平行线及平行公理 教学设计方案(一)_七年级数学教案
七年级数学上册第6章平面图形的认识一:平行1平行线教学设计新版苏科版

七年级数学上册教学设计新版苏科版:
平行线
[教学目标]
1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其推论的内容;
3.会根据几何语句画图,会用直尺和三角板画平行线;
4.了解平行线在实际生活中的应用,能举例加以说明.
[教学重点与难点]
1.教学重点:平行线的概念与平行公理;
2.教学难点:对平行公理的理解.
[教学过程]
一、复习提问
相交线是如何定义的?
二、新课引入
平面内两条直线的位置关系除相交外,还有哪些呢?
通过演示,引出平面内两条直线的位置关系及平行线的概念.在木条转动过程中,存在一个直线a与直线b不相交的位置,这时直线a与b互相平行,记作a//b.
三、同一平面内两条直线的位置关系
1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.
2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.
3.对平行线概念的理解:
两个关键:一是“在同一个平面内”;
二是“不相交”.
一个前提:对两条直线而言.
四、平行公理
平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
提问垂线的性质,并进行比较.
平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.
五、小结
让学生独立总结本节内容,叙述本节的概念和结论.。
人教版数学七年级下册5.2《平行线》参考教案

5.2.1 平行线教学目标1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论.3.会用符号语方表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线. 重点、难点重点:探索和掌握平行公理及其推论.难点:对平行线本质属性的理解,用几何语言描述图形的性质. 课前准备分别将木条a 、b 与木条c 钉在一起,做成图所示的教具. 教学过程一、创设问题情境1.复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?学生回答后,教师把教具中木条b 与c 重合在一起,转动木条a 确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗? 2.教师演示教具.顺时针转动木条b 两圈,让学生思考:把a 、b 想像成两端可以无限延伸的两条直线,顺时针转动b 时,直线b 与直线a 的交点位置将发生什么变化?在这个过程中, 有没有直线b 与c 木相交的位置?3.教师组织学生交流并形成共识.转动b 时,直线b 与c 的交点从在直线a 上A 点向左边距离A 点很远的点逐步接近A 点,并垂合于A 点,然后交点变为在A 点的右边,逐步远离A 点.继续转动下去,b 与a 的交点就会从A 点的左边又转动A 点的左边……可以想象一定存在一个直线b 的位置,它与直线a 左右两旁都没有交点.cbaC二、平行线定义,表示法1.结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a 与直线b 不相交的位置,这时直线a 与b 互相平行.换言之,同一平面内, 不相交的两条直线叫做平行线. 直线a 与b 是平行线,记作“∥”,这里“∥”是平行符号.教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是没有交点的两条直线.2.同一平面内,两条直线的位置关系教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.三、画图、观察、归纳概括平行公理及平行公理推论 1.在转动教具木条b 的过程中,有几个位置能使b 与a 平行?本问题是学生直觉直线b 绕直线a 外一点B 转动时,有并且只有一个位置使a 与b 平行. 2.用直线和三角尺画平行线. 已知:直线a,点B,点C.(1)过点B 画直线a 的平行线,能画几条?(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗? 3.通过观察画图、归纳平行公理及推论.(1)由学生对照垂线的第一性质说出画图所得的结论. (2)在学生充分交流后,教师板书.平行公理:经过直线外一点,有且只有一条直线与这条直线平行. (3)比较平行公理和垂线的第一条性质.共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外. 4.归纳平行公理推论.(1)学生直观判定过B 点、C 点的a 的平行线b 、c 是互相平行. (2)从直线b 、c 产生的过程说明直线b ∥直线c.c ba。
七年级数学下《平行线及其判定》教案

七年级数学下《平行线及其判定》教案
一、教学目标
1.知识与技能:学生掌握平行线的概念,理解平行线的判定定理,能够应用这些
定理解决一些实际问题。
2.过程与方法:通过观察、实验和推理论证,培养学生的几何思维能力和探究能
力。
3.情感态度与价值观:激发学生对几何的兴趣,培养他们主动探究、合作学习的
精神。
二、教学内容与过程
1.导入:通过实物展示和情境创设,引入平行线的概念,引导学生观察平行线的
特点。
2.知识讲解:详细讲解平行线的判定定理,包括同位角相等、内错角相等、同旁
内角互补等,结合实例进行解释。
3.探究活动:设计探究活动,让学生自己动手操作,观察平行线的判定定理,并
进行小组讨论,总结规律。
4.应用实践:设计实际问题,让学生运用所学知识解决,如判断两条直线是否平
行、计算平行线的距离等。
5.总结与提升:总结平行线的主要知识点,强调重点和难点。
通过综合性题目,
提升学生运用知识解决实际问题的能力。
三、教学方法与手段
1.教学方法:采用启发式、探究式和合作学习的方法,引导学生主动探索和思考。
2.教学手段:利用实物模型、PPT演示、几何画板等辅助教学工具,帮助学生更
好地理解平行线的判定定理。
四、教学评价与反馈
1.课堂互动:通过课堂提问、小组讨论等方式,及时了解学生的学习情况,调整
教学策略。
