锅炉水冷壁高温腐蚀.

锅炉水冷壁高温腐蚀.
锅炉水冷壁高温腐蚀.

大型锅炉水冷壁高温腐蚀

调研报告

上海锅炉厂有限公司

二○○二年三月十五日

目录

1.前言 (2)

2.产生高温腐蚀的机理和条件 (2)

3.高温腐蚀发生在大型贫煤锅炉上的主要原因 (3)

4.大型锅炉水冷壁高温腐蚀的部位及预防措施 (5)

5.水平浓淡分离燃烧技术在防止高温腐蚀方面的应用 (7)

6.石洞口电厂#3、#4炉改造情况 (11)

7.大型锅炉炉内水冷壁发生高温腐蚀的判据 (14)

8.结论 (15)

1.前言

我国许多地方的电厂,不少燃用无烟煤、贫煤、劣质烟煤的大型锅炉投运后,炉内水冷壁都不同程度的存在高温腐蚀。这种情况,无论是在我国上海、哈尔滨、东方三大锅炉厂自行设计制造的锅炉,还是在国外日本三菱、法国斯坦因、英国巴布科克、加拿大巴威等公司设计制造的锅炉,其燃烧器高温区域,水冷壁都有高温腐蚀现象发生,而且遍及各种炉型。以水循环方式分,有自然循环、控制循环和直流锅炉;以燃烧方式分,有四角切圆、前后墙对冲和W型火焰燃烧器等许多典型设计。通过调研,我们发现水冷壁管壁腐蚀速度一般为0.8~1.5mm/104h,腐蚀后的管壁减薄形貌较多,一般是分层减薄,而管壁向火侧减薄较快。

2.产生高温腐蚀的机理和条件

在燃煤锅炉中,高温腐蚀分三种类型:硫酸盐型、氯化物型和硫化物型。硫酸盐型腐蚀主要发生高温受热面上;氯化物型腐蚀主要发生在大型锅炉燃烧器高温区域的水冷壁管上;硫化物型腐蚀主要发生在大型锅炉水冷壁管上。水冷壁的高温腐蚀通常是由这三种类型腐蚀复合作用的结果。

硫酸盐型高温腐蚀的形成:在炉内高温下,煤中的NaCl中的Na+易挥发,除一部分被熔融的硅酸盐捕捉外,有一部分与烟气中的SO3发生反应,形成Na2SO4;另一部分是易于挥发性的硅酸盐,与挥发出的钠发生置换反应,而释放出来的钾,与SO3化合,生成K2SO4。而碱金属硫酸盐(Na2SO4、K2SO4)有粘性,且露点低。当碱金属硫酸盐沉积到受热面的管壁后会再吸收SO3,并与Fe2O3、Al2O3作用生成焦硫酸盐(Na·K)2S2O7。

这样一来,受热面上熔融的硫酸盐(M2SO4)吸收SO3并在Fe2O3、Al2O3作用下,生成复合硫酸盐(Na·K)(Fe·Al)SO4,随着复合硫酸盐的沉积,其熔点降低,表面温升升高。当表面温升升高到熔点,管壁表面的Fe2O3氧化保护膜被复合硫酸盐破坏,使管壁继续腐蚀。另外,附着层中的焦硫酸盐(Na·K)2S2O7。由于熔点低,更容易与Fe2O3发生反应,生成(Na·K)3Fe(SO4)3,即形成反应速度更快的熔盐型腐蚀。

氯化物型腐蚀的形成:在炉内高温下,原煤中的NaCl中的易与H2O、SO2、SO3反应,生成硫酸盐(Na2SO4)和HCl气体。同时凝结在水冷壁上的NaCl也会和硫酸盐发生反应,生成HCl气体,因此,沉积层中的HCl浓度要比烟气中的大得多,致使受热面管壁表面的Fe2O3氧化保护膜破坏。有研究表明,这种情况在CO和H2浓度超过一定范围的强还原性气氛中则更为强烈。

