新教材 人教B版高中数学必修第二册 第五章 统计与概率 知识点考点及解题方法提炼汇总

合集下载

新教材高中数学第五章统计与概率:样本空间与事件ppt课件新人教B版必修第二册

新教材高中数学第五章统计与概率:样本空间与事件ppt课件新人教B版必修第二册
• (2)在例2(2)的条件下,“xy是偶数”这一事件是必然事件吗?
• (2)同时转动如图所示的两个转盘,记转盘甲得到的数为x,转 盘乙得到的数为y,结果为(x,y).
• ①写出这个试验的样本空间; • ②求这个试验的样本点的总数; • ③“x+y=5”这一事件包含哪几个样本点?“x<3,且y>1”
呢? • ④“xy=4”这一事件包含哪几个样本点?“x=y”呢? • [分析] 解答本题要根据日常生活的经验,有条不紊地逐个列
知识点 三
随机事件
• (1)不可能事件:在同样的条件下重复进行试验时,始终 不__会__发_生_______的结果.
• (2)必然事件:在同样的条件下重复进行试验时,每次试验中 一__定_会__发__生_______的结果.
• (生3),随也机可事能件不:发在生__的同__结样_的_果_.___条件下重复进行试验时,可能发
在没得到结果之前,并不知道会是正面向上还是反面向上,故 C是随机事件.在标准大气压下,只有温度达到100 ℃,水才 会沸腾,当温度是60 ℃时,水是绝对不会沸腾的,故D是不 可能事件.故选C.
题型 二
样本点与样本空间
典例剖析
• 典例 2 (1)一个家庭有两个小孩,则样本空间Ω是 ( C ) • A.{(男,女),(Байду номын сангаас,男),(女,女)} • B.{(男,女),(女,男)} • C.{(男,男),(男,女),(女,男),(女,女)} • D.{(男,男),(女,女)}
出所要求的结果.
• [解析] (1)两个小孩有男、女之分,所以(男,女)与(女,男) 是不同的基本事件.故选C.
• (2)①Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3), (2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3), (4,4)}.

新教材高中数学第五章统计与概率:事件之间的关系与运算ppt课件新人教B版必修第二册

新教材高中数学第五章统计与概率:事件之间的关系与运算ppt课件新人教B版必修第二册
第五章 统计与概率
5.3 概率
5.3.2 事件之间的关系与运算
素养目标·定方向 必备知识·探新知 关键能力·攻重难 课堂检测·固双基 素养作业·提技能
素养目标·定方向
课程标准
学法解读
1.了解事件的包含与相等的含义及概率关系.
2.理解事件和(并)、积(交)运算的含义及其概 通过本节课的学习,
率关系.
• [解析] (1)是互斥事件,不是对立事件.
• 理由是:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽 出黑桃”是不可能同时发生的,所以是互斥事件.同时,不能 保证其中必有一个发生,这是由于还可能抽出“方块”或者 “梅花”,因此,二者不是对立事件.
• (2)既是互斥事件,又是对立事件.
• 理由是:从40张扑克牌中,任意抽取1张,“抽出红色牌”与 “抽出黑色牌”,两个事件不可能同时发生,但其中必有一个 发生,所以它们既是互斥事件,又是对立事件.
• (1)请列举出符合包含关系、相等关系的事件;
• (2)利用和事件的定义,判断上述哪些事件是和事件.
• [解析] (1)因为事件C1,C2,C3,C4发生,则事件D3必发生, 所以C1⊆D3,C2⊆D3,C3⊆D3,C4⊆D3.
• 同理可得,事件E包含事件C1,C2,C3,C4,C5,C6,D1, D2,D3,F,G;事件D2包含事件C4,C5,C6;事件F包含事 件C2,C4,C6;事件G包含事件C1,C3,C5.
• 事件A与事件B的积可以用如图中的阴影部分表示.
• 思考:“A∩B=∅”的含义是什么? • 提示:在一次试验中,事件A、B不可能同时发生.
知识点 三
事件的互斥与对立
给定事件 A,B,若事件 A 与 B___不__能__同__时___发生,则称 A 与 B 互斥,

人教B版高中数学必修第二册教学课件:第五章5.4统计与概率的应用

人教B版高中数学必修第二册教学课件:第五章5.4统计与概率的应用

员工 项目 子女教育 继续教育 大病医疗 住房贷款利息 住房租金 供养老人
A
B
C
D
E
F


×

×

×
×

×


×
×
×

×
×


×
×


×
×

×
×
×


×
×
×

【解题提示】 (1)按比例分配进行分层抽样。 (2)按照字典排序法列举出所有的抽取结果和事件M的所有基本 事件,然后利用基本事件个数计算概率。
6
6
(3)设第1组抽取的2人为A1,A2,第3组抽取的3人为B1,B2,B3,第4组抽取的1人为C,则从这6人
中随机抽取2人有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C),(A2,B1),(A2,
B2),(A2,B3),(A2,C),(B1,B2),(B1,B3),(B1,C),(B2,B3),(B2,C),(B3,
估算,其p%分位数即为频率分布直方图中使左侧小矩形面积之和等于p%的分点值. ②某校100名学生的数学测试成绩的频率分布直方图如图:
由此可估计其80%分位数.
首先求分数在130以下的学生所占比例为5%+18%+30%+22% =75%.在140以下的学生所占比例为75%+15%=90%.
因此,80%分位数一定位于[130,140)内,
织了一场PK赛,A,B两队各由4名选手组成,每局两队各派一名选手PK,比赛四局.除第三局胜者
得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛A队选手获胜的概率均为 2 ,