2.作业评价:布置相关练习题,要求学生按时完成,并进行批改和反馈,帮助学
生巩固所学知识。
3.测试与反馈:组织阶段性测试,检测学生对平行线知识的掌握程度,及时发现
问题并进行针对性辅导。
《5.2.2平行线的判定》教案

课题《5.2.2平行线的判定》教案【教案背景】1、教学对象:七年级学生2、学科:七年级数学下册(新人教版)3、课时:第1课时4、学生情况:目前,虽然我校学生的数学水平参差不齐,数学抽象思维能力较差,在学习本节课时可能会有一定的困难,但是学生的个性活泼,学习积极性高,而且在此之前学生已经学完“三线八角”,初步了解了平行线的概念、平行线的性质及用三角板和直尺画平行线的方法,是具备学好这节课的基础的。
本学期学生初步接触推理证明,逐步养成言之有据的习惯。
【教学课题】数学七年级下册(新人教版)5.2.2平行线的判定,课型:新授课,课时第一节【教学内容分析】"平行线的判定"是第五章相交线与平行线第二节内容,本节内容安排三个课时,这一课时是本节内容的第一课时,在这一课时里,通过让学生观察两条直线被第三条直线所截的模型,想象有转动的过程中存在有相交的情况,从而得出概念及平行公理,那么本课时教学内容的设计意图主要是让学生在观察、想象两条线存在平行关系的基础上,进一步了解两直线平行的有关判定方法。
本课设计的主要思路是通过让学生观察、实践、操作等方式,使学生经历实践、分析、归纳等过程,从而获得相关知识,增强学生数学实践体验。
一、教学目标1.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,培养推理能力和有条理的表达能力。
2.经历探究直线平行的判定方法的过程;掌握直线平行的判定方法,领悟归纳和转化的数学思想。
二、教学重难点教学重点:探索并掌握直线平行的判定方法。
教学难点:直线平行的判定方法的应用。
三、教学方法利用问题情境,让学生在解决问题的过程中复习已有知识,同时这学习新的知识做好准备,在教学中引导学生通过自主探索、合作交流等方式获得新知识、新方法。
在解决问题的过程中多方面尝试,丰富学生的解题策略,教师的适时点拨,精炼概括,使学生的思维逐渐清晰条理,帮助学生积累经验、训练技能。
四、教学过程(一)复习旧知,引入新课1.如图,已知四条直线AB、AC、DE、FG,(1)∠1与∠2是直线_____和直线_____被直线_____所截而成的____角。
人教版初中数学教案(最新6篇)

人教版初中数学教案(最新6篇)平行线的判定教案篇一一、教学目标1、了解推理、证明的格式,理解判定定理的证法。
2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。
3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。
4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。
二、学法引导1、教师教法:启发式引导发现法。
2、学生学法:积极参与、主动发现、发展思维。
三、重点•难点及解决办法(一)重点判定定理的推导和例题的解答。
(二)难点使用符号语言进行推理。
(三)解决办法1、通过教师正确引导,学生积极思维,发现定理,解决重点。
2、通过教师指导,学生自行完成推理过程,解决难点及疑点。
四、课时安排1课时《·》五、教具学具准备三角板、投影仪、自制胶片。
六、师生互动活动设计1、通过设计练习,复习基础,创造情境,引入新课。
2、通过教师指导,学生探索新知,练习巩固,完成新授。
3、通过学生自己总结完成小结。
七、教学步骤(一)明确目标掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力。
(二)整体感知以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。
(三)教学过程创设情境,复习引入师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)。
学生活动:学生口答第1、2题。
师:你能说出有什么条件,就可以判定两条直线平行呢?学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。
教师将第3题图形画在黑板上。
学生活动:学生口答理由,同角的补角相等。
师:要求学生写出符号推理过程,并板书。
【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行。
《平行线》 教案 (公开课)人教版数学

5.2平行线及其判定5.平行线1.了解平行线的概念及平面内两条直线相交或平行的两种位置关系;2.掌握平行公理以及平行公理的推论;(重点、难点)3.会用符号语言表示平行公理推论,会用三角尺和直尺过直线外一点画这条直线的平行线.(重点)一、情境导入数学来源于生活,生活中处处有数学,观察下面的图片,你发现了什么?以上的图片都有两条相互平行的直线,这将是我们这节课学习的内容.二、合作探究探究点一:平行线的概念以下说法中正确的有:________.(1)在同一平面内不相交的两条线段必平行;(2)在同一平面内不相交的两条直线必平行;(3)在同一平面内不平行的两条线段必相交;(4)在同一平面内不平行的两条直线必相交;(5)在同一平面内,两条直线的位置关系有三种:平行、相交和垂直.解析:根据平行线的概念进行判断.线段不相交,延长后不一定不相交,(1)错误;同一平面内,直线只有平行和相交两种位置关系,(2)(4)正确,(5)错误;线段是有长度的,不平行也可以不相交,(3)错误.故答案为(2)(4).方法总结:同一平面内,两条直线的位置关系只有两种:平行和相交.两条线段平行、两条射线平行是指它们所在的直线平行,因此,两条线段不相交不意味着它们所在的直线不相交,也就无法判断它们是否平行.探究点二:过直线外一点画直线的平行线如以下列图,在∠AOB内有一点P.(1)过点P画l1∥OA;(2)过点P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样的关系.解析:用两个三角板,根据“同位角相等,两直线平行〞来画平行线,然后用量角器量一量l1与l2相交的角,该角与∠O的关系为相等或互补.解:(1)(2)如以下列图;(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.