综上所述,燃煤中的S、Cl、K、Na等物质的存在是发生高温腐蚀的内在根源。而燃用劣质煤所需要的气流扰动和较高的燃烧温度,使煤粉火焰容易刷墙以及水冷壁附近可能出现还原性气氛,为产生水冷壁高温腐蚀提供了充分条件。许多研究工作,提出了产生高温腐蚀的条件,归纳如下:(1)燃煤中存在一定含量的S、Cl、K、Na等可产生高温腐蚀的物质;

(2)水冷壁附近出现还原性气氛和腐蚀性气体;

(3)水冷壁腐蚀区域的壁温在320℃以上;

(4)腐蚀产物的剥落,使得腐蚀能不断地渗透内层。

3.高温腐蚀主要发生在大型贫煤锅炉上的原因

在调研中,我们发现山东省已投运的18台300MW机组中,燃用贫煤

的10台锅炉,都出现了高温腐蚀,而燃用烟煤的锅炉则很少发现高温腐蚀。在湖北省汉川电厂投运的4台贫煤锅炉上,也出现了不同程度的高温腐蚀,其中#1炉曾于2001年8月因高温腐蚀发生爆管,造成紧急事故停炉。在重庆珞璜、陕西渭河、河北西北坡等电厂均发生了类似问题。高温腐蚀发生在大型贫煤锅炉上的原因,是我们调研的主要任务。总的来说,有下列几点:

(1)劣质煤着火困难,燃烧延迟,水冷壁附近未燃烬的煤粉颗粒增多,在一些区域造成缺氧,因而容易出现还原性气氛和腐蚀性气体,

而使水冷壁腐蚀。在燃用高灰份劣质烟煤或贫煤时,由于制粉系

统、磨煤机等限制,煤粉变粗,在切圆的离心力作用下容易刷墙,

更容易在炉内水冷壁附近产生还原性气氛和腐蚀性气体。

(2)为改善低挥发份煤的着火,通常采用大切圆,并在一次风喷口布置了各种型式的稳燃装置,这在一定程度上影响了一次风的刚

性,造成煤粉火焰刷墙。

(3)劣质煤的燃烧,往往采用瘦高型炉膛,燃烧器区域热负荷高,故水冷壁管壁温度高。假若水质不好,容易引起管内结垢,进一步

提高了管壁温度。

(4)由于环保要求的限制,在燃用低挥发份劣质煤或贫煤时,一般采用中间仓储钢球磨热风送粉系统,为保证燃烧的稳定性和满足低

NOx要求,采用了加装顶部燃烬风(OFA)和分级送风的原理,

致使炉内中、下部风量减少,造成燃烧器区域热负荷高、水冷壁

附近容易产生还原性气氛和腐蚀性气体。

(5)在燃用低挥发份、高灰份的劣质煤或贫煤时,需要的热风温度较高,当燃煤中的含硫量较高时,回转式空气预热器的漏风、堵灰

及低温腐蚀,容易造成送、引风机难以满足炉内燃烧需要空气,

也促使水冷壁附近形成还原性气氛和腐蚀性气体。

(6)现代电网的峰谷差增大,要求大型锅炉参与调峰,也不利于炉内水冷壁的保护。锅炉在频繁启停和变负荷运行中,水冷壁热胀冷

缩,容易造成管壁表面的氧化膜脱落,加速了腐蚀过程。同时,

如果变负荷速度太快而影响正常的水循环,造成水冷壁局部壁温

增高,也会导致高温腐蚀腐蚀加剧。

4.大型锅炉水冷壁高温腐蚀的部位及预防措施

目前,我国配300MW机组的锅炉,从燃烧方式上讲,有直流燃烧器四角切圆燃烧方式、旋流燃烧器水平燃烧方式和拱顶燃烧器W型火焰燃烧方式,对于不同燃烧方式的锅炉炉内水冷壁高温腐蚀的部位是不同的。