第五章统计与概率知识点总结清单-高一上学期数学人教B版

第五章统计与概率知识点总结清单-高一上学期数学人教B版

新教材人教B版2019版数学必修第二册第五章知识点清单目录第五章统计与概率5. 1统计5. 1. 1 数据的收集5. 1. 2 数据的数字特征5. 1. 3 数据的直观表示5. 1. 4用样本估计总体5. 2数学探究活动:由编号样本估计总数及其模拟5. 3概率5. 3. 1样本空间与事件5. 3. 2事件之间的关系与运算5. 3. 3古典概型5. 3. 4频率与概率5. 3. 5随机事件的独立性5. 4统计与概率的应用5. 1统计5. 1. 1 数据的收集一、普查(全面调查)与抽样调查1. 统计的相关概念2. 普查(全面调查)与抽样调查二、简单随机抽样1. 简单随机抽样的定义一般地,简单随机抽样(也称为纯随机抽样)就是从总体中不加任何分组、划类、排队等,完全随机地抽取个体. 当总体中的个体之间差异程度较小和总体中个体数目较少时,通常采用这种方法.2. 常见的简单随机抽样方法(1)抽签法用抽签法从个体个数为N的总体中抽取一个容量为k的样本的步骤:①将总体中的N(N为正整数)个个体依次编号;②把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签③将这些小纸片放在一个不透明的盒里,充分搅拌;④从盒中随机抽取k个号签,使与号签上的编号对应的个体进入样本.(2)随机数表法①将总体中的N(N为正整数)个个体依次编号(所有个体编号的位数要一致);②在随机数表中任意指定一个开始选取的位置;③从选定的数开始按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则剔除,如此继续下去,直到产生的不同编号个数等于样本所需的个体数.三、分层抽样1. 分层抽样的定义一般地,如果相对于要考察的问题来说,总体可以分成有明显差别的、互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称为分层抽样).2. 分层抽样的步骤(1)分层:按某种特征将总体分成若干层;(2)计算抽样比:抽样比=样本容量;总体中的个体数(3)定数:按抽样比确定每层应抽取的个体数;(4)抽样:各层分别按简单随机抽样的方法抽取样本;(5)成样:综合各层抽取的样本,组成最终的样本.四、抽样方法的选取1. 简单随机抽样与分层抽样的比较2. 抽样方法的选取(1)看总体是否由差异明显的几个部分组成,若是,则选用分层抽样;否则,考虑用简单随机抽样.(2)看总体容量和样本容量的大小,当总体容量较小时,采用抽签法;当总体容量较大时,采用随机数表法.5. 1. 2 数据的数字特征一、数据的数字特征1. 最值:一组数据的最值指的是其中的最大值与最小值,最值反映的是这组数最极端的情况. 一般地,最大值用max 表示,最小值用min 表示.2. 平均数(1)如果给定的一组数是x 1,x 2,…,x n ,则这组数的平均数为x =1n (x 1+x 2+…+x n ),简记为x =1n∑x i n i=1(2)求和符号∑的性质:①∑ n i=1(x i +y i )= ∑ n i=1x i +∑ ni=1y i ; ②∑ n i=1(kx i )=k ∑x i ni=1③∑ n i=1t=nt.(3)若x 1,x 2,…,x n 的平均数为x ,且a ,b 为常数,则ax 1+b ,ax 2+b ,…,ax n +b 的平均数为a x +b.3. 中位数:如果一组数有奇数个数,且按照从小到大排列后为x 1,x 2,…,x 2n+1,则称x n+1为这组数的中位数;如果一组数有偶数个数,且按照从小到大排列后为x 1,x 2,…,x 2n ,则称x n +x n+12为这组数的中位数.4. 百分位数(1)一组数的p%(p∈(0,100))分位数指的是满足下列条件的一个数值:至少有p%的数据不大于该值,且至少有(100-p)%的数据不小于该值.(2)求p%分位数的步骤:①将数据按照从小到大排列(假设排列后的数据为x 1,x 2,…,x n ); ②计算i=np%的值;③如果i 不是整数,设i 0为大于i 的最小整数,取x i 0为p%分位数;如果i 是整数,取x i +x i+12为p%分位数.规定:0分位数是x1(即最小值),100%分位数是x n(即最大值).(3)常用的百分位数:25%分位数(第一四分位数),50%分位数(中位数),75%分位数(第三四分位数).5. 众数:一组数据中,出现次数最多的数据.6. 极差:一组数的最大值减去最小值所得的差.7. 方差与标准差∑n i=1(x i-x)2. 方差的算术平方根(1)如果x1,x2,…,x n的平均数为x,则方差为s2=1n称为标准差.(2)若x1,x2,…,x n的方差为s2,则ax1,ax2,…,ax n的方差为a2s2,x1+a,x2+a,…, x n+a的方差为s2.二、对数据的数字特征的理解5. 1. 3 数据的直观表示一、柱形图(条形图)、折线图与扇形图二、茎叶图1. 一般来说,茎叶图中,所有的茎都竖直排列,而叶沿水平方向排列. 若数据是两位数,则茎上的数字表示十位上的数字,叶上的数字表示个位上的数字. 茎叶图也可以只表示一组数.2. 用茎叶图表示数据的优缺点(1)优点:①从茎叶图上可以看出所有的原始数据及数据的分布情况;②茎叶图可以在收集完数据后描述,也可以在收集数据的过程中描述,即一边收集数据,一边记录.(2)缺点:①茎叶图只便于表示比较集中的数据;②茎叶图只方便比较两组数据.三、频数分布直方图与频率分布直方图1. 绘制频数分布直方图、频率分布直方图的步骤(1)找出最值,计算极差.(2)合理分组,确定区间(组距):①若极差组距为整数,则极差组距=组数;②若极差组距不为整数,则[极差组距]+1=组数([x]表示不大于x的最大整数).(3)整理数据(可以将频数与频率列表).(4)作出有关图示:①频数分布直方图的纵坐标是频数,每一组数对应的矩形高度与频数成正比;②频率分布直方图的纵坐标是频率组距,每一组数对应的矩形高度与频率成正比,且每个矩形的面积等于这一组数对应的频率,所有矩形的面积之和为1.2. 频数分布折线图与频率分布折线图把频数分布直方图和频率分布直方图中的每个矩形上面一边的中点用线段连接起来得到的折线图即对应为频数分布折线图和频率分布折线图. 为了方便看图,折线图都画成与横轴相交,所以折线图与横轴的左右两个交点是没有实际意义的.四、频率分布直方图1. 频率分布直方图的特征(1)频率分布直方图的形状与组数(组距)有关. 组数(组距)的变化会引起频率分布直方图的结构变化.(2)频率分布直方图由样本决定,因此它会随着样本的改变而改变.(3)若固定分组数,则随着样本容量的增加,频率分布直方图中的各个矩形的高度会趋于特定的值.(4)频率分布直方图能够直观地表明数据分布的情况,一般呈中间高、两端低的“峰”状结构. 但是从直方图本身得不到具体的数据内容.2. 与频率分布直方图有关的结论(1)小矩形的面积=组距×频率组距=频率;(2)所有小矩形的面积之和等于1;(3)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数.5. 1. 4用样本估计总体一、用样本估计总体1. 