易错点拨:注意∠2与∠O是互补关系,解答时容易漏掉.探究点三:平行公理及其推论【类型一】应用平行公理及其推论进行判断有以下四种说法:(1)过直线外一点有且只有一条直线与这条直线平行;(2)同一平面内,过一点能且只能作一条直线与直线垂直;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短;(4)平行于同一条直线的两条直线互相平行.其中正确的个数是() A.1个B.2个C.3个D.4个解析:根据平行公理、垂线的性质进行判断.(1)过直线外一点有且只有一条直线与这条直线平行,正确;(2)同一平面内,过一点能且只能作一条直线与直线垂直,正确;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;(4)平行于同一条直线的两条直线互相平行,正确;正确的有4个.故答案为D.方法总结:平行线公理和垂线的性质两者比较相近,两者区别在于:对于平行线公理中,必须是过直线外一点可以作直线的平行线,但过直线上一点不能作直线的平行线,垂线的性质中,无论点在何处都能作出直线的垂线.【类型二】应用平行公理的推论进行论证四条直线a,b,c,d互不重合,如果a∥b,b∥c,c∥d,那直线a,d的位置关系为________.解析:由于a∥b,b∥c,根据平行公理的推论得到a∥c,而c∥d,所以a∥d.故答案为a∥d.方法总结:平行公理的推论是证明两条直线相互平行的理论依据.【类型三】平行公理推论的实际应用将一张长方形的硬纸片ABCD对折后翻开,折痕为EF,把长方形ABEF平摊在桌面上,另一面CDFE无论怎样改变位置,总有CD∥AB存在,为什么?解析:根据平行公理的推论得出答案即可.解:∵CD∥EF,EF∥AB,∴CD∥AB.方法总结:利用平行公理的推论进行证明时,关键是找到与要证的两边都平行的第三条边进行说明.三、板书设计平行线⎩⎪⎨⎪⎧概念两条直线的位置关系:平行或相交性质⎩⎪⎨⎪⎧平行公理平行公理的推论本节课以学生身边熟悉的事物引入,让学生感受到生活中处处有数学,数学与我们的生活密不可分.经历观察多媒体的演示和通过画图等操作,交流归纳与活动,进一步培养学生的空间想象能力4.5一次函数的应用 第1课时 利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下列图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。
人教版数学七年级下册5-2-1 平行线
5.2.1 平行线教学设计课题 5.2.1 平行线单元第五单元学科初中数学年级七下学习目标1.了解平行线的概念,能说出平行公理以及平行公理的推论;2.能叙述平行线的概念,通过观察实际模型,直观感知并记住基本事实(即平行公理);3.会用符号语言表示平行公理及其推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线;4.通过观察、操作、思考,培养学生学习数学的兴趣.重点了解平行线的概念,能叙述平行公理以及平行公理的推论;难点会用符号语言表示平行公理及其推论;会用三角尺和直尺过已知直线外一点画这条直线的平行线。
教学过程教学环节教师活动学生活动设计意图导入新课【创设情境】在同一平面内,两条直线有怎样的位置关系呢?预设答案:在同一平面内,两条直线的位置关系有相交和不相交两种.追问:你能举出一些生活中两直线不相交的例子吗?教师通过层层提问,引出本节课将要学习的内容. 学生思考并回答学生举例通过现实生活背景,让学生初步感受相交与不相交直线的特殊位置关系,为引出新课的学习埋下伏笔.讲授新课【合作探究】请同学们自主阅读教材11页思考,观看动画,回答问题.阅读思考环节,并观看动画,回答问题学生通过观察、思考,直观了解两直线平行的位置关系-平行,并旋转过程中,直线a与直线b有没有不相交的位置呢?答:存在这时,我们就说直线a与直线b平行.记作:a//b归纳:在同一平面内,两条直线有相交和平行两种位置关系.教师通过动画演示,让学生感受同一平面内两条直线的位置关系,不重合的两条直线位置关系:相交和平行.【总结归纳】在同一平面内,不相交的两条直线叫做平行线.平行线的定义包含三层含义:①“在同一平面内”,是前提条件.②“不相交”,就是没有交点.③平行线指的是“两条直线”,而不是两条射线或线段.【小试牛刀】判断下列说法是否正确:(1)两条不相交的直线叫平行线. ×(2)没有公共点的两条直线是平行线. ×(3)在同一平面内,不相交的两条线段是平行线. ×解析:(1)、(2)忽略了“在同一平面内”这个前提.(3)没有弄清两条线段的平行是指它们所在的直线平行.教师设置抢答环节,学生主动回答问题,巩固对平行线概念的理解.【合作探究】转动木条a的过程中,有几个位置使得直线a与直线b平行?答:有且只有一个通过教师引导,归纳平行线的概念学生思考并抢答问题学生观看动画,并思考举手回答与学生一起归纳总结得到两直线位置关系只有平行和相交.深入理解平行线概念,培养学生抽象概括能力.巩固平行线的概念.引导学生探究同一平面内两直线的平行的情形只有一种.教师演示动画,学生观察、思考,作答.如何过直线外一点,画已知直线的平行线呢?能画几条?教师提出问题,引出过直线外一点,画已知直线平行线的画法.如图,过点B画直线a的平行线,能画出几条?答:有且只有一条让学生分组动手操作,尝试画出过点B的平行线,教师巡视检查,各小组完成情况,对于有困难的学生进行提示,最终讲师在黑板演示画图过程,并总结归纳画平行线的步骤.总结过已知直线外一点画直线的平行线的步骤:①“一重合”:三角板的一边与已知直线重合;②“二靠紧”:把直尺靠紧三角板的另一边;③“三移动”:沿直尺移动三角板,使三角板与直线重合的边过已知点;④“四画线”:沿三角板过已知点的边画直线如图,再过点C画直线a的平行线,能画出几条?答:有且只有一条平行公理:经过直线外一点,有且只有一条直线与这条直线平行.让学生动手操作画过点C的平行线,通过画过点C 与过点B的平行线,让学生感受平行公理,最后教师给出平行公理的文字语言.直线b与直线c平行吗?教师引导让学生观察出直线b、c的平行关系,从而引出平行公理的推论如果两条直线都与第三条直线平行,那么这两条直先分小组操作,并交流派代表发言或展示动手操作,思考回答问题与老师一起总结学生经历动手操作、观察、思考,总结出画平行线的方法.让学生感受知识的形成过程,培养学生严谨的科学态度,锻炼学生自主探究学习的能力,激发学生的学习兴趣.