(1)直流燃烧器四角切圆燃烧方式

直流四角切圆燃烧方式的燃烧器,是目前我国大型锅炉采用最多的一种燃烧型式。其特点是炉内火焰形成大旋涡作旋转上升运动,一次风射流受上游旋转气流挤压,炉内切圆增大。当燃烧器的高宽比加大时,热态切圆增大,煤粉火焰容易冲刷墙壁,导致水冷壁高温腐蚀。水冷壁的腐蚀部位大致是:沿一次风气流流向,在炉膛中心线附近及下游的水冷壁壁面。如青岛电厂配300MW机组的锅炉。这种类型的锅炉在设计上应考虑的措施:炉内切圆直径取小值,防止煤粉火焰冲刷墙壁;增强一次风的刚性,在一次风喷口、两侧尤其是背火侧增加周界风或侧二次风,以刚性较强的

二次风支撑一次风气流,并在炉壁附近形成氧化性气氛;在注重着火、稳燃的同时,注意截面热负荷的选取,以防止炉膛结渣和积灰,而加速高温腐蚀的过程。为此,应适当加大炉膛的截面积,加大喷燃器的高宽比,以便燃烧器区域的温度较为平缓。

(2)旋流燃烧器水平燃烧方式

旋流水平燃烧方式的燃烧器通常是前墙或前后墙布置带一次风回流稳燃和煤粉局部浓度高的低NOx双调风轴流型式。其特点是在靠近两侧的旋流燃烧器出口煤粉易偏向两侧墙,并随着旋流强度的增加,偏转越严重,从而两侧墙附近易形成还原性气氛和腐蚀性气体。水冷壁的腐蚀部位一般在两侧墙。如西北坡电厂配300MW机组的锅炉。这种类型的锅炉在设计上应考虑的措施:佛斯特·惠勒公司是在燃烧器下部靠近两侧墙的位置设置壁面风,以改善两侧墙附近的烟气气氛,使之呈氧化性。

(3)拱顶燃烧器W型火焰燃烧方式

W型火焰燃烧方式的燃烧器,不论其拱顶的布置与结构,由于其煤粉气流在二次风的引射下基本上与前后墙平行向下流动,然后转折向上,形成W型火焰,一般来说,煤粉不会冲刷墙壁。但是如果一次风喷口位置不对,或者在一次风动量和射流扩展角偏大的情况下,煤粉也会冲刷前后墙的上部区域,造成高温腐蚀,尤其是卫燃带脱落的部位。水冷壁的腐蚀部位一般在前后墙的上部区域。如珞璜电厂配360MW机组的锅炉。这种类型的锅炉在设计上应考虑的措施:正确选择一次风喷口与炉膛中心线的夹角;保证二次风与一次风之间的动量比恰当,以便煤粉气流有一定的引射长度,而又不至于在前后墙附近形成还原性气氛和腐蚀性气体。

5.水平浓淡分离燃烧技术在防止高温腐蚀方面的应用

直流四角切圆燃烧器,是我国300MW等级锅炉采用最多的一种燃烧方式。为防止高温腐蚀发生,在这种型式的锅炉上采用水平浓淡分离技术,从理论上看是可行的,也是目前实施较多一种方案,但实际效果如何是我们调研的重点。汉川电厂和青岛电厂是上海锅炉厂早期引进美国燃烧工程公司的技术,设计制造的贫煤锅炉,在投运初期都发生了一些问题。汉川电厂主要存在低负荷稳燃问题,而青岛电厂则是发生高温腐蚀。哈尔滨工业大学采用水平浓淡分离燃烧技术,对2个电厂6台锅炉,进行了燃烧器改造。下面介绍这一技术在两个厂的应用情况。

(1)青岛电厂#2炉

配青岛发电厂300MW机组锅炉设计采用了美国燃烧工程公司的技术。锅炉为亚临界压力控制循环炉,燃料为晋中贫煤,采用钢球磨,中间仓储制,热风送粉。锅炉采用单炉膛、∏型、露天布置,全悬吊钢结构。炉膛断面尺寸深×宽为11760mm×11970mm。锅炉燃烧系统采用四角切圆燃烧,摆动式煤粉喷嘴。高度方向分四层布置,另布置二层三次风乏气喷嘴在煤粉喷嘴上方,固定向下10?布置。