一般情况下,如果样本的容量恰当,抽样方法又合理的话,样本的特征(分布)能够反映总体的特征(分布). 特别地,样本平均数(也称为样本均值)、方差(也称为样本方差)与总体对应的值相差不会太大,每一组的频率与总体对应的频率相差不会太大.2. 分层抽样中的平均数与方差假设样本是用分层抽样的方法得到的,且是分两层抽样. 第一层有m个数,分别为x1,x2,…,x m,平均数为x,方差为s2;第二层有n个数,分别为y1,y2,…,y n,平均数为y,方差为t2,则1m =∑x imi=1,s2=1m∑m i=1(x i-x)2,y=1n∑y ini=1,t2=1n∑n i=1(y i-y)2.如果记样本均值为a,样本方差为b2,a=1m+n ∑x imi=1+∑y ini=1=mx+nym+n,b2=m[s2+(x−a)2]+n[t2+(y−a)2]m+n =1m+n[(ms2+nt2)+1m+n(x−y)2]二、用样本估计总体1. 众数、中位数、平均数与频率分布直方图的关系(1)众数:最高小矩形底边中点的横坐标;(2)中位数:把频率分布直方图划分为左、右两个面积相等的部分,分界线与横轴交点的横坐标;(3)平均数:每个小矩形的面积乘对应小矩形底边中点的横坐标之和.5. 2数学探究活动:由编号样本估计总数及其模拟5. 3概率5. 3. 1样本空间与事件一、随机现象与必然现象1. 一定条件下,发生的结果事先不能确定的现象就是随机现象(或偶然现象),发生的结果事先能够确定的现象就是必然现象(或确定性现象).二、样本点和样本空间1. 随机试验(1)在相同条件下,对随机现象所进行的观察或实验称为随机试验(简称为试验).(2)随机试验满足下述条件:①在相同的条件下能够重复进行;②所有结果是明确可知的,且不止一种;③每次试验总会出现这些结果中的一种,但在一次试验之前不能确定这次试验会出现哪一种结果.2. 样本点和样本空间把随机试验中每一种可能出现的结果,都称为样本点,把由所有样本点组成的集合称为样本空间(通常用大写希腊字母Ω表示).三、随机事件件称为基本事件.四、随机事件发生的概率五、样本点的确定1. 确定样本点的方法(1)列举法:把所有样本点一一列举出来,适用于样本点较少的试验. 列举时要按照一定的顺序,做到不重不漏.(2)列表法:将样本点用表格的形式表示出来,通过表格可以弄清样本点的总数以及相应的事件所包含的样本点数. 此方法适用于互不影响的两步试验问题.(3)画树形图法:此方法是用树状的图形把样本点列举出来的一种方法,画树形图法便于分析较复杂的多步试验问题.5. 3. 2事件之间的关系与运算一、事件的包含与相等定义符号表示图示包含关系如果事件A发生时,事件B一定发生,则称“A包含于B”(或“B包含A”)A⊆B(或B⊇A)相等关系如果事件A发生时,事件B一定发生;而且事件B发生时,事件A也一定发生,则称“A与B相等”A=B 二、事件的运算定义符号表示图示事件的和(或并) 给定事件A,B,由所有A中的样本点与B中的样本点组成的事件称为A与B的和(或并)A+B(或A∪B)事件的积(或交) 给定事件A,B,由A与B中的公共样本点组成的事件称为A与B的积(或交)AB(或A∩B) 三、互斥事件与对立事件定义符号表示图示互斥事件给定事件A,B,若事件A与B不能同时发生,则称A与B互斥AB=⌀(或A∩B=⌀) 对立事件给定样本空间Ω与事件A,则由Ω中所有不属于A的样本点组成的事件称为A的对立事件A 2. (1)互斥事件的概率加法公式:P(A+B)=P(A)+P(B)(A,B互斥),P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n)(A1,A2,…,A n两两互斥).(2)对立事件的概率:P(A)=1-P(A).四、事件的混合运算同数的加、减、乘、除混合运算一样,事件的混合运算也有优先级,我们规定:求积运算的优先级高于求和运算,例如(A B)+(A B)可简写为A B+A B.五、对互斥事件与对立事件的理解与判断1. 从事件发生的角度(1)在一次试验中,两个互斥事件有可能都不发生,也有可能只有一个发生,但不可能同时发生;(2)在一次试验中,两个对立事件必有一个发生,但不可能同时发生.两事件对立,则它们必定互斥,但两事件互斥,它们未必对立. 对立事件是互斥事件的一个特例.2. 从事件个数的角度互斥的概念适用于两个或多个事件,但对立的概念只适用于两个事件.5. 3. 3古典概型一、古典概型1. 古典概型的定义如果一个随机试验满足:(1)样本空间Ω只含有有限个样本点;(2)每个基本事件的发生都是等可能的,那么,我们称这个随机试验的概率模型为古典概型.2. 古典概型的概率公式古典概型中,假设样本空间含有n个样本点,事件C包含其中的m个样本点,.则P(C)=mn二、求古典概型的概率1. 求古典概型概率的关键是列举出试验的样本空间和所求事件所包含的样本点,列样本点的方法有列举法、列表法和画树形图法,具体应用时可根据需要灵活选择.2. 解决古典概型概率问题的步骤(1)求出样本空间包含的样本点个数n;(2)求出事件A包含的样本点个数k;.(3)求出事件A的概率P(A)=kn5. 3. 4频率与概率一、用频率估计概率,则当n很大时,一般地,如果在n次重复进行的试验中,事件A发生的频率为mn. 不难看出,此时也有0≤P(A)≤1,这可以认为事件A发生的概率P(A)的估计值为mn种确定概率估计值的方法称为用频率估计概率.二、对频率与概率的理解1. 任何事件的概率都是[0,1]之间的一个确定的数,是客观存在的,与每次试验的结果无关,它度量该事件发生的可能性大小.2. 频率本身是随机的,在试验前不能确定,做同样次数的重复试验得到的事件的频率可能不同.3. 频率是概率的估计值,概率是频率的稳定值,随着试验次数的增加,频率会越来越接近于概率. 在实际问题中,事件的概率通常是未知的,常用频率作为它的估计值5. 3. 5随机事件的独立性一、随机事件的独立性1. 事件相互独立的定义一般地,当P(AB)=P(A)P(B)时,就称事件A与B相互独立(简称独立). 事件A与B相互独立的直观理解是,事件A是否发生不会影响事件B发生的概率,事件B是否发生也不会影响事件A发生的概率.2. 事件相互独立的性质(1)如果事件A与B相互独立,则A与B,A与B, A与B也相互独立.(2)如果事件A1,A2,…,A n相互独立,那么这n个事件都发生的概率等于每个事件发生的概率的积,即P(A1∩A2∩…∩A n)=P(A1)P(A2)…P(A n). 并且此式中任意多个事件A i换成其对立事件A i后等式仍成立.二、事件独立性的判断1. 判断两个事件是否相互独立的方法(1)直接法:直接判断一个事件发生与否是否影响另一事件发生的概率.(2)定义法:判断P(AB)=P(A)P(B)是否成立.(3)转化法:由判断事件A与事件B是否相互独立,转化为判断A与B,A与B,A 与B,是否具有独立性.5. 4统计与概率的应用一、统计与概率的应用1. 在实际生产与生活中,统计与概率有着非常重要的作用. 在实际问题中,通常会给出统计图表或数据信息,要求我们根据统计与概率知识解决问题或者进行决策. 我们要分析给出的统计图表或数据信息的特点,利用提取到的有效信息确定适用的统计与概率的模型解决问题. 熟练地运用统计与概率的知识,可以对相关数据进行分析、处理、预测等操作.。

