样本空间及其随机事件

合集下载

1-2节 样本空间和随机事件

1-2节 样本空间和随机事件
(3) 分配律 A ( B C ) ( A B) ( A C ),
A ( B C ) ( A B) ( A C ),
(4)德 摩根律 : A B A B, A B A B.
(对偶律)
A A,
i 1 i i 1 i
样本空间的元素由试验的目的所确定.
二、随机事件
随机事件 在一次试验中可能发生也可能不发
生的结果称为随机事件, 简称事件.事件常用A、
B、C表示. 随机事件是由样本空间的某些样本点构成的. 例如 抛掷一枚骰子, 观察出现的点数. 试验中,骰子“出现1点”, “出现2点”, … ,“出现6 点”, “点数不大于4”, “点数为偶数” 等都为随机事件.
空集 和样本空间S都是样本空间S的子集, 在每次试验中 必不发生,称 为不可能事件; S 必发生,称 S为必然事件. 为叙述方便,把不可能事件和必然事件都包括 在随机事件中.
三、事件间的关系及运算
设试验 E 的样本空间为 S , 而 A, B, Ak (k 1,2,) 是 S 的子集.
个事件,称此事件为事件 A与事件B的积事
件. 记作 A I B或AB 显然 A I B {e | e A且e B}.
A AB
B
S
图示:事件A与B 的积事件.
积事件具有如下性质:
(1)若A B, 则A B A; B A, 则A B B.
(2) A B A; A B B.
3. 和事件
“事件 A与事件B至少有一个发生”也是 一 个事件, 称此事件为事件 A 与事件B的和事件. 记作A B,显然A B {e | e A或e B}.
B A
S

样本空间、随机事件

样本空间、随机事件
(7) , 至少有一个发生而C 不发生: C 。
(8) ,,C 都不发生: C 或 C 。
例1.3 设事件A 表示“甲种产品畅销,乙种产品滞销”,求其 对立事件A。
解 设B =“甲种产品畅销”,C=“乙种产品滞销”

C
故 C C = “甲种产品滞销或乙种产品畅销”。
概率学与数理统计
4.差事件
“事件A 发生而B 不发生”的事件称为A 与B 的差
事件,简称差,记为 B ,如图1-4。
由事件差的定义,立即得到: 对任一事件A,有
, ,
图1-4
5.互不 相容
如果两个事件A 与B 不可能同时发生,则称事件A
与B 为互不相容(互斥),记作 B ,如图1-5。
温度,并设这一地区温度不会小于T0 也不会大于T1。
6 :Y,N ,其中Y 表示合格,N 表示不合格;
7 : q q 0
随机事件:随机试验E 的样本空间Ω 的子集称为E 的随机事 件,简称事件,一般用大写字母 A,B,C 表示。
事件发生:在每次试验中,当且仅当一个事件A 中的一个样 本点出现时,称这一(亦即基本结果),称为基
本事件。例如,试验E1 有两个基本事件H 、T;试验E2 有36个
基本事件 1,1、1,2 、…、6,6。
每次试验中都必然发生的事件,称为必然事件。样本空间 Ω 包含所有的样本点,它是Ω 自身的子集,每次试验中都必然 发生,故它就是一个必然事件。因而必然事件我们也用Ω 表示。 在每次试验中不可能发生的事件称为不可能事件。空集 不包 含任何样本点,它作为样本空间的子集,在每次试验中都不可 能发生,故它就是一个不可能事件。因而不可能事件我们也用 表示。
为对立事件。
与集合运算的规律一样,一般事件的运算满足如下关系:

概率与统计中的随机事件与样本空间

概率与统计中的随机事件与样本空间

概率与统计中的随机事件与样本空间随机事件与样本空间是概率与统计中重要的概念,它们在统计推断、随机模型建立以及实际应用中起着关键的作用。

本文将从理论与实践的角度,探讨随机事件与样本空间的定义、属性及应用。

一、随机事件的定义与性质随机事件是指可以在一次试验中出现,但不能预先确定具体结果的事件。

在概率论中,一般将随机事件用事件的形式表示,如A、B等。

随机事件可以是单个结果,也可以是多个结果的组合。

在概率论的框架下,随机事件具有以下性质:1. 包含性:对于样本空间Ω中的每个结果ω,如果事件A发生,则该结果必定属于事件A,即A⊆Ω。

2. 互斥性:如果事件A与事件B的结果不能同时发生,则事件A与事件B是互斥事件,即A∩B=∅。

3. 全面性:样本空间Ω中的所有结果都属于某个事件,即Ω是必然发生的事件。

二、样本空间的定义与性质样本空间是指一次试验中可能出现的所有结果的集合,通常用Ω表示。

样本空间的定义与试验的性质密切相关,不同试验可能具有不同的样本空间。

例如,投掷一枚硬币的样本空间为{正面, 反面},抛掷一个骰子的样本空间为{1, 2, 3, 4, 5, 6}。

样本空间具有以下性质:1. 互不相容性:样本空间中的每个结果都是不同的,即样本空间中的每个元素都是互不相同的。

2. 穷尽性:样本空间包含了一次试验中所有可能出现的结果,即样本空间涵盖了整个试验范围。

三、随机事件与样本空间的应用随机事件与样本空间在概率论与统计中有着广泛的应用,以下介绍其中几个重要的应用场景。

1. 概率计算:通过对随机事件与样本空间的分析,可以计算事件发生的概率。

通常使用频率或古典概率来估算事件发生的可能性。

2. 统计推断:基于样本空间中获取的一部分数据,可以通过统计推断来对总体进行估计。

例如,通过对样本数据的分析,可以推断总体的均值、方差等参数。

3. 随机模型建立:在随机模型中,随机事件与样本空间的定义是模型建立的基础。

根据具体问题的特点,可以建立相应的随机模型来分析事件的发生规律。

随机事件与样本空间

随机事件与样本空间

随机事件与样本空间“随机事件”和“概率”是概率论中最基本的两个概念,“独立性”和“条件概率”是概率论中特有的概念。

一、随机事件的关系与运算[1]样本空间:由一个特定的随机试验所有可能发生的基本结果构成的一个集合,成为该实验的“样本空间”,以大写字母Ω表示;试验的每一个可能发生的基本结果称为“样本点”,用小写字母ω表示。

由Ω的一个样本点组成的单点集合称为“基本事件”;Ω的一个子集称为一个“随机事件”。

样本空间Ω和空集∅为两个特殊的子集,分别称为“必然事件”和“不可能事件”。

[2]事件的关系运算:[3] 事件的运算法则:❶A ∅⊂⊂Ω❷A B A A B ⋃⊃⊃- A A B ⊃ ❸A A ⋃∅= A ⋂∅=∅ ❹A A ⋃=Ω A A ⋂=∅ ❺A A == -Ω=∅-∅=Ω❻A A A ⋃= A A A = ()A B A A B A -⋃=⋃≠ ❼如果A B ⊃,则A B A ⋃=,A B B ⋂= ❽满足交换律:A B B A ⋃=⋃,AB BA =❾满足结合律:()()A B C A B C ⋃⋃=⋃⋃ ()()A B C A B C= ❶⓿满足分配率:()A B C AB AC ⋃=⋃ ()()()A BC A B B C ⋃=⋃⋃ ❶❶= =二、随机事件的概率:[1]古典概型:设随机事件的样本空间Ω包含有有限个样本点(此模型称为古典概型),则事件A 发生的概率为: #()#A P A E n==Ω有利于事件A 的样本点数m实验的样本空间所含的样本点数 [2]几何定义: 设Ω是n R (n=1、2、3)中任何一个可度量的区域,从Ω中随机的选择一点,即Ω中任何一点都有相同的机会被选到,则相应的随机试验的样本空间就是Ω,假设事件A 是Ω中任何一个可度量的子集,则:()()()A P A μμ=Ω 此式定义的概率称为几何概率,符合上述假定模型的称为几何概型。

