人教版七年级数学上册同步测试题及答案 (1)
七年级上册数学同步练习册参考答案(人教版)

七年级上册数学同步练习册参考答案(人教版)第一章有理数§1.1正数和负数(一)一、1. D 2. B 3. C二、1. 5米 2. -8℃ 3. 正西面600米 4. 90三、1. 正数有:1,2.3,68,+123;负数有:-5.5, ,-11 2.记作-3毫米,有1张不合格3. 一月份超额完成计划的吨数是-20, 二月份超额完成计划的吨数是0, 三月份超额完成计划的吨数是+102.§1.1正数和负数(二)一、1. B 2. C 3. B二、1. 3℃ 2. 3℃ 3. -2米 4. -18m三、1.不超过9.05cm, 最小不小于8.95cm;2.甲地,丙地最低,的地方比最低的地方高50米3. 70分§1.2.1有理数一、1. D 2. C 3. D二、1. 0 2. 1,-1 3. 0,1,2,3 4. -10三、1.自然数的集合:{6,0,+5,+10…}整数集合:{-30,6,0,+5,-302,+10…}负整数集合:{-30,-302… }分数集合:{ ,0.02,-7.2, , ,2.1…}负分数集合:{ ,-7.2, … }非负有理数集合:{0.02, ,6,0,2.1,+5,+10…};2. 有31人能够达到引体向上的标准3. (1) (2) 0§1.2.2数轴一、1. D 2. C 3. C二、1. 右 5 左 3 2. 3. -3 4. 10三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3§1.2.3相反数一、1. B 2. C 3. D二、1. 3,-7 2. 非正数 3. 3 4. -9三、1. (1) -3 (2) -4 (3) 2.5 (4) -62. -33. 提示:原式= =§1.2.4绝对值一、1. A 2. D 3. D二、1. 2. 3. 7 4. ±4三、1. 2. 20 3. (1)|0|§1.3.1有理数的加法(一)一、1. C 2. B 3. C二、1. -7 2.这个数 3. 7 4. -3,-3.三、1. (1) 2 (2) -35 (3) - 3.1 (4) (5) -2 (6) -2.75;2.(1) (2) 190.。
【新人教版七年级数学上册同步训练及答案全套40份】【第1套-共4套】第4章第1节-几何图形(1)(吐血推荐)

七年级数学(人教版上)同步练习第四章第一节几何图形(一)【典型例题】例1:填空:(1)长方体、正方体都有个面,长方体的6个面可能都是形,也有可能都有2个面是形,它的面完成相同。
答:6个面,长方形,正方形,对(2)正方体的6个面都是形,6个面的面积是。
答:正方形,相等(3)圆柱的上、下底面是;(4)圆锥的底面是答:圆,圆例2:填空:(1)三棱柱的上、下底面是;侧面是。
答:三角形,四边形(2)四棱柱的上、下底面是;侧面是。
答:四边形四边形例3:一个三棱柱的底面边长为acm,侧棱长为bcm。
(1)这个三棱柱共有几个面?它们分别是什么形状?哪些面的形状、面积完全相同? (2)这个三棱柱共有多少条棱,它们的长度分别是多少?答:(1)5个面,其中3个侧面是长方形,两个底面是三角形,两个底面形状完全相同,三个侧面形状完全相同。
(2)共有9条棱,其中侧棱长均为bcm,底面棱长均为acm.例4:图中的两个图形经过折叠能否围成棱柱?先想一想,再试一试。
答:都可以,第一个可以围成六棱柱;第二个可以围成三棱柱例5:将一个正方体的表面沿某些棱剪开,展成一个平面图形,把你展开后的不同平面图形都画出来,看看有几种。
答:1)2)3)例6:两位同学用图形画出的小动物中,哪个图形是用立体图形组成的?用了哪些立体图形?哪个图形是用平面图形组成的?用了哪些平面图形?答:第一个图形是由圆柱体、长方体、球体、正方体组成;第二个图形是由三角形、长方形、五边形、六边形、圆组成。
【模拟试题】(答题时间:40分钟)1. 判断正误(1)圆柱的上下两个面一样大()(2)圆柱、圆锥的底面都是圆()(3)棱柱的底面是四边形()(4)棱锥的侧面都是三角形()(5)棱柱的侧面可能是三角形()(6)圆柱的侧面是长方形()(7)球体不是多面体()(8)圆锥是多面体()(9)棱柱、棱锥都是多面体()(10)柱体都是多面体()2. 一个四棱柱被一刀切去一部分,试举例说明剩下的部分是否可能还是四棱柱。
人教版七年级数学上册第1-2章同步测试题(有答案)

人教版七年级数学上册第1-2章同步测试题(有答案)第 2 页有理数、整式的加减测试题一、选择题(共13小题;共39分)1. 下列各数:−(+2),−32,(−13)2,−(−1)2015,−∣−3∣ 中,负数的个数是 ( ) 个.A. 2B. 3C. 4D. 52. 下列各式计算正确的是 ( ) A. −52×(−125)=−1 B. 25×(−0.5)2=−1C. −24×(−3)2=144D. (35)2÷(1÷259)=23253. 下列叙述正确的有 ( )① 0 是整数中最小的数;② 有理数中没有最大的数;③ 分数都是有理数;④ 整数和分数统称有理数.A. ②③④B. ①②③C. ①②④D. ①③④4. 某日我国部分城市的平均气温情况如下表(记温度零上为正,单位:∘C ),则下列城市当天平均气温最低的是 ( ) 城市 温州 上海 北京 哈尔滨 广州 平均气温/℃ 6−9 −15 15A. 广州B. 哈尔滨C. 北京D. 上海5. 