人教高中数学必修二B版《概率》统计与概率教学说课(事件之间的关系与运算)

人教高中数学必修二B版《概率》统计与概率教学说课(事件之间的关系与运算)
即A与B两个事件同时发生的概率是0.
(2)互斥事件是指事件A与事件B在任何一次试验中都不会同时发
生,具体包括三种不同情形:①事件A发生且事件B不发生;②事件A
不发生且事件B发生;③事件A与事件B均不发生.
(3)在一次试验中,事件A和它的对立事件只能发生其中之一,并且
必然发生其中之一,不可能两个都不发生.
探究二
探究三
探究四
思维辨析
当堂检测
延伸探究你能否求出小明在数学考试中取得70分以下成绩的概
率?
解:小明在数学考试中取得70分以下成绩的概率
课堂篇探究学习
探究一
探究二
探究三
探究四
思维辨析
当堂检测
对立事件的概率
例4(2018全国卷Ⅲ)若某群体中的成员只用现金支付的概率为
0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付
派出人数
≤2
3
4
5
≥6
概率
0.1
0.46
0.3
0.1
0.04
(1)求有4人或5人外出家访的概率;
(2)求至少有3人外出家访的概率.
解:(1)设派出2人及以下为事件A,3人为事件B,4人为事件C,5人为
事件D,6人及以上为事件E,则有4人或5人外出家访的事件为事件C
或事件D,C,D为互斥事件,根据互斥事件概率的加法公式可知,
方法点睛(1)对于一个较复杂的事件,一般将其分解成几个简单的
事件,当这些事件彼此互斥时,原事件的概率等于这些事件概率的
和.互斥事件的概率加法公式可以推广为
(2)“正难则反”是解决问题的一种很好的方法,应注意掌握,如本
例中的第(2)问,直接求解比较麻烦,则可考虑求其对立事件的概率,

新教材高中数学第五章统计与概率3.5随机事件的独立性课件新人教B版必修第二册课件

新教材高中数学第五章统计与概率3.5随机事件的独立性课件新人教B版必修第二册课件

解析 设甲胜A为事件D,乙胜B为事件E,丙胜C为事件F,则 D, E , F 分别表示A胜 甲、B胜乙、C胜丙. 因为P(D)=0.6,P(E)=0.5,P(F)=0.5, 所以由对峙事件的概率公式知P( D)=0.4,P( E )=0.5,P( F )=0.5. (1)红队中有且只有一名队员获胜的事件有D∩ E ∩ F , D∩E∩ F , D∩ E ∩F,以上 3个事件彼此互斥且相互独立. 所以红队中有且只有一名队员获胜的概率P1=P[(D∩ E ∩ F )∪( D∩E∩ F )∪( D ∩ E ∩F)]=P(D∩ E ∩ F )+P( D∩E∩ F )+P( D∩ E ∩F)=0.6×0.5×0.5+0.4×0.5×0.5+ 0.4×0.5×0.5=0.35. (2)解法一:红队中至少有两名队员获胜的事件有D∩E∩F,D∩E∩ F ,D∩ E ∩F, D ∩E∩F,由于以上四个事件两两互斥且各盘比赛的结果相互独立, 因此红队中至少有两名队员获胜的概率P2=P(D∩E∩F)+P(D∩E∩ F )+P(D∩ E
=[1-P(A)][1-P(B)][1-P(C)]
=
1
1 5
×1
1 4
×1
1 3
=4×3×2=2.
5435
(3)“他们能够研制出疫苗”的对峙事件为“他们都失败”,结合对峙事件间的
概率关系可得所求事件的概率P=1-P( A∩ B∩C )=1- 2 = 3 .
55
方法总结 求相互独立事件同时产生的概率的步骤:
ቤተ መጻሕፍቲ ባይዱ
出该疫苗,依题意可知,事件A,B,C相互独立,且P(A)= 1,P(B)= 1 ,P(C)= 1.
5
4
3

人教高中数学必修二B版《概率》统计与概率说课复习(频率与概率)

人教高中数学必修二B版《概率》统计与概率说课复习(频率与概率)
2
13
7
现的频率为20,反面出现的频率仅为20.概率和频率的关系是整体和
具体、理论和实践的关系.频率随着试验次数的增加,会趋向于概率.
在处理具体的随机事件时,用概率作指导,以频率为依据.
课前篇自主预习


若随机事件A在n次重复试验中发生了m次,则称事件A出现的比

例fn(A)= 为事件A出现的频率.若随着试验次数的增加,事件A发生
的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年
内挡风玻璃破碎的概率的近似值是
.
答案:0.03
600
解析:这一年内汽车挡风玻璃破碎的频率为20 000 =0.03,此频率值
为概率的近似值.
课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
概率概念的理解
例1下列说法正确的是(
)
A.由生物学知道生男生女的概率约为0.5,一对夫妇先后生两小孩,
理、数学运算和直
观想象的能力.
课前篇自主预习


一、随机事件的概率
1.填空.

一般地,如果在n次重复进行的试验中,事件A发生的频率为 ,则

当n很大时,可以认为事件A发生的概率P(A)的估计值为 .其中
0≤P(A)≤1.
课前篇自主预习


2.做一做:在天气预报中,有“降水概率预报”,例如,预报“明天降水
的问题要从全局和整体上去看待,而不是局限于某一次试验或某一
个具体的事件.
课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
变式训练某工厂生产的产品合格率是99.99%,这说明(