通过动手操作感受平行公理,并得出公理,并将文字语言转化为数学语言即符号语言.线也互相平行.几何语言:如果b//a,c//a,那么b//c.【典型例题】例1:如图,CD∥AB,CE∥AB,试说明C、D、E三点共线.解:因为CD∥AB,CE∥AB所以CD∥CE∥ABCD和CE在同一条直线上.(平行公理)C、D、E三点共线【教学建议】教师适当引导,学生自主完成.【课堂练习】1.在同一平面内,两条直线的位置关系是()A.平行或垂直B.平行或相交C.垂直或相交D.平行、垂直或相交答案:B2.经过一点A画已知直线a的平行线,能画()A.0条B.1条C.2条D.0条或1条答案:D如图所示,AD∥BC,E为AB的中点,(1)过点E作EF∥BC,交CD于点F;(2)EF和AD平行吗?说明理由;(3)用测量法比较DF和CF的大小.解:(1)如图.(2)平行.因为AD∥BC,EF∥BC,所以EF∥AD(平行公理的推论)(3)DF=CF【教学建议】教师给出练习,随时观察学生完成情况并给与指导,根据学生完成情况适当分析讲解.思考并积极回答.自主完成练习通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.进一步巩固本节课的内容. 了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书1.平行线的概念:在同一平面内,不相交的两条直线叫做平行线.2.平行公理及其推论:(1)经过直线外一点,有且只有一条直线与这条直线平行.(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.3.例题讲解。
平行线(定义、平行公理及推论)-人教版七年级数学下册教案
平行线(定义、平行公理及推论)一、定义本文将以人教版七年级数学下册为基础,介绍平行线的定义、平行公理及推论。
在几何学中,平行线是指在同一平面内,永远不会相交的两条直线。
这两条直线被称为平行线。
二、平行公理平行公理是欧几里得几何学中的五大公理之一,也被称为第五公理或者平行公设。
平行公理有多种表述方式,本文采用较为经典的一种表述方式:给定一条直线和一点,可以且只可以在这个平面内,过这个点作与所给直线垂直的直线。
这个公理表达的意思是:如果一条直线L和一点P在同一个平面内,那么可以通过在P点作一条与L线垂直的线,最终得到与L线永远不相交的直线。
这条与L线平行的直线被称为L线的平行线。
三、推论平行公理的一个重要推论是:给定一线段和一个不在这线段上的点,则可以且只可以有一条直线过这个点且与线段平行。
这个推论表达的意思是:如果给定一条线段AB和一个点C(不在AB线段上),那么只能存在一条通过点C且与线段AB平行的直线。
在这个推论中,AB线段被称为给定线段,C点被称为不在线段上的点。
在欧氏几何学中,这个推论又被称作“唯一直线公设”,因为它表达了只能存在一条直线通过点C且与线段平行的事实。
另一个重要的平行线推论是:两条平行线与第三条直线相交,那么对这些相交的线上的对应角相等。
这个推论被称为平行线的性质,并且常被大家用来解决许多几何问题。
另外,还有一个重要结论,即“如果两条直线与第三条直线的相应角相等,则这两条线平行”。
这个结论有时被称为“等角推平行定理”,它是几何中常用的用于证明两条直线平行的方法之一。
总结本文介绍了平行线的定义、平行公理及推论。
平行线是在同一平面内永远不会相交的两条直线。
平行公理表述在同一平面内任意一条直线和一点,可以且只可以作一条经过这个点且与这条直线垂直的直线。
平行公理的一个重要推论是“给定一线段和一个不在这线段上的点,则只有唯一一条直线过这个点且与这条线段平行”。
此外,两条平行线与第三条直线相交,那么对这些相交的线上的对应角相等,这条性质十分重要。
人教版七年级数学教案:5.2平行线及其判定
在今天的课堂中,我尝试了多种教学方法,希望让学生更好地理解和掌握平行线及其判定的知识。首先,通过日常生活中的实例导入新课,我发现同学们对此产生了浓厚的兴趣,这为后续的学习奠定了良好的基础。但在讲授过程中,我也发角、内错角等概念上存在一定的困惑。
此外,在学生小组讨论环节,我注意到有些小组在讨论主题上稍显偏离,没有完全聚焦在平行线的实际应用上。在今后的教学中,我应更加注重引导学生围绕主题展开讨论,提高讨论的针对性和实效性。
在总结回顾环节,我发现同学们对本节课的知识点有了较为全面的掌握,但仍有个别同学存在疑问。为此,我计划在课后进行个别辅导,帮助他们消除困惑,确保每个人都能跟上教学进度。
2.教学难点
a.平行线判定方法的推理过程;
-对于同位角相等、内错角相等、同旁内角互补等判定方法,学生可能难以理解其中的逻辑关系,需要教师通过具体实例和图示进行详细讲解。
b.画平行线的实际操作;
-在实际操作过程中,学生可能会出现画线不准确、方法不熟练等问题,需要教师耐心指导,反复练习,帮助学生掌握正确的方法。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的基本概念、判定方法和在实际中的应用。通过实践活动和小组讨论,我们加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调平行线的判定方法和画法这两个重点。对于难点部分,如同位角、内错角等概念,我会通过图示和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
绥宁县五中七年级数学上册 第5章 相交线与平行线5.2 平行线 1平行线教案 华东师大版