如图所示,数轴上两点 A ,B 分别表示实数 a ,b ,则下列四个数中最大的一个数是 ( )A. aB. bC. 1aD. 1b6. 由四舍五入得到的近似数 30.0 精确到 ( )A. 0.01B. 十分位C. 个位D. 十位7. 某企业今年 3 月份产值为 a 万元,4 月份比 3 月份减少了 10%,5 月份比 4 月份增加了 15%,则 5 月份的产值是 ( )第 3 页第 4 页15. 在数轴上表示整数的点称为整点,某数轴的单位长度是 1 cm ,若从这个数轴上任意一点画出一条长为 50 cm 的线段,则线段盖住的整点数是 个.16. 某粮店出售的三种品牌的大米袋上,分别标有(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意抽出两袋,它们的质量最多相差 kg . 17. 在式子 b 23,12xy +3,−2,3x ,1a+b,ab+x 5,2x 2−3x ,a 中,单项式有 个,多项式有 个,整式有 个.18. 某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:① 如果不超过 500 元,则不予优惠;② 如果超过 500 元,但不超过 800 元,则按购物总额给予 8 折优惠;③ 如果超过 800 元,则其中 800 元给予 8 折优惠,超过 800元的部分给予 6 折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款 480 元和 520 元;若合并付款,则她们总共只需付款 元. 19.若x y>0,y z<0,则xz 0.20. 如果 3x 2y m 与 −2x n−1y 3 是同类项,那么m +n = .21. 已知 ∣3m −12∣+(n 2+1)2=0,则 2m −n = .22. 若 a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是 2,则式子∣a+b∣2m 2+1+4m −3cd 的值为 .23. 有理数 a ,b ,c 在数轴上的位置如图所示,则式子 ∣a ∣+∣b ∣−∣a +b ∣−∣a −2b ∣ 化简后的结果为 . 三、解答题第 5 页24. 计算 (−179)+(−411)+(+49)−(+711)(−313)÷245÷(−318)×(−0.75) −16−(1−0.5)×13×[2−(−3)2]25. 化简、求值:5(3a 2b −ab 2)−3(ab 2+5a 2b),其中a =13,b =−12.−2x 2−12[3y 2−2(x 2−y 2)+6],其中 x =−1,y =−12.26. 已知 ∣m∣=3,∣n∣=2,且 m <n ,求 m 2+2mn +n 2 的值27. 一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,−3,+10,−8,−6,+12,−10. (1)守门员最后是否回到了球门线的位置? (2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?28.王明在计算一个多项式减去2b 2-b-5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b 2+3b-1.据此你能求出这个多项式并算出正确的结果吗?29.蔬菜商店以每筐10元的价格从农场购进8筐白菜,若以每筐白菜净重25kg 为标准,超过千克数记为正数,不足千克数记为负数,称量后记录如下:+1.5,-3,+2,-2.5,-3,+1,-2,-2 (1)这8筐白菜一共重多少千克?(2)若把这些白菜全部以零售的形式卖掉,商店计划共获利20%,那么蔬菜商店在销售过程中白菜的单价应定为每千克多少元?30.已知某粮库已存有粮食100吨,本周内粮库进出粮食的记录如下(运进为正):星期一二三四五六日进、出记录+35 -20 -30 +25 -24 +50 -26(1)通过计算,说明本周内哪天粮库剩余的粮食最多?(2)若运进的粮食为购进的,购买价格为每吨2019元,运出的粮食为卖出的,卖出的价格为每吨2300元,则这一周的利润为多少?(3)若每周平均进出的粮食大致相同,则再过几周粮库存的粮食可达到200吨?答案1. B2. D3. A4. B5. D6. B7. B8. D9. B 10. A11. C 12. D 13. A14. 正;1015. 50或5116. 0.617. 3;3;618. 838或91019. <20. 621. 1022. 5 或−1123. a24. (1)原式=3−3+8=8.(2)原式=−169+49+(−411)−(+711)=−43−1=−213.(3)原式=(−103)÷145÷(−258)×(−34)=−103×514×825×34=−27.第 6 页第 7 页(4)原式=−1−0.5×13×(−7)=−1+76=16.25. (1) 原式=6x 2−4xy −8x 2+4xy +4=−2x 2+4.(2)原式=−x 2+12x −2y +x +2y=−x 2+32x.当 x =12,y =2012 时,原式=−14+34=12.(3)原式=15a 2b −5ab 2−3ab 2−15a 2b=−8ab 2.当 a =13,b =−12时,原式=−8×13×(−12)2=−23.(4)原式=−2x 2−32y 2+x 2−y 2−3=−x 2−52y 2−3.