五上-倍数与因数知识点总结(全)
(北师大版)五年级数学上册知识点归纳与总结

(北师大版)五年级数学上册知识点归纳与总结北师大版学校数学五班级(上册)学问点一单元《倍数与因数》数的世界学问点:熟悉自然数和整数,联系乘法熟悉倍数与因数。
像0,1,2,3,4,5,6,…这样的数是自然数。
像-3,-2,-1,0,1,2,3,…这样的数是整数。
我们只在自然数(零除外)范围内讨论倍数和因数。
倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。
补充学问点:一个数的倍数的个数是无限的。
因数个数是有限的。
探究活动(一)2,5的倍数的特征学问点:2的倍数的特征。
个位上是0,2,4,6,8的数是2的倍数。
5的倍数的特征。
个位上是0或5的数是5的倍数。
偶数和奇数的定义。
是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
能推断一个数是不是2或5的倍数。
能推断一个非零自然数是奇数或偶数。
补充学问点:既是2的倍数,又是5的倍数的特征。
个位上是0的数既是2的倍数,又是5的倍数。
探究活动(二)3的倍数的特征学问点:3的倍数的特征。
一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
同时是2和3的倍数的特征。
个位上的数是0,2,4,6,8,并且各个数位上的数字的和是3的倍数的数,既是2的倍数,又是3的倍数。
同时是3和5的倍数的特征。
个位上的数是0或5,并且各个数位上的数字的和是3的倍数的数,既是3的倍数,又是5的倍数。
同时是2,3和5的倍数的特征。
个位上的数是0,并且各个数位上的数字的和是3的倍数的数,既是2和5的倍数,又是3的倍数。
找因数学问点:在1~100的自然数中,找出某个自然数的全部因数。
方法:运用乘法算式,思索:哪两个数相乘等于这个自然数。
补充学问点:一个数的因数的个数是有限的。
其中最小的因数是1,最大的因数是它本身。
找质数学问点:理解质数与合数的意义。
一个数只有1和它本身两个因数,这个数叫作质数。
一个数除了1和它本身以外还有别的因数,这个数叫作合数。
1既不是质数也不是合数。
推断一个数是质数还是合数的方法:一般来说,首先可以用“2,5,3的倍数的特征”推断这个数是否有因数2,5,3;假如还无法推断,则可以用7,11等比较小的质数去试除,看有没有因数7,11等。
五年级因数和倍数知识点

五年级因数和倍数知识点一、因数和倍数的基本概念。
1. 因数。
- 定义:如果a× b = c(a、b、c都是非0自然数),那么a和b就是c的因数。
例如3×4 = 12,3和4就是12的因数。
- 找一个数因数的方法:- 列乘法算式找,从1开始,一对一对地找。
如找18的因数,1×18 = 18,2×9=18,3×6 = 18,所以18的因数有1、2、3、6、9、18。
- 列除法算式找,想这个数除以哪些数能整除,这些除数和商就是这个数的因数。
2. 倍数。
- 定义:如果a× b = c(a、b、c都是非0自然数),那么c就是a和b的倍数。
例如3×4 = 12,12就是3和4的倍数。
- 找一个数倍数的方法:用这个数分别乘1、2、3、4……所得的积就是这个数的倍数。
如3的倍数有3、6、9、12……3. 因数和倍数的关系。
- 因数和倍数是相互依存的,不能单独说某个数是因数或倍数,必须说谁是谁的因数,谁是谁的倍数。
例如,不能说3是因数,应该说3是6的因数;不能说12是倍数,应该说12是3的倍数。
二、2、5、3的倍数的特征。
1. 2的倍数的特征。
- 个位上是0、2、4、6、8的数都是2的倍数。
例如10、12、14等都是2的倍数。
2的倍数也叫偶数(0也是偶数),不是2的倍数的数叫奇数。
2. 5的倍数的特征。
- 个位上是0或5的数都是5的倍数。
如5、10、15等都是5的倍数。
3. 3的倍数的特征。
- 一个数各位上的数字之和是3的倍数,这个数就是3的倍数。
例如123,各位数字之和1 + 2+3=6,6是3的倍数,所以123是3的倍数。
三、质数与合数。
1. 质数。
- 定义:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