5.2 平行线1.平行线【基本目标】1.了解平行线的概念,理解同一平面内两条直线间的位置关系;2.掌握平行公理及平行线的画法.【教学重点】平行线的概念、画法及平行公理是重点.【教学重点】平行公理及其推论的应用.一、情境导入,激发兴趣我们知道两条直线相交只有一个交点,除相交外,两条直线还存在其它的位置关系吗?看下面的图片(投影):双杆上面的两根横杆、支撑横杆的直杆所在的直线相交吗?游泳池中分隔泳道的线所在的直线相交吗?屏风的折处和边所在的直线相交吗?【教学说明】几何的美感是新课程中使学生能体会到的一个重要方面,所以在讲解平行线时,应有意识加以引导.二、合作探究,探索新知1.平行线的概念(1)根据上面的探究,我们知道,在同一平面内不相交的两条直线叫做平行线.如下图:直线a与直线b互相平行,记作“a∥b”,读作“直线a平行于直线b”.①“同一平面内”是前提,以后我们会知道,在空间即使不相交,可能也不平行;②平行线是“两条直线”的位置关系,两条线段或两条射线平行,就是指它们所在的直线平行;③“不相交”就是说两条直线没有公共点.(2)请同学们观察思考:在同一平面内,两条不重合的直线位置关系有哪几种?小结归纳:在同一平面内,两条不重合的直线位置关系有两种:相交或平行.【教学说明】在此要注意:这里所指的两条直线是指不重合的直线.2.过直线外一点画已知直线的平行线(1) 做一做已知直线a外一点P,那么经过点P可以画多少条直线与已知直线a平行?动手画一画.(2)通过观察和画图,可以体验一个基本事实:经过直线外一点,一条直线与这条直线平行.【教学说明】要掌握过直线外一点作已知直线的平行线,这里必须提醒学生注意到,这个点必须是直线外的一点.(3)如图,已知直线a和直线外两点B、C,请你按照上面的方法分别过B、C两点画直线a的平行线b和c,然后观察直线b和c有什么关系?小结归纳:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即如果b∥a,c∥a,那么b∥c.【教学说明】这里要使用反证法来进行说明,教师要做引导,讲清楚相关的推导过程,使学生理解结论的科学性.三、练习反馈,巩固提高1.如图1所示,与AB平行的棱有条,与AA′平行的棱有条.2.如图2所示,按要求画平行线.(1)过P点画AB的平行线EF;(2)过P点画CD的平行线MN.3.如图3所示,点A,B分别在直线l1,l2上,(1)过点A画到l2的垂线段;(2)过点B画直线l3∥l1.4.下列说法中,错误的有()①若a与c相交,b与c相交,则a与b相交;②若a∥b,b∥c,那么a∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行相交、垂线三种.A.3个 B.2个 C.1个 D.0个5.根据下列要求画图.(1)如图(1)所示,过点A画MN∥BC;(2)如图(2)所示,过点P画PE∥OA,交OB于点E,过点P画PH∥OB,交OA于点H;(3)如图(3)所示,过点C画CE∥DA,与AB交于点E,过点C画CF∥DB,与AB的延长线交于点F.(1)(2)(3)【教学说明】第1题把平面中的平行线与简单的立体图形相结合对学生的学习是有所帮助的.第5题画图要注意看清题目的要求,教师可适当示范画法.【答案】1.3,32.3.4.C5.四、师生互动,课堂小结2.过直线外一点有且只有一条直线与已知直线平行.3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即如果b∥a,c ∥a,那么b∥c.【教学说明】教师引导学生对本节课知识进行总结,加深印象,重点强调“过直线外一点”.对出现的疑惑及时予以解答,使学生更好的掌握本节课知识.完成本课时对应的练习.本节课的重点是平行线的概念和平行公理及其推论.难点在于画平行线、平行公理及其推论的应用.但是,由于平行线是直线,而直线在我们的实际生活中并不存在,所以,我们需要借助同学们的想象力,将线段想象为直线.先通过图片展示让学生感受平行线的形象,然后让学生通过观察思考得出平行线的定义.教师要强调“在同一平面内”这一条件.画平行线时要强调“过直线外一点”.用几何语言进行叙述过程是学生学习的难点,教师可以通过示范引导,逐步让学生养成相应的习惯.《代数式》说课稿一、背景分析:七年级学生的认知水平正处于从感性向理性的过度,思维水平正处于从形象向抽象过渡的转折期、从数学思维方法看,代数式是数学学习的转折点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线及平行公理教学设计方案(一)_七年级数学教案教学建议一、知识结构二、重点、难点分析本节教学的重点是能够根据题目要求画出已知角,教学的难点是类似五角星等基本图形的画法。
熟练掌握角的画法培养学生的画图能力以及进一步学习平面几何图形画法的基础。
画角的方法一般有两种:用量角器画角或用三角板画角。
1.用量角器画角画一个角等于已知角,可以利用量角器量出已知角的度数,再画一个等于这个度数的角。
画两个角的和、差,或一个角的几倍、几分之一,可以利用量角器,量出已知角的度数,计算出它们的和、差、几倍、几分之一,再按照结果所得的度数画角。
2.用三角板画角一特殊角,如30°、45°、60°、90°的角,可以直接利用三角板来画,画其他特殊角,关键在于设法把它写成上述特殊角的和或差,例如,凡是15°的整数倍的角,都可用三角板画出,因为15的角,可以写成60°角与45°角的差,或45°角与30°角的差。
但若写成30°角的一半,则仍不能画出,因为只用三角板,不能二等分角。
能用三角板画出的,只限于上述各种角及其和、差、倍所成的角。
三、教法建议1.本节教学,应鼓励学生动手实践。
在实践中使学生掌握量角器以及三角尺的用法,并初步探索类似五角星的图形的画法。
2.教材里有画五角星的题目,它的本质是等分周角或者说是将圆周n等分,有了作五角星的基础,就可以告诉学生以上这是一类等分圆周的问题,如果将周角进行n等分,就可以将圆周n等分,连结这n个等分点,就可以得到正多边形。
这种举一反三的思路会引导学生深入、广泛地学习知识和应用知识。
3.本节可以选择一些与实际生活紧密结合的问题,在解决应用性问题的过程中,丰富学生的认识,同时将本章的知识贯穿起来,既有利于学生知识结构的完善,也有助于学生的画图能力以及应用意识的培养。
教学设计示例一、素质教育目标(一)知识教学点1.理解画两个角的差,一个角的几倍、几分之一的方法。
2.掌握用量角器画两个角的和差,一个角的几倍、几分之一的画法。
用三角板画一些特殊角的画法。
(二)能力训练点通过画角的和、差、倍、分,三角板和量角器的使用,培养学生动手能力和操作技巧。
(三)德育渗透点通过利用三角板画特殊角的方法,说明几何知识常用来解决实际问题,进行几何学在生产、生活中起着重要作用的教育,鼓励他们努力学习。
(四)美育渗透点通过学生动手操作,使学生体会到简单几何图形组合的多样性,领会几何图形美。
二、学法引导1.教师教法:尝试指导,以学生操作为主。
2.学生学法:在教师的指导下,积极动手参与,认真思考领会归纳。
三、重点·难点·疑点及解决办法(一)重点用量角器画角的和、差、倍、分及用三角板画特殊角。
(二)难点准确使用量角器画一个角的几分之一。
(三)疑点量角器的正确使用。