当 x =−1,y =−12时,原式=−1−58−3=−458.26. 由题意可得,m =±3,n =±2.又 m <n ,∴m =−3,n =2 或 m =−3,n =−2, 当 m =−3,n =2,原式=(−3)2+2×2×(−3)+22=1;当 m =−3,n =−2,原式=(−3)2+2×(−2)×(−3)+(−2)2=25.27. (1)(+5)+(−3)+(+10)+(−8)+(−6)+(+12)+(−10) =(5+10+12)−(3+8+6+10)=27−27=0.答:守门员最后回到了球门线的位置.(2)由观察可知:5−3+10=12(米).答:在练习过程中,守门员离开球门线最远距离是12米.(3)∣+5∣+∣−3∣+∣+10∣+∣−8∣+∣−6∣+∣+12∣+∣−10∣=5+3+10+8+6+12+10=54(米).答:守门员全部练习结束后,他共跑了54米.第 8 页。
人教版数学七年级上册 第2章 2.1整式同步测验题(一)(含答案)

整式同步测验题(一)一.选择题1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣3.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣44.在式子,2πx2y,,y2﹣5,π+6,中,多项式的个数是()A.1B.2C.3D.45.多项式4x2﹣xy2﹣x+1的三次项系数是()A.4B.﹣C.D.﹣6.在代数式﹣7,m,x3y2,,2x+3y中,整式有()A.2个B.3个C.4个D.5个7.下列说法正确的是()A.x不是单项式B.﹣15ab的系数是15C.单项式4a2b2的次数是2D.多项式a4﹣2a2b2+b4是四次三项式8.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+19.单项式﹣3ab的系数是()A.3B.﹣3C.3a D.﹣3a10.下列说法中错误的有()个.①绝对值相等的两数相等;②若a,b互为相反数,则=﹣1;③如果a大于b,那么a的倒数小于b的倒数;④任意有理数都可以用数轴上的点来表示;⑤x2﹣2x﹣33x3+25是五次四项式;⑥一个数的相反数一定小于或等于这个数;⑦正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个11.某九年级学生复习了整式有关概念后,他用一个圆代表所有代数式,画了下列图形来表示整式,多项式,单项式的关系,正确的是()A.B.C.D.二.填空题12.﹣πx2的次数是.13.多项式x2y3﹣2x3y3+x4﹣3y3﹣1是一个次五项式.14.单项式的次数为:.15.多项式3x2y﹣7x4y2﹣xy3+28是次项式,最高次项的系数是.三.解答题16.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.17.已知多项式2x2+x3+x﹣5x4﹣(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.18.(1)下列代数式:①2x2+bx+1;②﹣ax2+3x;③;④x2;⑤,其中是整式的有.(填序号)(2)将上面的①式与②式相加,若a,b为常数,化简所得的结果是单项式,求a,b 的值.19.已知式子M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,且二次项的系数为b,在数轴上有点A、B、C三个点,且点A、B、C三点所表示的数分别为a、b、c,如图所示已知AC=6AB(1)a=;b=;c=.(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,点E为线段AP的中点,点F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,求的值.(3)点P、Q分别自A、B出发的同时出发,都以每秒2个单位长度向左运动,动点M自点C出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t(秒),3<t<时,数轴上的有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN 上一点(点T不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.参考答案与试题解析一.选择题1.【解答】解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.【解答】解:单项式﹣的系数和次数是:﹣,5.故选:B.3.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.4.【解答】解:在式子,2πx2y,,y2﹣5,π+6,中,多项式有:,y2﹣5,共2个.故选:B.5.【解答】解:多项式4x2﹣xy2﹣x+1的三次项是﹣xy2,三次项系数是﹣.故选:B.6.【解答】解:在代数式﹣7,m,x3y2,,2x+3y中,整式有:﹣7,m,x3y2,2x+3y共4个.故选:C.7.【解答】解:A、x是单项式,故原说法错误;B、﹣15ab的系数是﹣15,故此选项错误;C、单项式4a2b2的次数是4,故此选项错误;D、多项式a4﹣2a2b2+b4是四次三项式,正确.