新教材高中数学第5章统计与概率5-1统计5-1-2数据的数字特征新人教B版必修第二册

新教材高中数学第5章统计与概率5-1统计5-1-2数据的数字特征新人教B版必修第二册

数分别如下:3,5,4,2,1,则这组数据的60%分位数为( B )
A.3
B.3.5
C.4
D.4.5
解析 由题意,这组数从小到大排列顺序为1,2,3,4,5,且5×60%=3,可得这组
数据的60%分位数为从小到大排列的第3个数和第4个数的平均数,为
3+4
=3.5.故选B.
2
2.某班8名学生的体重(单位:kg)分别是:42,48,40,47,43,58,47,45,则这组数据
x1,x2,…,x2n,则称
+ +1
2
为这组数的中位数.
2.百分位数:一般地,当数据个数较多时,可以借助多个百分位数来了解数据
的分布特点.一组数的p%(p∈(0,100))分位数指的是满足下列条件的一个
数值:至少有p%的数据不大于该值,且至少有(100-p)%的数据不小于该值.
直观来说,一组数的p%分位数指的是,将这组数按照从小到大的顺序排列
(2)你认为用员工月工资的最值、平均数和众数中的哪个数来代表该公司
员工的月工资更合理?
解 (1)该公司员工月工资的最大值为10 000元,最小值为1 500元,众数为
4
1
000元.平均数为 50 ×(10
000×1+8 000×2+6 000×5+5 000×8+
4 000×20+3 000×12+1 500×2)=4 300(元),
的最大值是 58
,中位数是 46
,25%分位数是 42.5 .
解析 将所给数据按从小到大的顺序排列是40,42,43,45,47,47,48,58.这组数
据的最大值是58.
因为这组数据共8个,处于中间位置的是第4个数和第5个数,故这组数据的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章统计与概率5.1统计 (1)5.1.1数据的收集 (1)第1课时总体与样本、简单随机抽样 (1)第2课时分层抽样 (5)5.1.2数据的数字特征 (8)5.1.3数据的直观表示 (14)5.1.4用样本估计总体 (21)5.3概率 (25)5.3.1样本空间与事件 (25)5.3.2事件之间的关系与运算 (28)5.3.3古典概型 (32)5.3.4频率与概率 (36)5.3.5随机事件的独立性 (38)5.4统计与概率的应用 (42)5.1统计5.1.1数据的收集第1课时总体与样本、简单随机抽样知识点总体所考察问题涉及的__对象全体__是总体个体总体中__每个对象__都是个体样本抽取的部分对象组成总体的一个样本样本一个样本中包含的__个体数目__是样本容量容量知识点普查与抽样调查一般地,对总体中__每个个体__都进行考察的方法称为普查(也称全面调查),只抽取__样本__进行考察的方法称为抽样调查.知识点简单随机抽样(1)定义:一般地,简单随机抽样(也称纯随机抽样)就是从总体中不加任何__分组__、划类、__排队__等,完全随机地抽取个体.(2)两种常见方法:①__抽签法__;②__随机数表法__.思考1:抽签法与随机数表法的异同点是什么?提示:抽签法随机数表法不同点①抽签法比随机数表法简单;②抽签法适用于总体中的个体数相对较少的情况①随机数表法要求编号的位数相同;②随机数表法适用于总体中的个体数相对较多的情况相同点①都是简单随机抽样,并且要求被抽取样本的总体的个数有限;②都是从总体中逐个不放回地抽取知识点随机数表法进行简单随机抽样的步骤思考2:用随机数表进行简单随机抽样的规则是什么?提示:(1)定方向:读数的方向(向左、向右、向上或向下都可以).(2)读数规则:读数时结合编号的特点进行读取,编号为两位数则两位两位地读取,编号为三位数则三位三位地读取,若得到的号码不在编号中或已被选用,则跳过,直到选满所需号码为止.题型简单随机抽样的概念典例剖析典例1下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴青海参加抗震救灾工作;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签;(5)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出1个零件进行质量检验后,再把它放回箱子里.[分析]若抽取样本的方式是简单随机抽样,它应具备哪些特点?[解析](1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为50名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.(5)不是简单随机抽样.因为它是有放回抽样.规律方法:1.如果一个总体满足下列两个条件,那么可用简单随机抽样抽取样本:(1)总体中的个体之间无差异;(2)总体个数不多.2.判断所给的抽样是否为简单随机抽样的依据是简单随机抽样的四个特征:上述四点特征,如果有一点不满足,就不是简单随机抽样.题型抽签法典例剖析典例2要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试.请选择合适的抽样方法,并写出抽样过程.[分析]已知N=30,n=3.抽签法抽样时编号1、2、…、30,抽取3个编号,对应的汽车组成样本.[解析]应使用抽签法,步骤如下:①将30辆汽车编号,号码是1、2、3、 (30)②将1~30这30个编号写到大小、形状都相同的号签上;③将写好的号签放入一个不透明的容器中,并搅拌均匀;④从容器中每次抽取一个号签,连续抽取3次,并记录上面的编号;⑤所得号码对应的3辆汽车就是要抽取的对象.规律方法:抽签法的5个步骤题型随机数表法典例剖析典例3假设要考查某企业生产的袋装牛奶的质量是否达标,现从500袋牛奶中抽取60袋进行检验,利用随机数表法抽取样本时,先将500袋牛奶按000,001,…,499进行编号,如果从随机数表第8行第26列的数开始,按三位数连续向右读取,最先检验的5袋牛奶的号码是(下面摘取了某随机数表第7行至第9行)(B)844217533157245506887704744767217633502583921206766301647859169555671998105071851286735807443952387933211A.455068047447176B.169105071286443C.050358074439332D.447176335025212[解析]第8行第26列的数是1,依次取三位数169、555、671、998、105、071、851、286、735、807、443、…,而555、671、998、851、735、807超过最大编号499,故删掉,所以最先检验的5袋牛奶的号码依次为:169、105、071、286、443,故选B.规律方法:用随机数表法抽取样本的步骤:(1)将总体中的每个个体编号(每个号码位数一样).(2)在随机数表中任选一个数作为起始号码.(3)从选定的数开始,按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或与前面取出的数重复,则跳过不取,如此进行下去,直到取满为止.(4)根据选定的号码抽取样本.易错警示典例剖析典例4 一个布袋中有6个同样质地的小球,从中不放回地抽取3个小球,则某一特定小球被抽取的可能性是__12__;第三次抽取时,每个小球被抽取的可能性是__14__.