[3]统计定义:对一特定的实验,进行多次重复试验,实验的某一结果A ,即随机试验A ,在大量的重复试验中出现的频率的稳定值p 称为A 的概率。

1.2 样本空间、随机事件

1.2 样本空间、随机事件

S
A=B,则称事件 相等。 若 A ⊂ B 且 B ⊃ A ,即 A=B,则称事件 A 与事件 B 相等。
2°事件 A U B = { x | x ∈ A 或 x ∈ B }称为事件 A 与 B 的 ° 中至少有一个发生。 和事件,它指的是事件 A 与事件 B 中至少有一个发生。 事件,它指的是事件
如何来研究随机现象? 如何来研究随机现象 随机现象是通过随机试验来研究的! 随机现象是通过随机试验来研究的! 随机试验来研究的 研究方法?数学方法? 研究方法?数学方法? 将E的结果数量化!---用集合:S={e},A,B… 的结果数量化!---用集合:S={e}, 用集合 引进(随机)变量、函数(概率、分布函数) 引进(随机)变量、函数(概率、分布函数)… 概率论研究的主线? 概率论研究的主线? 1、事件表示:---利用事件间关系、运算表示较复 事件表示:---利用事件间关系、 利用事件间关系 杂事件… 杂事件 计算事件的概率:----利用概率的定义 性质、 利用概率的定义、 2、计算事件的概率:----利用概率的定义、性质、 概率运算公式… 概率运算公式
2. 几点说明
由一个样本点组成的单点集,称为基本事件。 由一个样本点组成的单点集,称为基本事件。 基本事件
S 作为自己的一个子集,在每次试验中必然发生,称为 作为自己的一个子集,在每次试验中必然发生, 必然发生 必然事件; 必然事件; 空集∅ 作为 S 的一个子集,在每次试验中都不会发生,称 的一个子集,在每次试验中都不会发生, 都不会发生 为不可能事件 不可能事件. 事件
子集
事件间关系。。。 随机事件→事件间关系。。。 事件间关系
集合→ 集合→集合间关系运算
定义于集合的函数: 定义于集合的函数:函数

随机事件与样本空间的关系

随机事件与样本空间的关系

随机事件与样本空间的关系在概率论中,随机事件与样本空间是密不可分的概念。

理解二者之间的关系对于概率计算和推理至关重要。

本文将介绍随机事件和样本空间的定义、关系以及在概率计算中的应用。

一、随机事件的概念随机事件是指在一次特定的试验中可能发生或不发生的现象。

它是样本空间中的一个子集。

例如,掷一枚硬币,其试验结果可以是正面朝上(事件A)或反面朝上(事件B)。

在这个例子中,事件A和事件B分别是试验的两个随机事件。

二、样本空间的定义样本空间是指一个随机试验中所有可能结果的集合。

它包含了实验中的每一个可能结果。

以掷一枚硬币为例,样本空间为{正面,反面}。

样本空间可以有有限个元素,也可以是一个无穷集合。

三、随机事件与样本空间的关系随机事件是样本空间的子集。

它们之间的关系可以用包含关系来描述。

具体而言,一个事件A发生意味着试验的结果属于A所对应的样本点集合。

相反,如果试验结果属于事件A,那么事件A就发生了。

四、概率计算中的应用概率计算是研究随机事件发生可能性的重要方法。

随机事件和样本空间的关系在概率计算中起着关键作用。

1. 计算概率概率可以通过事件发生的样本点数量与样本空间中样本点总数的比值来计算。

例如,假设在掷一枚硬币的试验中,事件A表示正面朝上,那么事件A发生的概率为P(A) = |A| / |样本空间|,其中|A|表示事件A中的样本点数量,|样本空间|表示样本空间中的样本点数量。

2. 事件间的运算根据随机事件和样本空间的关系,可以进行并、交、差等运算。

例如,事件A和事件B的并集为A∪B,表示A和B中至少有一个发生的样本点的集合。

交集为A∩B,表示A和B同时发生的样本点的集合。

差集为A-B,表示A发生而B不发生的样本点的集合。

3. 条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率计算中,样本空间会根据已知事件的发生而被限制在一个子集中,从而影响概率的计算。