青岛发电厂#1、#2炉分别于1995、1996年投运,在大修中发现炉内四壁的燃烧器区域及气流下游区域水冷壁高温腐蚀严重,其中#1炉在1997年的第一次大修中发现:前后墙和两侧墙的燃烧器区域都有减薄。在调研中,我们统计过1996年至2000年期间电厂入炉煤的煤质资料,电厂用煤中含硫量平均高达2.4%,与设计煤种的含硫量:S ar=0.72%相差较大。腐蚀位置见图1。

改造前青岛电厂的燃烧设备是采用四角切圆燃烧方式。燃烧器布置在炉膛四角上。为了有助于低挥发份煤的着火和稳定燃烧,该炉采用了CE 公司开发的WR型燃烧器。为了降低NO X的排放量,除采用分级混合外,还在燃烧器顶部布置了顶部二次风。为了减少锅炉水平烟道左右侧的烟气偏差,将燃烧器上部的四层喷嘴(其中二层为二次风,另二层为三次风)与下部的一、二次风气流旋转方向作相反布置。为解决锅炉存在的水冷壁高温腐蚀问题,该厂采用哈尔滨工业大学“摆动式水平浓淡风煤粉燃烧器”技术,对#1、#2号炉进行了煤粉燃烧器的改造。既:把16只WR型煤粉燃烧器全部改成水平浓淡风煤粉燃烧器。并根据其实验室研究结果,对该燃烧器选取了浓缩比为4:1的百叶窗煤粉浓缩器结构(浓缩比:是指浓煤粉气流的煤粉浓度与淡煤粉气流的煤粉浓度之比),并将原一次风周界风改为侧二次风喷口,通过调节原一次风的周界风风门(现称为侧二次风)挡板开度以调节侧二次风流量,以达到对燃烧区域两相流场的调节。

为了了解改造效果,该厂组织了哈尔滨工业大学、山东省电科院等单位在#2炉上进行了现场试验。内容包括侧二次风与一次风、二次风的动量配比特性试验和水冷壁壁面氧量测量。

试验结果:#2号炉改造后,在负荷300MW,省煤器出口氧量5.6%的工况下:入炉煤的一些主要参数为,V daf=10.95%,A ad=27%,Q https://www.360docs.net/doc/4f1963431.html,=24525KJ/kg,R90=10.34%,燃烧器区域水冷壁壁面平均氧量为1.5~3.6%。#1炉改造前,在负荷300MW,省煤器出口氧量6.0%的工况下:入炉煤的一些主要参数为,V daf=12%,A ad=20%,Q https://www.360docs.net/doc/4f1963431.html,=26517KJ/kg,R90=9.49%,#1号炉燃烧器区域水冷壁壁面平均氧量0.8~3.0%。另外,通过调节侧二次风风门开度来较好的

控制一次风射流的偏转,在一定程度上改变了炉内强风环直径的大小及贴壁风速的大小。

但该厂于1998年在#2炉的水冷壁的腐蚀区域实施了喷涂技术,高温腐蚀才有所好转面。对此,电厂是这样解释的:由于使用的煤质较差,影响锅炉的正常运行,并且含硫量也大大超过了设计值,使水冷壁仍然有不同程度的高温腐蚀。

(2)汉川电厂#1炉

配汉川电厂300MW机组锅炉设计采用了美国燃烧工程公司的技术。锅炉为亚临界压力控制循环炉,燃料为晋东南潞安贫煤,采用钢球磨,中间仓储制,热风送粉。锅炉采用单炉膛、∏型、露天布置,全悬吊结构。炉膛断面尺寸深×宽为11760mm×11970mm。锅炉燃烧系统采用四角切圆燃烧,摆动式煤粉喷嘴。高度方向分四层布置,另布置二层三次风乏气喷嘴在煤粉喷嘴上方,固定向下10?布置。

为了提高锅炉低负荷稳燃能力,电厂于2000年10月对燃烧器进行了改造。2001年8月后墙水冷壁发生爆管,造成事故停炉。停炉检查发现四面墙的水冷壁管均有不同程度的减薄,而具体爆管位置:在标高18m 处,后墙2#角第48根水冷壁管。在调研中,我们统计过2001年1月至8月电厂入炉煤的煤质资料,电厂用煤中含硫量平均为0.44%,最高仅为1.18%,与设计煤种的含硫量:S ar=0.35%相差不大。腐蚀位置见图2。