故选:D.8.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.9.【解答】解:单项式﹣3ab的系数是﹣3.故选:B.10.【解答】解:①如|2|=2,|﹣2|=2,2≠﹣2,即绝对值相等的两数不一定相等,故①错误;②若a,b互为相反数,当a和b,都不是0时,=﹣1,故②错误;③当a=2,b=﹣3时,a>b,但a的倒数大于b的倒数,故③错误;④任意有理数都可以用数轴上的点来表示,故④正确;⑤x2﹣2x﹣33x3+25是三次四项式,故⑤错误;⑥﹣3的相反数是3,3>﹣3,故⑥错误;⑦正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数,故⑦错误;即错误的有6个,故选:C.11.【解答】解:代数式包括整式和分式,整式包括多项式和单项式,故正确的是选项D,故选:D.二.填空题12.【解答】解:单项式﹣πx2的次数是:2.故答案为:2.13.【解答】解:多项式x2y3﹣2x3y3+x4﹣3y3﹣1是一个六次五项式,故答案为:六.14.【解答】解:单项式的次数为:2+2=4.故答案为:4.15.【解答】解:多项式式3x2y﹣7x4y2﹣xy3+28是六次四项式,最高次项的系数是﹣7.故答案为六、四、﹣7三.解答题(共4小题)16.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.17.【解答】解:(1)按x降幂排列为:﹣5x4+x3+2x2+x﹣;(2)该多项式的次数是4,它的二次项是2x2,常数项是﹣.18.【解答】解:(1)①是多项式,也是整式;②是多项式,也是整式;③是分式,不是整式;④是单项式,也是整式;⑤是二次根式,不是整式;故答案为:①②④;(2)(2x2+bx+1)+(﹣ax2+3x)=2x2+bx+1﹣ax2+3x=(2﹣a)x2+(b+3)x+1∵①式与②式相加,化简所得的结果是单项式,∴2﹣a=0,b+3=0,∴a=2,b=﹣3.19.【解答】解:(1)∵M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,二次项的系数为b∴a=16,b=20;∴AB=4∵AC=6AB∴AC=24∴16﹣c=24∴c=﹣8故答案为:16,20,﹣8;(2)设点P的出发时间为t秒,由题意得:EF=AE﹣AF=AP﹣BQ+AB=(24﹣2t)﹣(20﹣3t)+4=6+∴BP﹣AQ=(28﹣2t)﹣(16﹣3t)=12+t,∴=2;(3)设点P的出发时间为t秒,P点表示的数为16﹣2t,Q点表示的数为20﹣2t,M点表示的数为6t﹣8,N点表示的数为6t﹣10,T点表示的数为x,∴MQ=28﹣8t,NT=x﹣6t+10,PT=|16﹣2t﹣x|。
【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】第1章第5节 有理数的乘方

七年级数学(人教版上)同步练习第一章第五节有理数的乘方一. 教学内容:有理数的乘方1. 乘方的意义,会用乘法的符号法则进行乘方运算;2. 会用科学记数法表示较大的数,理解近似数和有效数字表示的意义;3. 了解科学记数法在实际生活中的作用。
二. 知识要点:1. 有理数乘方的意义求n个相同因数的积的运算,叫做乘方。
一般地,记作a n。
乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数,a n从运算的角度读作a 的n次方,从结果的角度读作a的n次幂。
注:(1)一个数可以看作这个数本身的一次方。
(2)当底数是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写小些。
(3)乘方是一种运算,是一种特殊的乘法运算(因数相同的乘法运算),幂是乘方的运算的结果。
2. 乘方运算的性质(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)任何数的偶次幂都是非负数;(4)-1的偶次幂得1,-1的奇次幂得-1;1的任何次幂都得1;(5)现在学习的幂的指数都是正整数,在这个条件下,0的任何次幂都得0。
3. 有理数的混合运算顺序(1)先乘方,再乘除,最后加减。
(2)同级运算,从左到右进行。
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
4. 科学记数法把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,像这样的记数方法叫作科学记数法。
注:科学记数法是有理数的一种记数形式,这种形式就是a×10n,它由两部分组成:a和10n,两者相乘,其中a大于或等于1,且小于10(即1≤a<10),它是由原来的小数点向左移动后的结果,也就是说,a与原数只是小数点位置不同。
指数n是正整数,等于原数化为a时小数点移动的位数,用科学记数法表示一个数时,10的指数比原数的整数位数小1。
5. 近似数和有效数字(1)近似数与实际完全符合的数是准确数。
与实际有一点偏差但又非常接近的数称为近似数。
人教版七年级数学上册《5.3实际问题与一元一次方程》同步测试题及答案