例如,已知事件A发生的条件下,事件B发生的概率可以表示为P(B|A) = P(A∩B) / P(A),其中P(A∩B)表示事件A和事件B同时发生的概率。

随机事件与样本空间

随机事件与样本空间

问题情境
木柴燃烧,产生热量
明天,地球还会转动
实心铁块丢入水中,铁块浮起
在0 C下,这些雪融化
0
在一定条件下: 必然会发生的事件叫必然事件; 必然不会发生的事件叫不可能事件;
试判断这些事件发生的可能性:
(1)木柴燃烧,产生热量 必然发生 (2)明天,地球仍会转动 必然发生
必然事件
(3)实心铁块丢入水中,铁块浮起 不可能发生 (4)在标准大气压00C以下,雪融化 不可能发生
乙同学
布 剪子 石头
. . . . . . . . .
石头 剪子 布
甲同学
• • • •
练习 写出下列随机试验的样本空间: (1)种下一粒种子,观察种子是否发芽; (2)甲乙两队进行一场比赛,观察甲队的 胜负结果; • (3)从含有15件次品的100件产品中任取5 件,观察其中的次品数。
Ω1={发芽,不发芽} Ω2={胜,负,平} Ω3={0,1,2,3,4,5}
不可能事件
(5)在刚才的图中转动转盘后,指针指向黄色区域
可能发生也可能不发生 (6)两人各买1张彩票,均中奖 可能发生也可能不发生 随机事件
试分析:“从一堆牌中任意抽一张抽到红牌”这一事 件的发生的可能性?
必然发生
必然不会发生
可能发生, 也 可能不发生
三人每次都能摸到红球吗?
思考:
1、样本空间本身表示的事件是必然事件吗? 2、用空集φ表示的事件是不可能事件吗?举例 说明 3、某同学投篮5次,“他投中6次”和“他投 中的次数小于6”分别是什么事件?
你能列举几个随 机现象的例子吗?
二、随机试验
在实际中,一般通过观察试验来研究随机现象.
对随机现象的观察或试验称为随机试验,简称 试验。

样本空间和随机事件的定义

样本空间和随机事件的定义

样本空间和随机事件的定义
样本空间和随机事件是统计学中的常用概念,主要用来表示一种不确
定的结果或者过程。

它们的定义比较特殊,可以概括为以下几个步骤:
#### 一、定义样本空间
样本空间是统计学中表示实验抽样结果集合的概念,可以理解为“实
验集合”,它包含所有可能的实验抽样结果,其中所有元素叫做样本点。

要想定义一个样本空间,需要明确几个要素:样本空间的类型,
即数量上的限制;样本空间元素的表示方式;样本空间元素之间的关系,例如概率。

#### 二、定义随机事件
随机事件是指在某个样本空间里,我们关注的一个特定的实验结果。

它是用来描述一定条件下事件发生的概率。

相对于样本空间,随机事
件一般具有较小的范围,并且只包含满足某一特定条件的样本点。


就是说,随机事件是根据样本空间里的某一部分的元素而进一步定义的。

#### 三、样本空间和随机事件的关系
在定义完样本空间和随机事件之后,我们可以把它们两个之间的关系
总结为一句话:随机事件是样本空间的子集。

也就是说,样本空间是
一个完整的集合,而随机事件是它的一部分。

定义好样本空间和随机
事件之后,可以通过求解概率,来推断未知变量的取值情况,或者预
测某个事件是否会发生。

总之,样本空间和随机事件是统计学中经常使用的概念,它们之间的关系是样本空间是随机事件的父集,而随机事件是样本空间的子集,可以用来描述某个事件发生的概率,决定未知事件发生的可能性。

它们的定义和使用是根据不同的应用场景而有所不同,且有其自身的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A={ 该元件的使用寿命介于1000~2000 小时之间 }
则A是随机事件.
第一节 样本空间与随机事件
22
注意
为方便起见,我们把必然事件 与不可能事件 也看作是随机事 件.
我们把必然事件与不可能事件看 作是随机事件的两种极端情形.
第一节 样本空间与随机事件
23
三.随机事件间的 关系与运算
第一节 样本空间与随机事件
A1 A2 An

