锻压毛坯 : 毛 坯 采 用 高 强度 的锻 压
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整体叶轮的五轴数控编程与加工
2009-04-13 15:13:17 作者:张家口煤矿机械制造高级技工学校任涛来源:《CAD/CAM与制造业信息化》
杂志
分享到:
更多...
叶轮又称工作轮,离心式压缩机中唯一对气流作功的元件,转子上的最主要部件。

一般由轮盘、轮盖和叶片等零件组成。

气体在叶轮叶片的作用下,随叶片作高速旋转,气体受旋转离心力的作用,以及在叶轮里的扩压流动,使它通过叶轮的压力得到提高。

对叶轮的基本要求是:
1.能给出较大的能量源。

2.气体流过叶轮的损失要小,即气体流经过叶轮的效率要高。

3.气体流出叶轮时各参数合宜,使气体流过后面固定元件时的流动损失较小。

4.叶轮型式能使整机性能曲线的稳定工况区及高效区范围较宽。

常分为闭式、半开式和开式叶轮。

叶轮的建模可分为轮毂曲面(Hub)以及叶片曲面(Blade)两部分,叶片又包含包覆曲面(Shr oud
Surface)、压力曲面(Pressure Surface)和吸力曲面(Suction Surface),如图1所示。

叶轮轮毂面及叶轮盖分别由叶片中性面根部曲线和叶片中性面顶部曲线绕Z轴旋转而成。

经过旋转轴Z的设计基准面为子午面。

中性面是处于叶片压力面和吸力面中间位置的曲面。

对于轮毂曲面和包覆曲面,可分别由叶片根部曲线和叶片顶部曲线绕Z轴回转而成,故在整体叶轮的建模过程之中,把叶片的建模放在轮毂曲面和包覆曲面建模之后。

叶轮类零件构成的一般形式是若干组叶片均匀分布在轮毂的曲面上。

一组叶片中可能只有一个叶片,也可能有若干个叶片。

前一种情况的叶片分布称为等长叶片,后一种的叶片形式主要指含有小叶片,一般称为交错叶片。

本例的整体叶轮产品效果,如图2所示。

一、整体叶轮结构加工工艺分析
在本实例中,需要对整体叶轮的流道、叶片和圆角主要曲面进行加工,如图3所示。

另外,在叶片之间有大量的材料需要去除。

为了使叶轮满足气动性的要求,叶片常采用大扭角、根部变圆角的结构,这给叶轮的加工提出了更高的要求。

根据本例具体情况加工难点如下:
(1)加工槽道变窄,叶片相对较长,刚度较低,属于薄壁类零件,加工过程极易变形。

(2)槽道最窄处叶片深度超过刀具直径的8倍以上,相邻叶片空间极小,在清角加工时刀具直径较小,刀具容易折断,切削深度的控制也是加工的关键技术。

(3)本例的整体叶轮曲面为自由曲面,流道窄,叶片扭曲比较严重,并且有明显的后仰趋势,加工时极易产生干涉,加工难度较大。

有些叶轮由于有副叶片,为了避免干涉,要分段加工曲面,因此,保证加工表面的一致性也有困难。

整体叶轮加工技术要求包括尺寸、形状、位置、表面粗糙度等几何方面的要求,也包括机械、物理、化学性能的要求。

再对叶轮进行加工前,必须对叶轮毛坯进行探伤检查。

叶轮叶片必须具有良好的表面质量。

精度一般集中在叶片表面、轮毂的表面和叶根表面,表面粗糙度值应小于Ra0.8μm,截面间的型面平滑过度,另外叶身的表面纹理力求一致,一致的流水线是最好的纹理表面,但这样又限制了走刀方向,从而在一定程度上限制了加工的刀具轨迹。

整体叶轮在工作中为了防止振动并降低噪音,所以整体叶轮对动平衡性的要求很高,因此在加工过程中要综合考虑叶轮的对称问题,在进行CAM编程时可利用叶片,流道等关于叶轮旋转轴的对称性的加工表面,可采用对某一元素的加工来完成对相同加工内容不同位置的操作,如本例应用了旋转阵列加工的操作。

另外,应尽可能减少由于装夹或换刀造成的误差。

二、整体叶轮加工工艺准备
1.机床准备:采用立式五轴联动高速加工中心,数控机床主要参数X轴行程900mm , Y轴行程600mm,Z轴行程550mm,C轴旋转范围0°—360°,B轴摆动范围-90°--90°,刀库容量40刀位,数控系统为SIEMENS 840D。

如图4所示。

2.刀具准备:采用HSK高速刀柄,由于加工时叶片的纹理要求所使用的刀具切削刃长度应大于70mm,刀具总长度应大于120mm,并采用整体硬质合金涂层刀具。

3.工装准备:要求安全可靠,体积小、质量轻,以减小加工时的惯性力矩对工件加工精度的影响。

另外,装卸工件要简洁方便。

4.测量准备:对于叶轮这样的复杂型面,手工方法无法确定精度,主要采用三坐标测量机进行型面数据检测。

把采集到的数据与几何建模实体进行比较来检测加工精度。

5.编程软件的准备:目前,国外一般应用整体叶轮的五坐标加工专用加工软件,主要有美国NREC公司的MAX-5、MAX-AB叶轮加工专用软件,瑞士Starrag数控机床带有的整体叶轮加工模块,还有HyperMill等专用的加工软件。

此外,一些通用的CAD/CAM软件如UG、CATIA、Delcam等也可用于整体叶轮的加工,本例应用的是UG NX通用编程软件。

三、整体叶轮的数控加工工艺过程
工序1φ16R2圆鼻刀粗加工
工序1的具体内容如表1所示。

生成的刀具路径和加工仿真如图5、6所示。

工序2φ16R2圆鼻刀开粗加工
工序2的具体内容如表2所示。

生成的刀具路径和加工仿真如图7、8所示。

工序3φ12R6球头刀半精加工
工序3的具体内容如表3所示。

生成的刀具路径和加工仿真如图9、10所示。

工序4φ12R6球头刀精加工
工序4的具体内容如表4所示。

生成的刀具路径和加工仿真如图11、12所示。

工序5φ10R5球头刀除流道残料加工
工序5的具体内容如表5所示。

生成的刀具路径和加工仿真如图13、14所示。

工序6φ10R5球头刀清根加工
工序6的具体内容如表6所示。

生成的刀具路径和加工仿真如图15、16所示。

工序7多刀具清角加工
工序7的具体内容如表7所示。

生成的刀具路径和加工仿真如图17、18所示。

四、整体叶轮的数控加工注意事项
1.注意刀轴的方向,避免产生干涉。

同时注意在进刀和退刀的过程,尤其是在退刀时,应沿设定的退刀方向退出工件型面,避免发生干涉,在对叶片的清角加工轨迹中,合理设置的进/退刀方向和距离。

如图19所示。

2.注意装夹位置合理,避免刀具与夹具碰撞。

3.在装夹时注意加工中心的行程,避免超行程。

相关文档
最新文档