人教版七年级数学上册《5.3实际问题与一元一次方程》同步测试题及答案一、解答题1.列方程解应用题甲乙两车分别从相距605km 的A 、B 两地出发,甲车的速度为60km/h ,乙车的速度为50km/h ,两车同时出发,相向而行.求经过多少小时两车相遇后相距55km ?2.如图,某小区矩形绿地的长宽分别为35m 15m ,.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.若扩充后的矩形绿地的长是宽的2倍,求新的矩形绿地的长与宽;3.如图,已知A B ,为数轴上的两个点,点A 表示的数是30-,点B 表示的数是10.(1)写出线段AB 的中点C 对应的数;(2)若点D 在数轴上,且30BD =,写出点D 对应的数;(3)若一只蚂蚁从点A 出发,在数轴上每秒向右前进3个单位长度;同时一只毛毛虫从点B 出发,在数轴上每秒向右前进1个单位长度,它们在点E 处相遇,求点E 对应的数.4.我们学校七年级同学参加“研学”活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座位车,则多出一辆,且其余客车恰好坐满,已知45座客车租金200元,60座客车租金300元,问:(1)七年级同学多少人?原计划租车45座的客车多少辆?(2)若你是七年级组长,要使每个同学都有座位,应如何租车最划算?花钱多少元?5.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?6.每年农历五月初五是中国民间的传统节日——端午节.今年端午节,某地甲、乙两家超市为吸引更多的顾客,开展促销活动,对某种质量和售价相同的粽子分别推出了不同的优惠方案,甲超市的方案是:购买该种粽子超过80元后,超出80元的部分按九折收费;乙超市的方案是:购买该种粽子超过120元后,超出120元的部分按八折收费.请根据顾客购买粽子的金额,帮顾客判断到哪家超市购买粽子更划算?7.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?8.有一篮苹果,平均分给几个小朋友,每人3个,则多2个;每人4个则少3个.问:有几个小朋友,几个苹果?9.“丰收1号”油菜籽的平均每公顷产量为2 400kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点.某村去年种植“丰收1号”油菜,今年改种“丰收2号”油菜,虽然种植面积比去年减少3hm2,但是所产油菜籽的总产油量比去年提高3 750kg.这个村去年和今年种植油菜的面积各是多少公顷?10.(列方程)把一批图书分给七年级(11)班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?11.昨天老师带着我们班同学去深圳少年宫玩,我们一共去了60人(包括老师),买门票共花了1240元.玩得可开心了!小明:真羡慕你们,不过听说门票还是挺贵的.小红:是的,老师票每张30元,学生票每张20元.那你能猜出我们去了几位老师,几位学生吗?小明:去了……根据以上的对话,你能用解方程的知识帮助小明回答小红的提问吗?12.把一些图书分给某班学生阅读,如果没人分3本,则余20本,如果每人分4本,则还缺25本。
人教版七年级数学上册同步练习题及答案全套

人教版七年级数学上册同步练习题及答案全套【编者按】要想学好数学,多做试题是难免的,这样才能够掌握各种试题类型的解题思路。
在考试中应用自如,使自己的水平得到正常甚至超长发挥。
第三章一元一次方程3.11一元一次方程(1)知识检测1.若4xm-1-2=0是一元一次方程,则m=______.2.某正方形的边长为8cm,某长方形的宽为4cm,且正方形与长方形面积相等,•则长方形长为______cm.3.已知(2m-3)x2-(2-3m)x=1是关于x的一元一次方程,则m=______.4.下列方程中是一元一次方程的是( )A.3x+2y=5B.y2-6y+5=0C.x-3=D.4x-3=05.已知长方形的长与宽之比为2:1•周长为20cm,•设宽为xcm,得方程:________.6.)利润问题:利润率=.如某产品进价是400元,•标价为600元,销售利润为5%,设该商品x折销售,得方程( )-400=5%400.7.某班外出军训,若每间房住6人,还有两间没人住,若每间住4人,恰好少了两间宿舍,设房间为x,两个式子分别为(x-2)6人,(x+2)4,得方程_______.8.某农户2019年种植稻谷x亩,2019•年比2019增加10%,2019年比2019年减少5%,三年共种植稻谷120亩,得方程_______.9.一个两位数,十位上数字为a,个位数字比a大2,且十位上数与个位上数和为6,列方程为______.10.某幼儿园买中、小型椅子共50把,中型椅子每把8元,小型椅子每把4•元,•买50把中型、小型椅子共花288元,问中、小型椅子各买了多少把?•若设中型椅子买了x把,则可列方程为______.11.中国人民银行宣布,从2019年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%,某人于2019年6月5日存入定期为1年的人民币5000元(到期后银行将扣除5%的利息税).设到期后银行向储户支付现金x元,则所列方程正确的是( )A.x-5000=50003.06%B.x+50005%=5000(1+3.06%)C.x+50003.06%5%=5000(1+3.06%)D.x+50003.06%5%=50003.06%12.足球比赛的计分方法为:胜一场得3分,平一场得1分,负一场得0分,一个队共打了14场比赛,负了5场,得19分,设该队共平x场,则得方程( )A.3x+9-x=19B.2(9-x)+x=19C.x(9-x)=19D.3(9-x)+x=1913.已知方程(m-2)x|m|-1+3=m-5是关于x的一元一次方程,求m的值,•并写出其方程.拓展提高14.小明爸爸把家里的空啤酒瓶让小明去换饮料,现有40个空啤酒瓶,1个空啤酒瓶回收是0.5元,一瓶饮料是2元,4个饮料瓶可换一瓶饮料,问小明可换回多少瓶饮料?。