An
n 1
表示 “ A1, A2, A3, 这些随机事件至少 有 一个发生”这样一个随机事件.
第一节 样本空间与随机事件
32
并事件的例子
• 在本节例4中,若定义 A={通过的汽车数介于20辆与150辆之间 } B={通过的汽车数介于80辆与300辆之间 }
则: A∪B ={通过的汽车数介于20辆与300辆
第一节 样本空间与随机事件
20
随机事件的例子
• 在本节例4中,我们定义了在某一时间 间隔内观察通过某交通路口的车辆数这 一随机试验的样本空间,若定义 A={ 至少通过50辆汽车 } B={至多通过200辆汽车} 则A、B都是随机事件.
第一节 样本空间与随机事件
21
随机事件的例子
• 在本节例5中,我们定义了观察某一电 子元件使用寿命这一随机试验的样本空 间,若定义为 n 个随机事件,则
A1 A2 An

n
Ak
k 1
表示“ A1, A2, , An 这 n 个随机事件至少 有一个发生”这样一个随机事件.
第一节 样本空间与随机事件
31
可列无穷多个随机事件的并事件
设 A1, A2, A3, 为可列无穷多个随机事 件,则
第一节 样本空间与随机事件
10
例2
掷一枚骰子,令:
ω i出现 i 点
i 1, 2, , 6
则该试验的样本空间为
Ω ω1 , ω2 , ω3 , ω4 , ω5 , ω6
第一节 样本空间与随机事件
11
例3
袋中有2 个白球,4 个黑球,从中任意取出2 球.
记 2个白球分别为1号球和2号球;
• A∩B也可记为 AB.
第一节 样本空间与随机事件
35
多个随机事件的交事件
设 A1, A2, , An 为 n 个随机事件,则
A1 A2 An

n
Ak
k 1
表示“ A1, A2, , An 这 n 个随机事件同时 发生”这样一个随机事件.
第一节 样本空间与随机事件
36
可列无穷多个随机事件的交事件
例如,自然数是可列无穷多个;整数是可列无穷多个;有理 数是可列无穷多个.但是无理数是不可列无穷多个,实数也是 不可列无穷多个.
第一节 样本空间与随机事件
16
二.随机事件
第一节 样本空间与随机事件
17
随机事件
• 定义了样本空间与样本点,我们 可以把随机事件看作是某些样本 点组成的集合.
• 我们称一个随机事件发生当且仅 当它所包含的一个样本点在试验 中出现.
第一节 样本空间与随机事件
52
5.De Morgan定律
A A
A A
第一节 样本空间与随机事件
53
De Morgan公式说明
• 任意多个事件至少有一个发生 的反面是这些事件都不发生;
• 任意多个事件都发生的反面是 这些事件中至少有一个不发 生.
第一节 样本空间与随机事件
54
例6
• 设A、B、C为三个随机事件,试用A、B、C表示下列随机 事件
第一节 样本空间与随机事件
40
互不相容事件的例子
• 在本节例4中,若定义 A={ 至少通过30辆汽车 } B={ 至多通过20辆汽车 }
则A与B为互不相容的随机事件.
第一节 样本空间与随机事件
41
6.差事件
设 A 与 B 是两个随机事件,则 A 与 B 的 差事件 A B表示“随机事件 A 发生,但 是随机事件 B 不发生”这样一个随机事 件.
第一节 样本空间与随机事件
18
随机事件的表示
•我们常用大写的英文字 母 A、B、C、… 等来 表示随机事件.
第一节 样本空间与随机事件
19
随机事件的例子
• 在本节例2中,我们定义了掷一颗骰子这一 随机试验的样本空间,若定义 A={ 出现偶数点 } 则A就是一个随机事件. 事件A发生当且仅当在试验中或者出现2点, 或者出现4点,或者出现6点.
A 的逆事件 A 表示“随机事件 A 不发 生”这样一个随机事件.
第一节 样本空间与随机事件
44
随机事件A与B互为逆事件
若随机事件 A 与 B 满足: A B ,且 A B ,
则称 A 与 B 为互不相容的随机事件. 如果 A 与 B 为互不相容的随机事件,
显然 B A , B A .因此 A A.
第一节 样本空间与随机事件
4
随机试验
•对随机现象的 观察和试验称为 随机试验.
第一节 样本空间与随机事件
5
随机试验的例子
• 掷一枚硬币; • 掷一颗骰子; • 观察某交通路口在某时间间隔内
通过的汽车数; • 观察某电子元件的使用寿命;
•……
第一节 样本空间与随机事件
6
随机试验的特点
• 试验可以在相同条件下重复进行;
第一章
随机事件及其概率
第一节 样本空间与随机事件
1
目录
• §1.1 样本空间与随机事件 • §1.2 频率与概率 • §1.3 古典概型与几何概型 • §1.4 条件概率 • §1.5 随机事件的独立性
第一节 样本空间与随机事件
2
§1.1 样本空间和随机事件
第一节 样本空间与随机事件
3
一.随机试验与样本 空间
第一节 样本空间与随机事件
8
说明
• 由于随机试验的所有结果是明确的, 从而样本点也是明确的;
• 样本空间与随机试验有关,即不同 的随机试验有不同的样本空间;
• 刻画一个随机试验的样本空间是学 好概率论的基础.
第一节 样本空间与随机事件
9
例1
掷一枚硬币,令:
1 出现正面 ,2 出现反面
则该随机试验的样本空间为: 1, 2 .
则: A∩B ={通过的汽车数介于80辆与150辆
之间 }
第一节 样本空间与随机事件
38
5.互不相容事件
若随机事件 A 与 B 满足:
AB
则称随机事件 A 与 B 为互不相容 的随机事件
第一节 样本空间与随机事件
39
注意
如果随机事件 A 与 B 互不相容,则随机 事件 A 与 B 中没有公共的样本点.此时, 若随机事件 A 发生,则随机事件 B 必然不 发生,反之亦然.但是,有可能随机事件 A 与 B 都不发生.
随机事件 A 发生,但随机事件 B 与C 都 不发生:
ABC ;
随机事件 A 、 B 、 C 恰好发生一个: ABC ABC ABC ;
第一节 样本空间与随机事件
55
例6(续)
随机事件 A 、 B 、 C 至少发生一个: ABC ;
随机事件 A 、 B 、 C 至多发生一个: ABC ABC ABC ABC ;
• 试验的所有可能结果是明确可知的, 并且不止一个;
• 每次试验总是恰好出现这些可能结 果中的一个,但在一次试验之前却 不能肯定会出现哪一个结果.
第一节 样本空间与随机事件
7
样本点与样本空间
• 随机试验的每一个可能结果称为样本 点,或为基本事件,样本点常用字母ω 来表示.
• 样本点的全体所成集合称为样本空间, 或称为基本事件空间,通常用字母Ω来 表示.
B 2, 4, 6