例如2、3、5、7等都是质数,2只有1和2两个因数,3只有1和3两个因数。
2. 合数。
- 定义:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
【精编】五年级数学上册第三单元倍数和因数知识点总结北师大版.doc

第三单元倍数和因数㈠数的世界知识点:认识自然数和整数,联系乘法认识倍数与因数。
像0,1,2,3,4,5,6,,这样的数是自然数。
像-3,-2,-1,0,1,2,3,,这样的数是整数。
我们只在自然数(零除外)范围内研究倍数和因数。
倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。
补充知识点:一个数的倍数的个数是无限的。
因数个数是有限的。
一个数最小的因数是1,最大的因数是它本身;一个数最小的倍数是它本身,没有最大的倍数。
㈡探索活动(一)2,5的倍数的特征知识点:2的倍数的特征:个位上是0,2,4,6,8的数是2的倍数。
5的倍数的特征:个位上是0或5的数是5的倍数。
偶数和奇数的定义:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
能判断一个数是不是2或5的倍数。
能判断一个非零自然数是奇数或偶数。
补充知识点:既是2的倍数,又是5的倍数的特征:个位上是0的数既是2的倍数,又是5 3的倍数。
㈢探索活动(二)3的倍数的特征知识点:3的倍数的特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
同时是2和3的倍数的特征:个位上的数是0,2,4,6,8,并且各个数位上的数字的和是3的倍数的数,既是2的倍数,又是3的倍数。
同时是3和5的倍数的特征:个位上的数是0或5,并且各个数位上的数字的和是3的倍数的数,既是3的倍数,又是5的倍数。
同时是2,3和5的倍数的特征:个位上的数是0,并且各个数位上的数字的和是3的倍数的数,既是2和5的倍数,又是3的倍数。
6的倍数的特征:既是2的倍数又是3的倍数的数。
9的倍数的特征:一个数各个数位上的数字的和是9的倍数,这个数就是9的倍数。
㈣找因数知识点:在1~100的自然数中,找出某个自然数的所有因数。
方法:运用乘法算式,思考:哪两个数相乘等于这个自然数。
补充知识点:一个数的因数的个数是有限的。
其中最小的因数是1,最大的因数是它本身。
㈤找质数知识点:理解质数与合数的意义。
五年级上因数和倍数知识点归纳

因数和倍数是数学中的重要概念,在数学的学习中占据了重要的地位。
下面是五年级上因数和倍数的知识点的归纳总结。
一、因数的概念1.因数的定义:如果一个整数a能够被另一个整数b整除,那么a就是b的因数,b就是a的倍数。
例如4是8的因数,8是4的倍数。
2.因数的判断:对于一个整数a,若存在整数b,使得a=b×c,则b就是a的因数,c就是a的倍数。
3.因数的特点:一个数的因数都比这个数本身小,且因数和本身的乘积等于这个数。
例如,数10的因数有1,2,5,10,因数之和是184.因数的表示方法:当我们需要表示一个数的因数时,可以用因数分解的方法,将这个数拆分成几个因数的乘积的形式。
二、倍数的概念1.倍数的定义:如果一个整数b被另一个整数a整除,那么b就是a的倍数,a就是b的因数。
例如24是8的倍数,8是24的因数。
2.倍数的判断:对于一个整数a,若存在整数b,使得a=b×c,则a就是b的倍数,c就是b的因数。
3.倍数的特点:一个数的倍数都比这个数本身大,且倍数和这个数的乘积等于这个数。
例如,数3的倍数有3,6,9,12,倍数之和是30。
4.倍数的表示方法:当我们需要表示一个数的倍数时,可以用倍数列举的方法,将这个数的倍数逐个列举出来。
三、因数的性质1.一个数恰好有两个不同的因数,即1和它本身,这个数叫做质数。
例如,数7只有1和7两个因数,是质数。
2.一个大于1的合数一定有大于1且小于它本身的因数。
例如12除了1和12外,还有2、3、4、6等因数,是合数。
3.一个大于1的数恰好有3个不同的因数,即1、本身和本身的平方根,这个数叫做完全平方数。
例如16有1、4、16三个因数,是完全平方数。
4.一个大于1的数恰好有4个不同的因数,即1、本身、本身的平方根以及一个介于1和本身之间的因数,这个数叫做半平方数。
例如18有1、2、3、18四个因数,是半平方数。