人教版七年级上册数学同步测试:第一章 1.3 有理数的加法(解析版)

1.3 有理数的加法测试1. 小磊解题时,将式子(−16)+(−7)+56+(−4)先变成[(−16+56]+[(−7)+(−4)]再计算结果,则小磊运用了( )A. 加法交换律B. 加法交换律和加法结合律C. 加法结合律D. 无法判断【答案】B【解析】将式子(−16)+(−7)+56+(−4)先变成[(−16)+56]+[(−7)+(−4)]再计算结果,运用了加法交换律和加法结合律,故选B.2. 下列变形,运用运算律正确的是( )A. 2+(−1)=1+2B. 3+(−2)+5=(−2)+3+5C. [6+(−3)]+5=[6+(−5)]+3D. 13+(−2)+(+2323)=(1313+2323)+(+2)【答案】B【解析】A. 2+(−1)=(−1)+2,错误;B. 3+(−2)+5=(−2)+3+5,正确;C. [6+(−3)]+5=(6+5)+(−3),错误;D. 13+(−2)+(+23)=(13+23)+(−2),错误,故选B.3. 下列交换加数的位置的变形中,错误的是( )A. 30+(−20)=(−20)+30B. (−5)+(−13)=(−13)+(−5)C. (−37)+16=16+(−37)D. 10+(−20)=20+(−10) 【答案】D【解析】A. 30+(−20)=(−20)+30是正确的,不符合题意;B. (−5)+(−13)=(−13)+(−5)是正确的,不符合题意;C. (−37)+16=16+(−37)是正确的,不符合题意;D. 10+(−20)=(−20)+10,原来的变形是错误的,符合题意.故选D.4. 计算(+1317)+(−3.5)+(−6)+(+2.5)+(+6)+(+417)的结果是( )A. 12B. −12C.317D. 0【答案】D 【解析】原式=(1317+417)+(−3.5+2.5)+(−6+6)=1−1+0=0,故选D5. 下列说法中正确的是( )A.若a+b>0,则a>0,b>0B. 若a+b<0,则a<0,b<0C. 若a+b>a,则a+b>bD. 若|a|=|b|,则a=b或a+b=0 【答案】D 【解析】A. 如果a=−3,b=5,那么a+b=2>0,但是a<0,故本选项错误;B. 如果a=3,b=−5,那么a+b=−2<0,但是a>0,故本选项错误;C. 如果a=−3,b=5,那么a+b=2>−3=a,但是a+b=2<5=b,故本选项错误;D. 若|a|=|b|,则a=b或a+b=0,故本选项正确.故选D. 点睛:本题考查了有理数的加法法则及绝对值的定义与性质,本题属于基础知识,需熟练掌握.6. 在数轴上表示有理数a的点在表示–2的点的左边,则a+2( )A. 一定是正数B. 一定是负数C. 可能是正数,可能是负数D. 等于0【答案】B【解析】∵在数轴上表示有理数a的点在表示−2的点的左边,∴a<−2∴a+2<0,故选B.点睛:根据题意可知a与2异号,根据绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值即可作出选择.7. 若一个数的绝对值和相反数都等于它本身,另一个数是最大的负整数,则这两个数的和为( )A. –2B. –1C. 0D. 1【答案】B【解析】∵一个数的绝对值和相反数都等于它本身,∴这个数为0,而最大的负整数为−1,∴这两个数的和为−1.故选B.8. 一个数是10,另一个数比10的相反数大2,则这两个数的和为()-A. 18 B. 2- C. 2 D. 18【答案】C【解析】【分析】根据题意表示出另一个数,相加即可得到结果.【详解】根据题意得:10+(−10+2)=10−10+2=2.故选C【点睛】此题考查有理数的加法,解题关键在于利用相反数的性质进行求解9. –13与+25的和的相反数可以列式为( )A. –13+25B. –(13–25)C. –(–13+25)D. 13+25 【答案】C【解析】根据题意得:−(−13+25).故选C10. 已知|m|=5,|n|=2,且n<0,则m+n的值是( )A.–7B. +3C. –7或–3D. –7或3 【答案】D 【解析】因为|m|=5,|n|=2,∴m=±5,n=±2,又∵n<0,∴n=-2, 当m=5,n=-2时,m+n=3; 当m=-5,n=-2时,m+n= -7. 所以D选项是正确的. 11. 已知3,2x y==,且x y>,则x y+的值为()A. 5B. -1C. -5或-1D. 5或1 【答案】D【解析】∵|x|=3,|y|=2,∴x=±3,y=±2,又∵x>y,∴x=3,y=2,x+y=5;或x=3,y=−2,x+y=1.故选D.a b的值为12. 若a=2,b=3,则A. 5B. -5C. ±5D. ±1或±5 【答案】D【解析】【分析】首先根据绝对值的性质,推出a、b的值,即a=±2,b=±3,然后分情况进行代入求值即可.