[错解] 因为简单随机抽样时每个个体被抽取的可能性均为n N ,所以两空均填12. [辨析] 本题解答错误的原因在于混淆了抽样中,样本被抽到的可能性与每次抽取中个体被抽到的可能性.[正解] 因为简单随机抽样时每个个体被抽取的可能性为n N ,所以第一个空填12,而抽样是无放回抽样,所以第一次抽取时,每个小球被抽取的可能性为16,第二次抽取时,剩余5个小球被抽取的可能性为15,第三次抽取时,剩余4个小球,每个小球被抽取的可能性为14.因此,第二个空填14.第2课时 分层抽样 知识点分层抽样1.定义一般地,如果相对于要考察的问题来说,总体可以分成有__明显差别__的、__互不重叠__的几部分时,每一部分可称为层,在各层中按__层在总体中所占比例__进行随机抽样的方法称为分层随机抽样(简称为分层抽样)思考1:如何理解“层在总体中所占比例”?提示:从N 个个体中抽取n 个个体,若将总体分为A ,B ,C 三层,含有的个体数目分别是x ,y ,z ,在A ,B ,C 三层应抽取的个体数目分别是a ,b ,c ,那么a x =b y =c z =n N .2.应用的广泛性(1)分层抽样所得到的样本,一般更具有代表性,可以更准确地反映总体的特征,尤其是在层内个体相对同质而层间差异较大时更是如此.(2)分层抽样在各层中抽样时,还可根据各层的特点灵活地选用不同的随机抽样方法.(3)想同时获取总体的信息和各层的内部信息时,常采用分层抽样.思考2:简单随机抽样和分层抽样的联系和区别是什么?提示:类别简单随机抽样分层抽样各自特点从总体中逐个抽取将总体分成几层,分层进行抽取相互联系在各层抽样时采用简单随机抽样适用范围总体中的个体数较少总体由存在明显差异的几部分组成共同点①抽样过程中每个个体被抽到的可能性相等②每次抽出个体后不再放回,即不放回抽样题型分层抽样的概念典例剖析典例1下列问题中,最适合用分层抽样抽取样本的是(B)A.从10名同学中抽取3人参加座谈会B.某社区有500个家庭,其中高收入的家庭125户,中等收入的家庭280户,低收入的家庭95户.为了了解生活购买力的某项指标,要从中抽取一个容量为100户的样本C.从1 000名工人中抽取100人调查上班途中所用的时间D.从生产流水线上抽取样本检查产品质量[分析]根据分层抽样的特点选取.[解析]A中总体所含个体无差异且个数较少,适合用简单随机抽样;C和D中总体所含个体无差异且个数较多,不适合用分层抽样;B中总体所含个体差异明显,适合用分层抽样.规律方法:分层抽样的依据(1)适用于总体由差异明显的几部分组成的情况.(2)样本能更充分地反映总体的情况.(3)等可能抽样,每个个体被抽到的可能性都相等.题型分层抽样中的有关计算典例剖析典例2(1)某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师__182__人.(2)某网站针对“2020年法定节假日调休安排”提出的A,B,C三种放假方案进行了问卷调查,调查结果如下:支持A方案支持B方案支持C方案35岁以下的人数200400800 35岁以上(含35岁)的人数100100400的人中抽取了6人,求n的值.②从支持B方案的人中,用分层抽样的方法抽取5人,这5人中在35岁以上(含35岁)的人数是多少?35岁以下的人数是多少?[解析](1)设该校其他教师有x人,则16x=5626+104+x,解得x=52,经检验,x=52是原方程的根,故全校教师共有26+104+52=182人.(2)①由题意得6100+200=n200+400+800+100+100+400,解得n=40.②35岁以下的人数为5500×400=4人,35岁以上(含35岁)的人数为5-4=1人.[母题探究]将本例的条件改为“A,B,C三种放假方案人数之比为2∶3∶5.现用分层抽样方法抽取一个容量为n的样本,样本中A方案有16人”,求样本的容量n.[解析]由于A,B,C三种放假方案人数之比为2∶3∶5,样本中A方案有16人,则210=16n,解得n=80.规律方法:分层抽样中的求解技巧(1)样本容量n总体的个体数N=该层抽取的个体数该层的个体数.(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.题型分层抽样的方案设计典例剖析典例3一个单位有职工160人,其中有业务人员112人,管理人员16人,后勤服务人员32人,为了了解职工的某种情况,要从中抽取一个容量为20的样本,写出用分层抽样的方法抽取样本的过程.[分析]分层抽样中各层抽取个体数依各层个体数之比来分配,确定各层抽取的个体数之后,可采用简单随机抽样在各层中抽取个体.[解析]三部分所含个体数之比为112∶16∶32=7∶1∶2,设三部分各抽个体数为7x,x,2x,则由7x+x+2x=20得x=2.故业务人员、管理人员、后勤服务人员抽取个体数分别为14,2和4.对112名业务人员进行编号,用随机数表法抽样抽取14人.再用抽签法可抽出管理人员和服务人员的号码.将以上各层抽出的个体合并起来,就得到容量为20的样本.规律方法:分层抽样的注意事项分层抽样是当总体由差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点:(1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是,层内样本的差异要小,各层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层应采用同一抽样比,等可能抽样.(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.[特别提醒]保证每个个体等可能入样是简单随机抽样、分层抽样共同的特征,为了保证这一点所有层按同一抽样比,等可能抽样.易错警示典例剖析抽样方法选择不当导致所得样本不具有代表性典例4某单位有职工120人,欲从中抽取20人调查职工的身体状况.领导安排工会某干部负责抽样,他应该怎样做?[错解]将120名职工编号,用随机数表法抽样抽取20人作为样本.[辨析]年龄对人的身体状况有较大影响,这种不考虑年龄抽取的样本不能准确反应单位职工的身体状况.[正解]先将这120名职工根据年龄分为老年组、中年组、青年组,再按1 6的比例在各组中抽取相应的人数,即用分层抽样的方法抽取样本.5.1.2数据的数字特征知识点最值一组数据的最值指的是其中的最大值与最小值,最值反映的是这组数最极端的情况.一般地,最大值用max 表示,最小值用min 表示. 知识点平均数1.定义:如果给定的一组数是x 1,x 2,…,x n ,则这组数的平均数为x -=1n (x 1+x 2+…+x n ).这一公式在数学中常简记为x -=1n ∑i =1n x i .2.求和符号∑具有的性质(1)∑i =1n (x i +y i )=∑i =1n x i +∑i =1n y i .(2)∑i =1n (kx i )=k ∑i =1n x i .(3)∑i =1n t =nt .3.如果x 1,x 2,…,x n 的平均数为x -,且a ,b 为常数,则ax 1+b ,ax 2+b ,…,ax n +b 的平均数是a x -+B .思考1:(1)x 5+x 6+…+x 15如何用符号∑表示?(2)如何证明∑i =1n (kx i )=k ∑i =1nx i?提示:(1)x 5+x 6+…+x 15=∑i =515x i .