四、倍数的性质1.一个数b是另一个数a的倍数,那么a也是b的因数。
因数与倍数知识点总结

因数与倍数知识点总结一、因数和倍数的概念1、因数:如果整数A能被整数B整除(A、B都不为0),那么B就叫做A的因数。
例如:12÷2=6,所以2和6就是12的因数。
2、倍数:如果整数A是整数B的倍数(A、B都不为0),那么B就叫做A的倍数。
例如:12÷2=6,所以12是2的倍数,也是6的倍数。
二、因数和倍数的性质1、因数的个数是有限的,最小的因数是1,最大的因数是它本身。
例如:10的因数有1、2、5、10。
2、倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
例如:3的倍数有3、6、9、12等等。
三、因数和倍数的判断方法1、如果一个数是另一个数的倍数,那么这个数就是另一个数的因数。
例如:36是6的倍数,所以36也是6的因数。
2、如果一个数是另一个数的因数,那么这个数就是另一个数的倍数。
例如:7是14的因数,所以7也是14的倍数。
四、注意事项1、不要把因数和倍数的概念混淆,因数是A能被B整除,倍数是A 是B的倍数。
2、不要把因数和倍数的性质弄错,因数的个数是有限的,倍数的个数是无限的。
3、在计算时要注意0的问题,因为0不能作为除数,所以0不能作为因数或倍数。
例如:不能说10是5的倍数,因为10÷5=2,而不能说10是5的因数。
因数与倍数知识点总结一、因数和倍数的概念1、因数:如果整数A能被整数B整除(A、B都不为0),那么B就叫做A的因数。
例如:12÷2=6,所以2和6就是12的因数。
2、倍数:如果整数A是整数B的倍数(A、B都不为0),那么B就叫做A的倍数。
例如:12÷2=6,所以12是2的倍数,也是6的倍数。
二、因数和倍数的性质1、因数的个数是有限的,最小的因数是1,最大的因数是它本身。
例如:10的因数有1、2、5、10。
2、倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
例如:3的倍数有3、6、9、12等等。
三、因数和倍数的判断方法1、如果一个数是另一个数的倍数,那么这个数就是另一个数的因数。
五年级因数和倍数知识点归纳

1.因数:一个数可以被另一个数整除,那么这个数叫做另一个数的因数。
如:2是4的因数,因为4除以2等于2,没有余数。
2.倍数:一个数乘以另一个数得到的积,叫做这个数的倍数。
如:4是2的倍数,因为2乘以2等于43.基本原理:-一个数的最小的因数是1,最大的因数是它本身。
-一个数的倍数可以通过这个数乘以任意整数得到。
4.判断一个数的因数:-一个数的因数一定是小于或等于它的一半。
-一个数的因数一定是它的约数。
5.判断一个数的倍数:-一个数的倍数一定能被这个数整除。
-一个数的倍数一定能够整除这个数的最小倍数。
6.因数的性质:-两个数的因数可以相同,但是倍数一定不能相同。
-一个数的因数个数是有限的,而倍数是无限的。
7.倍数的性质:-一个数的倍数可以有无数个,如2的倍数有2、4、6、8等等。
-一个数的倍数中包含着所有小于它的倍数。
8.最大公因数(最大公约数):两个数都能整除的最大数,叫做这两个数的最大公因数。
如:12和16的最大公因数是4,因为4是12和16的因数,而且没有更大的公因数。
9.最小公倍数:两个数公有的倍数中最小的一个数,叫做这两个数的最小公倍数。
如:4和6的最小公倍数是12,因为12是4和6的倍数,而且没有更小的公倍数。
10.求因数和倍数的方法:-因数的求法:遍历1到这个数的一半,判断能否整除。
-倍数的求法:逐个相乘,得到所有的倍数。
11.应用:在数学问题中,因数和倍数经常被用来求解最大公因数、最小公倍数,以及解方程等。
总结:因数和倍数是数学中非常重要的概念,在五年级的数学教学中需要掌握它们的定义、判断方法和性质,以及它们的应用。
通过实际问题的练习和解答,学生可以更好地理解因数和倍数的概念,并应用于实际情境中。
同时,通过因数和倍数的学习,可以培养学生的逻辑思维和解决问题的能力。
五年级数学上册第三单元倍数和因数知识点总结北师大版

第三单元倍数和因数㈠数的世界知识点:认识自然数和整数,联系乘法认识倍数与因数。
像0,1,2,3,4,5,6,…这样的数是自然数。
像-3,-2,-1,0,1,2,3,…这样的数是整数。