(四)解决办法通过正确指导,规范操作,使学生掌握画法要领,并以练习加以巩固,从而解决重难点及疑点。
四、课时安排1课时五、教具学具准备一副三角板、量角器。
六、师生互动活动设计1.通过教师设,学生动手及思考创设出情境,引出课题。
2.通过学生尝试解决、教师把握几何语言美的方法,放手由学生自己解决有关角的画法。
3.通过提问的形式完成小结。
七、教学步骤(一)明确目标使学生会用量角器画角及角的和、差、倍、分,培养学生动手能力和操作能力。
(二)整体感知通过教师指导,学生动手操作完成对画图能力和操作能力的掌握。
图1(三)教学过程创设情境,引出课题教师在黑板上画出(如图1).师:现有工具量角器和三角板,谁到黑板上画一个角等于呢?请同学们观察他的操作,老师要找同学说明他的画法。
【教法说明】有上节课的基础,学生会先用量角器测量的度数,再画一个度数等于这个度数的角,学生也会叙述其画法。
提出问题:若老师想画的余角、补角呢?学生会想到画、减去的度数后的角,即为的余角、补角。
师:是否还有别的方法?这时学生一定会积极思考,立刻回答还有困难。
教师抓住时机点明课题:同学们不用着急,今天我们就研究角的画法,学习用三角板、量角器画角的和、差、倍、分以及一些特殊角。
老师提出的问题你们会解决的。
另外,角的画法在我们日常生活中应用广泛,希望同学们认真学习。
(板书课题……)[板书] 1.7 角的画法探究新知1.画一个角等于已知角找学生再次叙述方法:用量角器量出已知角的度数,再画一个等于这个度数的角。
操作:略。
注意:量角器使用三要素:对中、重合、读数。
2.用三角板画特殊角师:请同学们准备好练习本和一副三角板,再找同学说出一副三角板中各角度数。
学生活动:用三角板在练习本上画出直角、角、角、角。
提出问题:你能利用一副三角板画出、的角吗?学生活动:讨论画、的角的方法,在练习本上画出图形,同桌可相互交换检查,找学生到黑板上画。
【教法说明】有前一节角的和、差的理解和、、角的画法,学生对画、的角不会有困难。
因此,教师要敢于放手,让学生自己去尝试解决问题的方法,也培养他们的动手操作的能力,但对于画法学生不会叙述得太严密,教师要把关,培养学生几何语言的严密性。
教师根据前面学生所画图形,引导学生写出画法。
(以角的画法为例,与例题相符。
)图1画法如图l,①利用三角板,画②在的外部,再画就是要画的的角。
反馈练习:用三角板画、、的角。
【教法说明】由学生独立完成以上三个角的画图。
教师不给任何提示,只要求写出画角的方法,注意观察画法,是否写出了”在角的内部画的角”.区别例题中两角和的画法。
提出问题:由一副三角板可以画出多少度的角?学生讨论得出可以画出、、、、、、、、、、、的角。
这些角都是的倍数,用三角板也只限画这样的角。
由此得出:由量角器画任意角的和、差、倍、分角。
3.画任意两个角的和差及一个角的几倍、几分之一。
问题:如图1,已知、(),如何画出与的和?与的差?图1学生活动:讨论画, 的方法,并在练习本上根据自己的想法画图。
根据学生的讨论回答,老师归纳以下方法:(1)用量角器量出、的度数,计算出它们度数的和、差,再用量角器画出等于它们度数和、差的角。
(2)用量角器把移到上,如果本方法。
图1教师示范,写出两种画法:画法一:(1)用量角器量得, .(2)画, 就是要画的角如图1.图2画法二:(1)用量角器画.(2)以点为顶点,射为一边,在的外部画 .就是要画的角如图2.学生活动:叙述用两种方法画的画法。
出示例1由学生完成,要求用两种方法,找同学板演。
例1 已知,画出它们的余角。
画法一:(1)量得.图1图2(2)画, 就是所要画的角,见图1.画法二:利用三角板,以的顶点为顶点,一边为边,画直角,使的另一边在直角的内部,如图2, 就是所要画的角。
【教法说明】第二种画法学生可能叙述或书写不太完整,教师要注意其严密性。
反馈练习1.已知,画出它的补角。
2.已知,画它们的角平分线。
3.画的角,并把它分成三等份。
【教法说明】本练习只要求图形正确即可,不要求写出画法。
(四)总结、扩展以提问的形式归纳出以下知识脉络:八、布置作业课本第46页习题1.5A组第2、3题。
图1作业答案2.角:3.角:即为所画角,见图1.九、板书设计1.7角的画法1.画一个角等于已知角画法___________________________________________________________________________2.用三角板画特殊角用三角板画角的画法3.画任意两个角的和、差及一个角的几倍、几分之一如图已知、画,画法一:___________________________________画法二:___________________________________例1 已知画出它的余角画法一:____________________________________画法二:__________________________________第1课 5.1二元一次方程组(1)教学目的1、使学生二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
2、使学生了解二元一次方程、二元一次方程组的解的含义,会检验一对数是不是它们的解。
3、通过和一元一次方程的比较,加强学生的类比的思想方法。
通过“引例”的学习,使学生认识数学是根据实际的需要而产生发展的观点。
教学分析重点:(1)使学生认识到一对数必须同时满足两个二元一次方程,才是相应的二元一次方程组的解。
(2)掌握检验一对数是否是某个二元一次方程的解的书写格式。
难点:理解二元一次方程组的解的含义。
突破:启发学生理解概念。
教学过程()一、复习1、是什么方程?是什么一元一次方程?一元一次方程的标准形式是什么?它的解如何表达?如何检验x=3是不是方程5x+3(9-x)=33的解?2、列方程解应用题:香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了9千克,付款33元。
香蕉和苹果各买了多少千克?(先要求学生按以前的常规方法解,即设一个未知数,表示出另一个未知数,再列出方程。
)既然求两种水果各买多少?那么能不能设两个未知数呢?学生尝试设两个未知数,设买香蕉x千克,买苹果y千克,列出下列两个方程:x+y=95x+3y=33这里x与y必须满足这两个方程,那么又该如何表达呢?数学里大括号表示“不仅……而且……”,因此用大括号把两个方程联立起来:这又成了什么呢?里面的是不是一元一次方程呢?这就是我们今天要学习的内容。