【详解】∵|a|=2,|b|=3,∴a=±2,b=±3,∴当a=2,b=3时,a+b=5,当a=2,b=−3时,a+b=−1,当a=−2,b=3时,a+b=1,当a=−2,b=−3时,a+b=−5,∴a+b的值为±1或±5.故答案选D.【点睛】本题考查了绝对值的知识点,解题的关键是熟练的掌握绝对值的性质.13. 已知x<0,y>0,且|x|>|y|,则x+y的值是( )A. 非负数B. 负数C. 正数D. 0【答案】B【解析】∵|x|>|y|,∴x+y的符号与x的符号一致.∵x<0,∴x+y<0.故选B.14. 若两个非零有理数a,b,满足|a|=a,|b|=﹣b,a+b<0,则a,b的取值符合题意的是()A. a=2,b=﹣1B. a=﹣2,b=1C. a=1,b=﹣2D. a=﹣1,b=﹣2 【答案】C【解析】∵|a|=a,|b|=−b,a+b<0,∴a>0,b<0,且|a|<|b|,四个选项中只有C选项符合,故选C.点睛:本题考查了有理数的加法和绝对值的意义,解题的关键是发现a>0,b<0,且|a|<|b|.15. 如果a>0,b<0,且a、b两数的和为正数,那么( )A. |a|≥|b|B. |a|≤|b|C. |a|>|b|D. |a|<|b|【答案】C【解析】∵a>0,b<0,且a、b两数的和为正数,∴|a|>|b|.故选C.16. 能用简便算法的用简便算法计算:(1)3+(−1)+(−3)+1+(−4) (2)(−9)+4+(−5)+8(3)(−36.35)+(−7.25)+26.35+(+1 74)(4) 59+516+49+(−2)(5)(− 32)+(−512)+52+(−712)(6)(− 13)+(+25)+(+35)+(−123)【答案】−4;−2;−10;56;0;-1.【解析】分析:(1)(2)先化简再相加即可求解;(3)(4)(5)(6)先根据加法交换律把同分母分数交换,再根据加法结合律进行计算.本题解析:解:(1)3+(−1)+(−3)+1+(−4)=[3+(−3)]+[(−1)+1]+(−4)=0+0+(−4)=−4;(2)(−9)+4+(−5)+8=[(−9)+(−5)]+(4+8)=−14+12=−2;(3)(−36.35)+(−7.25)+26.35+(+714)=(−36.35+26.35)+(−7.25+714)=−10+0=−10;(4)59+156+49+(−2)=(59+49)[+156(−2)]=1+(−16)=56;(5)(−32)+(−512)+52+(−712)=[(−32)+52]+[(−712)+(−512)]=1+(−1)=0;(6)(−13)+(+25)+(+35)+(−123)=[(−13)+(−123)]+[(+25)+(+35)]=−2+1=−1.17. 计算:(−2)+4+(−6)+8+…+(−98)+100=___________【答案】50【解析】分析:观察式子,可发现:每相邻的两个数字相加为2,且有25对.本题解析:(−2)+4+(−6)+8+…+(−98)+100=25×2=50.故答案为50.18. 当x=__________时,|x+1|+2取得最小值【答案】-1【解析】∵|x+1|⩾0,∴当|x+1|=0时,|x+1|+2的值最小;即当x=−1时,|x+1|+2取得最小值,故答案为-1.19. 在数轴上表示数a的点到原点的距离是3个单位长度,则a+|a|=___________.【答案】0或6【解析】∵数a的点到原点的距离是3个单位长度,所以a=3或a=−3.当a=3时,a+|a|=3+3=6;当a=−3时,a+|a|=−3+3=0.∴a+|a|=0或6,故答案为0或6.点睛:本题考查了有理数的加法,数轴,由于数a的点到原点的距离是3个单位长度,那么a应有两个点,记为a1,a2,分别位于原点两侧,且到原点的距离为3,这两个点对应的数分别是-3和3,分情况讨论即可求出a+|a|的值.20. 若x 的相反数是3,y =5,则x y +的值为_________.【答案】2或-8【解析】【分析】【详解】因为x 的相反数是3,所以3x =-, 因为5y =,所以5y =±,所以x y +的值为2或-8,故答案2或-8.21. 若|a |=4,–b =3,则a +b =___________.【答案】1或–7【解析】根据题意得:a=4或−4,b=−3,当a=4时,a+b=4−3=1;当a=−4时,a+b=−4−3=−7.故答案为1或−7.22. 已知25x y ==,,且x y >,则x y +=______.【答案】-3或-7.【解析】【分析】根据题意,利用绝对值的意义和有理数的加法法则判断即可求出值.【详解】解:∵|x|=2,|y|=5,且x >y ,∴x=2,y=-5或x=-2,y=-5,则x+y=-3或-7.故答案为-3或-7. 【点睛】本题考查有理数的加法,以及绝对值,熟练掌握运算法则是解题关键.23. 已知x 、y 都是有理数,|x |=2,|y |=4,且x <y ,则x +y =___________.【答案】2或6【解析】根据题意得:x=2,y=4;x=−2,y=4,则x+y=2或6.故答案为2或6点睛:此题考查了有理数的加法,熟练掌握运算法则是解答本题的关键.24. 已知|x–2|与|y–7|互为相反数,求–x+y的值【答案】5.【解析】分析:先根据非负数的性质求出x、y的值,再求出-x+y的值即可.本题解析:∵|x−2|与|y-7|互为相反数,∴|x−2|+|y-7|=0,∴x−2=0,y-7=0,解得x=2,y=7,所以-x+y=-2+7=5,故答案为5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