我们只在自然数(零除外)范围内研究倍数和因数。
倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。
补充知识点:一个数的倍数的个数是无限的。
因数个数是有限的。
一个数最小的因数是1,最大的因数是它本身;一个数最小的倍数是它本身,没有最大的倍数。
㈡探索活动(一)2,5的倍数的特征知识点:2的倍数的特征:个位上是0,2,4,6,8的数是2的倍数。
5的倍数的特征:个位上是0或5的数是5的倍数。
偶数和奇数的定义:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
能判断一个数是不是2或5的倍数。
能判断一个非零自然数是奇数或偶数。
补充知识点:既是2的倍数,又是5的倍数的特征:个位上是0的数既是2的倍数,又是5 3的倍数。
㈢探索活动(二)3的倍数的特征知识点:3的倍数的特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
同时是2和3的倍数的特征:个位上的数是0,2,4,6,8,并且各个数位上的数字的和是3的倍数的数,既是2的倍数,又是3的倍数。
同时是3和5的倍数的特征:个位上的数是0或5,并且各个数位上的数字的和是3的倍数的数,既是3的倍数,又是5的倍数。
同时是2,3和5的倍数的特征:个位上的数是0,并且各个数位上的数字的和是3的倍数的数,既是2和5的倍数,又是3的倍数。
6的倍数的特征:既是2的倍数又是3的倍数的数。
9的倍数的特征:一个数各个数位上的数字的和是9的倍数,这个数就是9的倍数。
㈣找因数知识点:在1~100的自然数中,找出某个自然数的所有因数。
方法:运用乘法算式,思考:哪两个数相乘等于这个自然数。
补充知识点:一个数的因数的个数是有限的。
其中最小的因数是1,最大的因数是它本身。
㈤找质数知识点:理解质数与合数的意义。
因数与倍数

倍数和因数【知识点讲解和梳理】一.找因数和倍数1、我们只在自然数(零除外)范围内研究倍数和因数。
2、倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。
方法:运用乘法算式,思考:哪两个数相乘等于这个自然数。
找一个数的因数,就是看它可以由哪两个因数相乘得到补充【知识点】:一个数的因数的个数是有限的。
其中最小的因数是1,最大的因数是它本身。
补充【知识点】:一个数的倍数的个数是无限的。
其中最小倍数是它本身,没有最大倍数。
一、 2,5的倍数的特征1、2的倍数的特征。
个位上是0,2,4,6,8的数是2的倍数。
2、5的倍数的特征。
个位上是0或5的数是5的倍数。
3、偶数和奇数的定义。
是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
4、能判断一个数是不是2或5的倍数。
5.、能判断一个非零自然数是奇数或偶数。
补充【知识点】:既是2的倍数,又是5的倍数的特征:个位上是0的数既是2的倍数,又是5的倍数。
二、 3的倍数的特征1、3的倍数的特征。
一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
2、能判断一个数是不是3的倍数。
补充【知识点】:1、同时是2和3的倍数的特征:个位上的数是0,2,4,6,8,并且各个数位上的数字的和是3 的倍数的数,既是2的倍数,又是3的倍数。
2、同时是3和5的倍数的特征:个位上的数是0或5,并且各个数位上的数字的和是3的倍数的数,既是3的倍数,又是5的倍数。
3、同时是2,3和5的倍数的特征。
个位上的数是0,并且各个数位上的数字的和是3的倍数的数,既是2和5的倍数,又是3的倍数。
三、找质数1、理解质数与合数的意义。
按因数的个数分类:大于1的自然数可以分为(质数)和(合数)。
一个数只有1和它本身两个因数,这个数叫作质数。
一个数除了1和它本身以外还有别的因数,这个数叫作合数。
2、1既不是质数也不是合数。
3、判断一个数是质数还是合数的方法:一般来说,首先可以用“2,5,3的倍数的特征”判断这个数是否有因数2,5,3;如果还无法判断,则可以用7,11等比较小的质数去试除,看有没有因数7,11等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五上《倍数与因数》知识点总结