板书课题。
二、新授1、有关概念(1)给出二元一次方程的概念观察上面两个方程的特点,未知数的个数是多少,含未知数项的次数是多少?你能根据一元一次方程的定义给出新方程的定义吗?教师给出定义(见P5)。
结合定义对“元”与“次”作进一步的解释:“元”与“未知数”相通,几个元就是指几个未知数,“次”指未知数的最高次数。
二元一次方程和一元一次方程都是整式方程,只有整式方程才能说几元几次方程。
(2)给出二元一次方程组的定义。
(见P5)式子:表示一个二元一次方程组,它由方程①、②构成。
当某两个未知数相同的二元一次方程组成一个二元一次方程组时应加上大括号。
(3)给出二元一次方程组的解的定义及表示法。
三、练习P6练习:1,2。
四、小结1、什么是二元一次方程?什么是二元一次方程组?2、什么是二元一次方程组的解?如何检验一对数是不是某个方程组的解五、作业1、P 5.1 A:1(3、4),3,4。
教学建议一、知识结构二、重点、难点分析本节教学的重点是利用公式(x+a)(x+b)=x2+(a+b)x+ab熟练地计算.难点是理解并掌握公式.本节内容是进一步学习乘法公式及后续知识的基础.1.多项式乘法法则,是多次运用单项式与多项式相乘的法则得到的.计算时,先把看成一个单项式,是一个多项式,运用单项式与多项式相乘的法则,得到然后再次运用单项式与多项式相乘的法则,得到:2.含有一个相同字母的两个一次二项式相乘,得到的积是同一字母的二次三项式,它的二次项由两个因式中的一次项相乘得到;积的一次项是由两个因式中的常数基分别乘以两个因式中的一次项后,合并同类项得到;积的常数项等于两个因式中常数项的积.如果因式中一次项的系数都是1,那么积的二次项系数也是1,积的一次项系数等于两个因式中的常数项的和,这就是说,如果用、分别表示一个含有系数是1的相同字母的两个一次二项式中的常数项,则有3.在进行两个多项式相乘、直接写出结果时,注意不要“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多基同甘共苦的积.如积的项数应是,即六项:当然,如有同类项则应合并,得出最简结果.4.运用多项式乘法法则时,必须做到不重不漏,为此,相乘时,要按一定的顺序进行.例如,,可先用第一个多项式中的第一项“ ”分别与第二个多项式的每一项相乘,再用第一个多项式中的第二项“ ”分别与第二个多项式的每一项相乘,然后把所得的积相加,即.5.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.6.注意确定积中每一项的符号,多项式中每一项都包含它前面的符号,“同号得正,异号得负”.三、教法建议教学时,应注意以下几点:(1)要防止两个多项式相乘,直接写出结果时“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多项式项数的积.如,积的项数应是,即四项当然,如有同类项,则应合并同类项,得出最简结果.(2)要不失时机地指出:多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号.(3)例2的第(1)小题是乘法的平方差公式,例2的第(2)小题是两数和的完全平方公式.实际上任何乘法公式都是直接用多项式乘法计算出来的.然后,我们把这种特殊形式的乘法连同它的结果作为公式.这里只是为后面学习乘法公式作准备,不必提它们是乘法公式,分散学生的注意力.当然,在讲解这个1题时,要讲清它们在合并同类项前的项数.(4)例3是另一种形式的多项式的乘法,要讲清楚两个因式的特点,积与两个因式的关系.总之,要讲清楚这种特殊形式的两个多项式相乘的规律,使学生在计算这种类型的题目时,能够迅速地求得结果.如对于练习第1题中的,等等,能够直接写出结果.教学设计示例一、教学目标1.理解和掌握单项式与多项式乘法法则及其推导过程.2.熟练运用法则进行单项式与多项式的乘法计算.3.通过用文字概括法则,提高学生数学表达能力.4.通过反馈练习,培养学生计算能力和综合运用知识的能力.5.渗透公式恒等变形的和谐美、简洁美.二、学法引导1.教学方法:讨论法、讲练结合法.2.学生学法:本节主要学习了多项式的乘法法则和一个特殊的二项式乘法公式,在学习时应注意分析和比较这一法则和公式的关系,事实上它们是一般与特殊的关系.当遇到多项式乘法时,首先要看它是不是的形式,若是则可以用公式直接写出结果,若不是再应用法则计算.三、重点、难点及解决办法(一)重点多项式乘法法则.(二)难点利用单项式与多项式相乘的法则推导本节法则.(三)解决办法在用面积法推导多项式与多项式乘法法则过程中,应让学生充分理解多项式乘法法则的几何意义,这样既便于学生理解记忆公式,又能让学生在解题过程中准确地使用.四、课时安排一课时.五、教具学具准备投影仪或电脑、自制胶片、长方形演示纸板.六、师生互动活动设计1.设计一组练习,以检查学生单项式乘以多项式的掌握情况.2.尝试从多角度理解多项式与多项式乘法:(1)把看成一单项式时,.(2)把看成一单项式时,.(3)利用面积法3.在理解上述过程的基础之上,引导学生归纳并指出多项式乘法的规律.4.通过举例,教师的示范,学生的尝试练习,不断巩固新学的知识.对于遇到的特殊二项式相乘可利用特殊的公式加以解决,并注意一般与特殊的关系.七、教学步骤(一)明确目标本节课将学习多项式与多项式相乘的乘法法则及其特殊形式的公式的应用.(二)整体感知多项式与多项式的相乘关键在于展开式中的四项是如何得到的,这里教师应注重引导学生细心观察、品味法则的规律性,实质就在于让一个多项式的每一项与另一个多项式的每一项遍乘既不能漏又不能重复.对特殊的多项式相乘可运用特殊的办法去处理(三)教学过程()1.创设情境,复习导入(1)回忆单项式与多项式的乘法法则.(2)计算:①②③④学生活动:学生在练习本上完成,然后回答结果.【教法说明】多项式乘法是以单项式乘法和单项式与多项式相乘为基础的,通过复习引起学生回忆,为本节学习提供铺垫和思想基础.2.探索新知,讲授新课今天,我们在以前学习的基础上,学习多项式的乘法.多项式的乘法就是形如的计算.这里都表示单项式,因此表示多项式相乘,那么如何对进行计算呢?若把看成一个单项式,能否利用单项式与多项式相乘的法则计算呢?请同桌同学互相讨论,并试着进行计算.学生活动:同桌讨论,并试着计算(教师适当引导),学生回答结论.