(2)∑i =1n (kx i )=kx 1+kx 2+…+kx n=k (x 1+x 2+…+x n )=k ∑i =1nx i .知识点中位数1.如果一组数有奇数个数,并按照从小到大排列后为x 1,x 2,…,x 2n +1,则称x n +1为这组数的中位数.2.如果一组数有偶数个数,且按照从小到大排列后为x 1,x 2,…,x 2n ,则称x n +x n +12为这组数的中位数.知识点百分位数1.定义:一组数的p %(p ∈(0,100))分位数指的是满足下列条件的一个数值:至少有p %的数据不大于该值,且至少有(100-p )%的数据不小于该值.2.计算方法:设一组数按照从小到大排列后为x 1,x 2,…,x n ,计算i =np %的值,如果i 不是整数,设i 0为大于i 的最小整数,取xi 0为p %分位数;如果i 是整数,取x i +x i +12为p %分位数.规定:0分位数是x 1(即最小值),100%分位数是x n (即最大值).思考2:中位数和百分位数的关系是什么?提示:中位数是50%分位数.知识点众数一组数据中,某个数据出现的次数称为这个数据的频数,出现次数最多的数据称为这组数据的众数.知识点极差一组数的极差指的是这组数的最大值减去最小值所得的差.知识点方差与标准差(1)如果x 1,x 2,…,x n 的平均数为x -,则方差s 2=1n i =1n (x i -x -)2,方差的算术平方根称为标准差.(2)如果x 1,x 2,…,x n 的方差为s 2,且a ,b 为常数,则ax 1+b ,ax 2+b ,……,ax n +b 的方差是a 2s 2.思考2:(1)方差和标准差的取值范围是什么?方差、标准差为0的含义是什么?(2)方差和标准差是如何反映一组数据的离散程度的?提示:(1)标准差、方差的取值范围:[0,+∞).标准差、方差为0时,样本各数据全相等,表明数据没有波动幅度.(2)标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.题型最值、平均数、众数的确定典例剖析典例1 某公司员工的月工资情况如表所示: 月工资/元 8 000 5 000 4 000 2 000 1 000 800 700 员工/人125820122(2)你认为用哪个数来代表该公司员工的月工资更合理?[解析] (1)该公司员工月工资的最大值为8 000元,最小值为700元,众数为1 000元.平均数为150(8 000×1+5 000×2+4 000×5+2 000×8+1 000×20+800×12+700×2)=1 700(元).(2)用众数,因为最大值为8 000元且只有一个,无法代表该公司员工的月工资,平均数受到最大值的影响,也无法代表该公司员工的月工资,每月拿1 000元的员工最多,众数代表该公司员工的月工资最合理.规律方法:1.把数据从小到大排列,根据定义即可确定最值和众数. 2.平均数的求法 (1)用定义式; (2)用平均数的性质;(3)在容量为n 的一组数据中,若数据x 1有n 1个,x 2有n 2个,…,x k 有n k 个,且n =n 1+n 2+…+n k ,则这组数据的平均数为1n (n 1x 1+n 2x 2+…+n k x k )=n 1n x 1+n 2nx 2+…+n kn x k .题型中位数、百分位数的计算典例剖析典例2 (1)已知一组数据8,6,4,7,11,6,8,9,10,5,则该组数据的中位数是__7.5__;(2)甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:甲运动员得分:12,15,20,25,31,31,36,36,37,39,44,49.乙运动员得分:8,13,14,16,23,26,28,29,31,38,39,51.求甲、乙两名运动员得分的25%分位数,75%分位数和90%分位数. [解析] (1)已知数据从小到大排列为:4,5,6,6,7,8,8,9,10,11,共10个数,所以中位数是7+82=7.5.(2)两组数据都是12个数,而且12×25%=3,12×75%=9,12×90%=10.8, 因此,甲运动员得分的25%分位数为x 3+x 42=20+252=22.5,甲运动员得分的75%分位数为x9+x102=37+392=38,甲运动员得分的90%分位数为x11=44.乙运动员得分的25%分位数为x3+x42=14+162=15,乙运动员得分的75%分位数为x9+x102=31+382=34.5,乙运动员得分的90%分位数为x11=39.规律方法:1.求中位数的一般步骤(1)把数据按大小顺序排列.(2)找出排列后位于中间位置的数据,即为中位数.若中间位置有两个数据,则求出这两个数据的平均数作为中位数.2.求百分位数的一般步骤(1)排序:按照从小到大排列:x1,x2,…,x n.(2)计算:求i=np%的值.(3)求值:分数p%分位数i不是整数xi0,其中i0为大于i的最小整数i是整数x i+x i+12题型极差、方差、标准差的计算典例剖析典例3已知一组数据:2,2,2,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6.(1)求极差;(2)求方差;(3)求标准差.[解析](1)最大值为6,最小值为2,极差为4.(2)可将数据整理为x23456频数34562每一个数都减去4x-4-2-1012频数34562120×[(-2)×3+(-1)×4+0×5+1×6+2×2]=0,120×[(-2)2×3+(-1)2×4+02×5+12×6+22×2]=32.因此,所求平均值为4,方差为32. (3)由(2)知标准差为62. 规律方法:求方差的基本方法(1)先求平均值,再代入公式s 2=1n ∑i =1n (x i -x -)2,或s 2=1n ∑i =1n x 2i -x 2.(2)用性质.(3)当一组数据重复数据较多时,可先整理出频数表,再计算s 2. 题型分层抽样的方差典例剖析典例4 甲、乙两班学生参加了同一考试,其中甲班50人,乙班40人.甲班的平均成绩为80.5分,方差为500;乙班的平均成绩为85分,方差为360.那么甲、乙两班全部90名学生的平均成绩和方差分别是多少?[解析] 设甲班50名学生的成绩分别是a 1,a 2,…,a 50,那么甲班的平均成绩和方差分别为x -甲=a 1+a 2+…+a 5050=80.5(分),s 2甲=(a 1-x -甲)2+(a 2-x -甲)2+…+(a 50-x -甲)250=500. 设乙班40名学生的成绩分别是b 1,b 2,…,b 40,那么乙班的平均成绩和方差分别为x -乙=b 1+b 2+…+b 4040=85(分),s 2乙=(b 1-x -乙)2+(b 2-x -乙)2+…+(b 40-x -乙)240=360. 如果不知道a 1,a 2,…,a 50和b 1,b 2,…,b 40,只知道甲、乙两班的平均成绩、方差及甲、乙两班的人数,那么根据前面的分析,全部90名学生的平均成绩应为x -=50x -甲+40x -乙50+40=50×80.5+40×8590=82.5(分),方差s 2=50[s 2甲+(x -甲-x -)2]+40[s 2乙+(x -乙-x -)2]50+40=50×[500+(80.5-82.5)2]+40×[360+(85-82.5)2]90=50×500+50×4+40×360+40×6.2590≈442.78.