一.整数和自然数
整数(包括正整数、0、负整数):像-3、-2、-1、0、1、2、3……这样的数是整数。
没有最大或最小的整数。
自然数(包括正整数、0):像0、1、2、3、4、5、6……这样的数是自然数。
最小的自然数是0,没有最大的自然数。
二.倍数和因数的特征
1.我们只在自然数(零除外)范围内研究倍数和因数。
2.倍数与因数是相互依存的。
没有倍数就不存在因数,没有因数就不存在倍数。
不能单独说一个数是倍数或因数。
3.一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
4.一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
例:a× b = c ( a、b、c是不为0的自然数),那么a、b就是c的因数,c是a、b的倍数。
除法算式辨别倍数和因数:被除数是除数和商的倍数,除数和商是被除数的因数。
5.倍和倍数的区别:
“倍”的概念比“倍数”要广,“倍”可以适用于小数,分数,整数;
而倍数相对因数而言,只能适用于(不为0)的自然数。
6.口诀:因数和倍数,单独不存在。
互相来依靠,永远不分开。
枚举找因数,相乘找倍数。
因数能数清,倍数数不清。
例:(1)请找出12的全部因数。
(2)请写出20以内6的倍数。
12=1×12 1×6=6
12=2×6 2×6=12
12=3×4 3×6=18
12的全部因数是:1,2,3,4,6,12。
20以内6的倍数有:6,12,18。
三.倍数特征
2的倍数特征:个位上是0,2,4,6或8的数。
5的倍数的特征:个位上是0或5的数。
3(或9)的倍数特征:一个数各个数位上的数字之和是3(或9)的倍数。
2和5的倍数特征:个位上是0的数。
2和3的倍数特征:个位上是0,2,4,6或8且各个数位上的数字之和是3的倍数的数。
3和5的倍数特征:个位上是0或5且各个数位上的数字之和是3的倍数的数。
2,3和5的倍数特征:个位上是0且各个数位上的数字之和是3的倍数的数。
4(或25)的倍数的特征:一个数末两位是4(或25)的倍数的数。
例如:124(或125)
8(或125)的倍数的特征:一个数末三位是8(或125)的倍数的数。
例如:1104(或1125)
四.质数与合数的意义
自然数按因数的个数分为:质数、合数、1、0四类。
质数:一个数只有1和它本身两个因数的数。
合数:一个数除了1和它本身以外还有别的因数的数。
(至少有三个因数:1、它本身、别的因数)。
1既不是质数也不是合数。
注:①质数除了2以外都是奇数。
除了2和5,其余的质数个位数字只能是1,3,7,9。
②最小的质数是2,最小的合数是4,连续的两个质数是2、3。
③每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
(即:质数×质数=合数)
④20以内的质数有8个:2,3,5,7,11,13,17,19。
⑤100以内的质数有25个:2,3,5,7,11,13,17,19,23,29,31,37,41,43,
47,53,59,61,67,71,73,79,83,89,97。
⑥常见的最大、最小
A的最小因数是:1;最小的奇数是:1;
A的最大因数是:它本身;最小的偶数是:0;
A的最小倍数是:它本身;最小的质数是:2;
最小的自然数是:0;最小的合数是:4;
⑦分解质因数:把一个合数分解成多个质数相乘的形式。
例:树状图
分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中还有合数,那我们就继续分解,一直分解到全部因数都是质数为止。
把36分解质因数是:36=2×2×3×3。
五.数的奇偶性
自然数按数的奇偶性分为:奇数、偶数两类。
奇数:个位上的数字是1、3、5、7或9的数。
奇数不是2的倍数。
偶数:个位上的数字是0、2、4、6或8的数。
偶数除0外都是2的倍数。
注:①相邻两个自然数之和为奇数,相邻两个自然数之积为偶数。
0是偶数。
②如果用a来表示自然数,偶数可以用2a表示,奇数可以用2a﹢1表示。
③偶数±偶数=偶数奇数±奇数=偶数奇数±偶数=奇数
偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数。