【教法说明】多项式乘法法则,是两次运用单项式与多项式相乘的法则得到的.这里的关键在于让学生理解,将看成一个单项式,然后运用单项式与多项式相乘的法则进行计算,让学生讨论并试着计算,目的是培养学生分析问题、解决问题的能力,鼓励学生积极探索知识、善于发现规律、主动参与学习.3.总结规律,揭示法则对于的计算过程可以表示为:教师引导学生用文字表述多项式乘法法则:多项式与多项式相乘,先用一个多项式的第一项乘另一个多项式的每一项,再把所得的积相加.如计算:看成公式中的;-1看成公式中的;看成公式中的;3看成公式中的.运用法则中的每一项分别去乘中的每一项,计算可得:.学生活动:在教师引导下细心观察、品味法则.【教法说明】借助算式图,指出的得出过程,实质就是用一个多项式的“每一项”乘另一个多项式的“每一项”,再把所得积相加的过程.可以达到两个目的:一是直观揭示法则,有利于学生理解;二是防止学生出现运用法则进行计算时“漏项”的错误,强调法则,加深理解,同时明确多项式是单项式的和,每一项都包括前面的符号.这个法则还可利用一个图形明显地表示出来.(1)这个长方形的面积用代数式表示为_____________.(2)Ⅰ的面积为________;Ⅱ的面积为________;Ⅲ的面积为________;Ⅳ的面积为_______.结论:即.学生活动:随着教师的演示,边思考,边回答问题.【教法说明】利用图形的直观性,使学生进一步理解、掌握这一法则,渗透数形结合的思想,培养学生观察、分析图形的能力.4.运用知识,尝试解题例1 计算:(1)(2)(3)解:(1)原式(2)原式(3)原式【教法说明】例1的目的是熟悉、理解法则.完成例1时,要求学生紧扣法则,按法则的文字叙发“一步步”解题,注意最后要合并同类项.让学生参与例题的解答,旨在强化学生的参与意识,使其主动思考.例2 计算:(1)(2)学生活动:在教师引导下,说出解题过程.解:(1)原式(2)原式【教法说明】例2的两个小题是后面要讲到的乘法公式,但目前仍按多项式乘法法则计算,无需说明它们是乘法公式,此题的目的在于为后面的学习做准备.5.强化训练,巩固知识(1)计算:①②③④⑤⑥(2)计算:①②③④⑤⑥⑦⑧学生活动:学生在练习本上完成.【教法说明】本组练习的目的是:①使学生进一步理解法则,熟练运用法则进行计算.②训练学生计算的准确性,培养计算能力.③对乘法公式先有一个模糊印象,为以后的学习打下基础.(四)总结、扩展这节课我们学习了多项式乘法法则,请同学们回答问题:1.叙述多项式乘法法则.2.谈谈这节课你的学习体会.学生活动:学生分别回答上述问题.【教法说明】通过让学生自己谈学习体会,既可以达到总结归纳本节知识的目的,形成完整印象,又可以提高学生的总结概括能力.八、布置作业P120 A组1.(1)(3)(5)(7),2.(2)(3),3.(1)(3)(8).参考答案1.(1)原式(3)原式(5)原式(7)原式2.(2)原式(3)原式3.(1)原式(3)原式(8)原式教学建议一、知识结构二、重点、难点分析角的定义既是本节教学的重点,也是难点.本节知识建立在射线、线段等相关知识的基础上,同时也是进一步学习角的度量、比较、画法,以及深入研究平面几何图形的基础.1.角的定义是由实际生活中具有角的形象的物体抽象出来的,理解角的定义一定要明确角的边为射线,角为平面内的点集.角也可认为是一条射线绕它的端点从一个位置旋转到另一个位置而形成的图形,这里的线动成角体现了运动变化的思想.2.角的表示法,小学没有介绍,这里首先说明用三个字母记角.对此,要特别强调表示顶点的字母一定要写在中间,唯有在顶点处只有一个角的情况,才可只用顶点一个字母来记这个角,否则分不清这个字母究竟表示哪一个角.在讲往数字或希腊字母来记角时,可再让学生作些练习,说出所记的角怎样用三个字母来表示.三、教法建议1.本节教学可以在简单复习直线、射线、线段的基础上引入,将问题的研究方向转向这些最基本的几何图形与点结合以及互相结合能够组成什么图形.可以尝试让同学们摆火柴,重点应在具有角的形象的图形,然后可以在列举、观察、分析学习、生活、生产中同样具有角的形象的物体的基础上,让同学们尝试给出角的定义.2.关于角的另一种定义,也可以通过实物演示的方式得出,冽如一手扯住线的一端,另一手拉住线的另一端旋转.重点应是对运动变化的观点的渗透.平角和周角也可以让学生给出,真正理解“平”与“直”的含义.3.教学过程()中可以给出一些判别给定图形是不是角的练习,帮助学生理解角的相关概念.同时将角的知识与学生的生活实践紧密的结合起来.可以充分发挥多媒体教学的优势,结合图片、动画、课件辅助教学.教学设计示例一、素质教育目标(一)知识教学点1.理解角、周角、平角及角的顶点、角的边等概念.2.掌握角的表示方法.(二)能力训练点1.通过由学生观察实物图形抽象出角的定义,培养学生的抽象概括能力.通过学生独立阅读总结角的几种表示方法,培养学生的阅读理解能力.2.通过角的两个定义的得出,培养学生多角度分析考虑问题的能力.(三)德育渗透点1.通过日常生活中具体的角的形象概括出角的定义,说明几何来源于生活,又反过来为生产、生活服务.鼓励学生努力学好文化知识,为社会做贡献.2.通过旋转观点定义角,说明事物是不断变化和相互转化的,我们不能用一成不变的观点去看待某些事物.(四)美育渗透点通过学习角使学生体会几何图形的对称美和动态美,培养学生的审美意识,提高学生对几何的学习兴趣.二、学法引导1.教师教法:引导发现,尝试指导与阅读理解相结合.2.学生学法:主动发现,自我理解与阅读法相结合.三、重点·难点·疑点及解决办法(一)重点角的概念及角的表示方法.(二)难点周角、平角概念的理解.(三)疑点平角与直线、周角与射线的区别.(四)解决办法通过演示法使学生正确理解平角、周角的概念,适当加以解释,简明扼要,条理清楚即可,不必做过多的解释.四、课时安排1课时五、教具学具准备投影仪(电脑、实物投影)、三角板、圆规、自制胶片.六、师生互动活动设计1.教师创设情境,学生进入.2.教师步步设问,提出问题,学生在回答问题、自己画图、观察图形的过程中掌握角的静态定义.3.教师指导,学生阅读、归纳四种表示角的方法.4.教师用电脑直观演示展示角的旋转定义.5.反馈练习.6.师生讨论总结.7.测试.七、教学步骤(一)明确目标使学生能正确认识角的两种定义及相关概念,掌握角的表示方法,正确理解平角、周角的概念,并能从图形上进行识别.(二)整体感知以现代化教学为手段,调动学生主动参与的积极性,使学生在动手过程中自觉地掌握知识点.(三)教学过程()。