规律方法:若样本中有两层,第一层有m 个数,分别为x 1,x 2,…,x m ,平均数为x -,方差为s 2;第二层有n 个数,分别为y 1,y 2,…,y n ,平均数为y -,方差为t 2,则样本的均值为a -=m x -+n y-m +n,方差为m [s 2+(x --a -)2]+n [t 2+(y --a -)2]m +n.易错警示典例剖析典例5 下面是某赛季甲、乙两名篮球队员每场比赛得分情况: 甲:4 14 14 24 25 31 32 35 36 36 39 45 49 乙:8 12 15 18 23 27 25 32 33 34 41 则甲、乙得分的中位数之和是( B ) A .56分 B .57分 C .58分 D .59分[错解] D 因为甲的中位数是32,乙的中位数是27,所以甲、乙得分的中位数之和是59.[辨析] 本题易忽视求乙得分的中位数时,没有将数据从小到大排列起来,将原始数据中的中间一个数误认为就是乙得分的中位数而导致错误.因此理解样本的数字特征的含义较为重要.[正解] 由题可知甲得分的中位数为32分,乙得分的数据从小到大排列为:8,12,15,18,23,25,27,32,33,34,41,故乙得分的中位数为25分,因此甲、乙两人得分的中位数之和为57分.5.1.3 数据的直观表示柱形图(也称为条形图) 知识点作用 形象地比较各种数据之间的数量关系特征(1)一条轴上显示的是所关注的数据类型,另一条轴上对应的是数量、个数或者比例.(2)每一矩形都是__等宽__的折线图知识点作用形象地表示数据的变化趋势特征一条轴上显示的通常是时间,另一条轴上是对应的__数据__扇形图(也称为饼图、饼形图)知识点作用形象地表示出各部分数据在全部数据中所占的__比例__特征每一个扇形的圆心角以及弧长,都与这一部分表示的数据大小成__正比__茎叶图知识点作用(1)如果每一行的数都是按从大到小(或从小到大)顺序排列,则从中可以方便地看出这组数的__最值__、__中位数__等数字特征(2)可以看出一组数的分布情况,可能得到一些额外的信息(3)比较两组数据的集中或分散程度特征所有的茎都竖直排列,而叶沿__水平__方向排列(2)茎叶图的优点是什么?提示:(1)应用茎叶图进行统计时,注意重复出现的数据要重复记录,不能遗漏.(2)茎叶图能保留原始数据,并方便随时添加记录数据.知识点画频数分布直方图与频率分布直方图的步骤(1)找出最值,计算极差.(2)合理分组,确定区间.(3)整理数据.(4)作出有关图示.频数分布直方图纵坐标是频数,每一组数对应的矩形的__高度__与频数成正比频率分布直方图纵坐标是__频率组距__,每一组数对应的矩形高度与频率成正比,每个矩形的面积等于这一组数对应的频率,所有矩形的面积之和为1思考2:频数分布直方图与频率分布直方图有什么不同?提示:频数分布直方图能使我们清楚地知道数据分布在各个小组的个数,而频率分布直方图则是从各小组数据在所有数据中所占的比例大小的角度来表示数据分布的规律.知识点频数分布折线图和频率分布折线图把频数分布直方图和频率分布直方图中每个矩形上面一边的__中点__用线段连接起来,且画成与横轴相交.题型柱形图与折线图典例剖析典例12020年1月6日的《中国青年报》报道:“根据调查,有担当(76.3%)和踏实(74.5%)的年轻人最被受访者欣赏.奋进(54.7%)、坚毅(54.1%)、有梦想(50.2%)、有闯劲儿(40.1%)、沉稳(36.7%)、直率(34.6%)、幽默(33.4%)、活泼(27.2%)、庄重(20.3%)、洒脱(20%)也是受访者欣赏的品质.”为形象地表示这一调查结果.(1)作出柱形图;(2)作出折线图.[解析](1)柱形图如图①.(2)方法一:取图①中各小矩形上面的中点用线段连接起来(图略),即得折线图.方法二:直接作出折线图如图②其中横轴上的1,2,3,…,12分别表示“有担当”,“踏实”,…,“洒脱”.规律方法:1.柱形图中,各小矩形宽相等.2.注意横、纵轴的意义.3.由柱形图可以作出折线图:取各小矩形上边的中点,再用线段连接,取各小矩形下边的中点并标注上数字,要说明标注数字所对应的数据类型.题型扇形图典例剖析典例2某企业三个分厂生产同一种电子产品,三个分厂的产量分布如图所示,现在用分层随机抽样方法从三个分厂生产的产品中共抽取100件进行使用寿命的测试,则第一分厂应抽取的件数为__50__;测试结果为第一、二、三分厂取出的产品的平均使用寿命分别为1 020小时,980小时,1 030小时,估计这个企业生产的产品的平均使用寿命为__1_015__小时.[解析]由分层随机抽样可知,第一分厂应抽取100×50%=50(件),该产品的平均使用寿命为50×1 020+20×980+30×1 030100=1 015(小时).规律方法:在扇形图中,部分数据在全部数据中的比例等于对应扇形的圆心角度数与360°之比,等于对应扇形的弧长与周长之比,也等于对应扇形面积与圆面积之比.题型茎叶图的画法及应用典例剖析典例3下面是甲、乙两名运动员某赛季一些场次得分的茎叶图:(1)甲、乙两名运动员的最高得分各是多少?(2)哪名运动员的成绩好一些?[解析](1)甲、乙两名运动员的最高得分分别为51分,52分.(2)从茎叶图可以看出,甲运动员得分大致对称,乙运动员的得分除一个52分以外,也大致对称.而甲运动员的平均得分高于乙运动员的平均得分,因此甲运动员的成绩更好.规律方法:1.利用茎叶图进行数据分析时,通常从茎叶图中各个“叶”上的数字多少来分析该组数据的分布对称性、稳定性等.2.如果茎叶图中的数据大致集中在某一行附近,那么说明这组数据比较稳定.3.茎叶图只适用于样本数据较少的情况.题型频率分布表和频率分布直方图典例剖析典例4从高一学生中抽取50名参加调研考试,成绩的分组及各组的频数如下(单位:分):[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计成绩在[70,80)的学生占总体的百分比.[分析]计算频率、列表与绘图.[解析](1)频率分布表如下:成绩分组频数频率[40,50)20.04[50,60)30.06[60,70)100.2[70,80)150.3[80,90)120.24[90,100]80.16合计50 1.00(2)绘制频率分布直方图如图,由题意知组距为10,取小矩形的高为频率组距,计算得到如下的数据表:成绩分组频率小矩形的高[40,50)0.040.004[50,60)0.060.006[60,70)0.20.02[70,80)0.30.03(3)由频率分布直方图可知成绩在[70,80)分的学生所占总体的百分比是0.03×10=0.3=30%.规律方法:绘制频率分布直方图的方法:(1)先制作频率分布表,然后作直角坐标系.(2)把横轴分成若干段,每一段对应一个组.(3)在上面标出的各点中,分别以相邻两点为端点的线段为底作长方形,它的高等于该组的频率组距.每个长方形的面积恰好是该组的频率,这些长方形构成了频率分布直方图.易错警示典例剖析典例5某中学同年级40名男生的体重数据如下(单位:kg):61605959595858575757575656565656565655555555545454545353535252525251515150504948列出样本的频率分布表,绘出频率分布直方图.[错解](1)极差61-48=13.(2)取组距2,分组132=6.5分7组.(3)分点及分组如下:48~50,50~52,52~54,54~56,56~58,58~60,60~62.(4)列频率分布表:。

相关文档
最新文档