A B
第一节 样本空间与随机事件
29
3.并事件
• 设A与B为两个随机事件,则 A∪B
表示A与B这两个随机事件至少有一个发生这 样一个随机事件,称其为随机事件A与B的 并事件. • 随机事件A与B 的并事件是由随机事件A与B 中所有的样本点组成的随机事件.
第一节 样本空间与随机事件
设 A1, A2, A3, 为可列无穷多个随机事 件,则
A1 A2 An

An
n 1
表示 “ A1, A2, A3, 这些随机事件同时 发 生”这样一个随机事件.
第一节 样本空间与随机事件
37
交事件的例子
• 在本节例4中,若定义 A={通过的汽车数介于20辆与150辆之间 } B={通过的汽车数介于80辆与300辆之间 }
24
1.事件的包含关系
• 若随机事件A的所有样本点都包 含在随机事件B中,这时随机事 件A发生必然导致随机事件B发 生,我们称随机事件A包含在随 机事件B中,或者称随机事件B 包含随机事件A,记作:
A B
第一节 样本空间与随机事件
25
事件包含关系的例子
• 在本节例4中,若定义 A={ 至少通过200辆汽车 } B={ 至少通过100辆汽车 } 则: A B
第一节 样本空间与随机事件
45
逆事件的例子
• 在本节例2中,若定义 A={ 出现偶数点 }
则 A 出现奇数点
第一节 样本空间与随机事件
46
逆事件的例子
• 在本节例4中,若定义 A={ 至少通过30辆汽车 }
则 A 至多通过 29 辆车
第一节 样本空间与随机事件
47
四.随机事件的 运算规律
第一节 样本空间与随机事件
令:n 在该时间间隔内通过n 辆车
则该试验的样本空间为
n : n 0, 1, 2, ,
第一节 样本空间与随机事件
相关文档
最新文档