检测内容:1.1~1.2
得分________ 卷后分________ 评价________
一、选择题(每小题3分,共24分)
1.-2 020的相反数是(C)
A .12 020
B .-12 020
C .2 020
D .-2 020 2.下列式子中结果为负数的是(C)
A .|-2|
B .-(-2)
C .-|-2|
D .(-2)2
3.(乐山中考)-a 一定是(D)
A .正数
B .负数
C .0
D .以上选项都不正确
4.(山西中考)下面有理数比较大小,正确的是(B)
A .0<-2
B .-5<3
C .-2<-3
D .1<-4
5.下列各组数中,互为相反数的是(C)
A .-(+7)与+(-7)
B .-(-7)与+7
C .-|-115 |与-(-65
) D .-(-1100
)与+|-0.01| 6.某次数学测试的成绩若以70分为基准,老师公布的成绩为小丽+28分,小明0分,小亮-12分,则小亮的实际分数是(C)
A .98分
B .70分
C .58分
D .88分
7.绝对值等于其相反数的数一定是(C)
A .负数
B .正数
C .负数或零
D .正数或零
8.有理数a 在数轴上的对应点的位置如图所示,则a ,b ,-a ,|b |的大小关系正确的是(A)
A .|b |>a >-a >b
B .|b |>b >a >-a
C .a >|b |>b >-a
D .a >|b |>-a >b
二、填空题(每小题3分,共18分)
9.(云南中考)若零上8 ℃记作+8 ℃,则零下6 ℃记作__-6__℃.
10.比较大小 :+(-34 )__<__-|-57
|. 11.(福建中考)如图,数轴上A ,B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是__-1__.
12.将一刻度尺按如图所示的方式放在数轴上(数轴的单位长度是1 cm),数轴上的两点A ,B 恰好与刻度尺上的“0 cm ”和“7 cm ”分别对应,若点A 表示的数为-2.3,则点B 表示的数应为__4.7__.
13.若|x |=7,则x =__±7__;若|-x |=7,则x =__±7__.
14.观察下列各数:-12 ,23 ,-34 ,45 ,-56
,…,根据它们的排列规律写出第2 019个数为__-2 0192 020
__. 三、解答题(共58分)
15.(6分)化简:
(1)-|-(+12
)|; 解:-|-(+12 )|=-12
(2)-[-(+2)].
解:-[-(+2)]=2
16.(8分)计算:
(1)|-20|-|+8|+|-12|;
解:原式=20-8+12=24
(2)2-|-137 |×|+1.4|÷|-213
|. 解:原式=2-107 ×75 ×37 =2-67 =117
17.(10分)已知一组数:2,-2,-0.5,-1.5,1.5,0.
(1)画一条数轴,并把这些数用数轴上的点表示出来;
解:
(2)把这些数分别填在下面对应的集合中:
①负数集合:{-2,-0.5,-1.5,…};
②分数集合:{-0.5,-1.5,1.5,…};
③非负数集合:{2,1.5,0,…}.
(3)请将这些数按从小到大的顺序排列.(用“<”连接)
解:-2<-1.5<-0.5<0<1.5<2
18.(10分)若|x-2|+|y-3|+|z-5|=0,计算:
(1)x,y,z的值;
(2)3|x|+2|y|-|z|的值.
解:(1)x=2,y=3,z=5
(2)原式=3×|2|+2×|3|-|5|=7
19.(12分)国际乒乓球正式比赛中,对所使用的乒乓球的质量有严格的标准,下表是6个乒乓球质量检测的结果(单位:g,超过标准质量的克数记为正数).
1号球2号球3号球4号球5号球6号球
-0.5+0.10.20-0.08-0.15
(1)请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明理由;
(2)若规定与标准质量误差不超过0.1 g的为优等品,超过0.1 g但不超过0.3 g为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解:(1)因为|0|<|-0.08|<|+0.1|<|-0.15|<|0.2|<|-0.5|,所以4号球,5号球,2号球的误差相对小一些
(2)因为[|+0.1|,|0|,|-0.08|]≤0.1,0.1<[|0.2|,|-0.15|]≤0.3,|-0.5|>0.3,所以2号球,4号球,5号球是优等品,3号球和6号球是合格品,1号球是不合格品20.(12分)一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走了1.5千米到达商场C,又向西走了5.5千米到达超市D,最后回到货场.
(1)用一个单位长度表示1千米,以东为正方向,以货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;
(2)超市D距货场A多远?
(3)货车一共行驶了多少千米?
解:(1)如图所示
(2)由(1)中数轴可知超市D距货场A 2千米(3)货车一共行驶了2+1.5+5.5+2=11(千米)。