改造前汉川电厂的燃烧设备是采用四角切圆燃烧方式。燃烧器布置在炉膛四角上,采用CE公司开发的WR型燃烧器,在燃烧器中利用燃烧器中的隔板将煤粉分成上下浓淡不同的两股气流,并在燃烧器出口安装了一

“V”型钝体,便于形成一个稳定的回流区,有助于低挥发份煤的着火和稳定燃烧。为了降低NOX的排放量,除采用分级混合外,在燃烧器顶部布置了顶部二次风。为了减少锅炉水平烟道左右侧的烟气偏差,将燃烧器上部的四层喷嘴(其中二层为二次风,另二层为三次风)与下部的一、二次风气流旋转方向作相反布置。汉川电厂#1炉的改造是采用哈尔滨工业大学的水平浓淡分离及百叶窗浓缩煤粉技术,对燃烧器下两层一次风共8个喷口进行了改造。将一次风的煤粉气流在水平方向进行浓淡分离,淡相气流布置在背火侧,浓相气流布置在向火侧,并将原来一次风喷口的周界风改成侧二次风。

为了查清燃烧器改造对壁面气氛的影响,对电厂运行提供指导,该厂组织了西安热工研究院、湖北省电科院等单位在#1炉上进行了现场试验。内容包括冷态空气动力场和热态水冷壁壁面氧量测量。

试验发现燃烧器改造后:一、二次风切圆比原来大,并且一次风射流刚性较差,有明显的气流刷墙现象。在290MW负荷下,最好的运行工况中,燃烧器区域水冷壁面也有四分之一处于还原性气氛中,其中的大部分还是处于强还原性气氛中。随着负荷降低,情况逐渐好转,在负荷小于150MW后,全炉膛的壁面烟气会呈现氧化性气氛。

综合上述情况,不难发现水平浓淡分离技术不是防止高温腐蚀的成熟经验。一方面从原理上看,将一次风的煤粉气流在水平方向进行浓淡分离,淡相气流布置在背火侧,浓相气流布置在向火侧,并将原来一次风喷口的周界风改成侧二次风,可以在某种程度上改善燃烧器区域的壁面气氛,可以缓解高温腐蚀情况。另一方面也有加速高温腐蚀进程的因素存在。最主

要的一点是采用水平浓淡分离后,燃烧器区域的燃烧温度会升高,这是其稳定着火燃烧的原因,为许多试验所证实。当煤粉浓度从0.9kg/kg增加到2.8kg/kg时,炉膛中心线上的火焰温度升高近200℃,炉内水冷壁的局部壁温会相应升高。而研究表明高温腐蚀与管壁温度有关,腐蚀速度与壁温呈指数关系,壁温在300~500℃之间每升高50℃,腐蚀速度增加一倍。

6.石洞口电厂#3、#4炉改造情况

上海石洞口发电厂原4台SG-1025t/h-16.67MPa-540/540 UP型单炉膛燃煤直流锅炉,是我厂在80年代引进CE技术,首次自行设计改进和制造的,为传统的Π型,全悬吊钢结构。炉膛断面为带切角的矩形,宽13035㎜、深12195㎜,切角为45°,切角边长为980㎜。主燃烧器布置在炉膛四个切角上,成切园燃烧,一次风采用相对集中布置,共6层,一次风喷咀两侧为周界风,二次风喷咀共有5层,其中编号为A、F、I三层布置重油枪,三次风共2层布置在前后墙,同层每对角接一台排粉机。限于当时的技术条件,这4台锅炉自87年底,投运以来,暴露出同样的问题:水冷壁发生高温腐蚀、局部应力集中、热敏感性强,锅炉设计不投油最低负荷为65%。据#4炉的统计资料:该炉自90年5月20日投运以来,到97年11月11日,历时7年半的时间,实际累计运行时间为53451小时,非计划停机61次,年平均为8.7次,计划检修12次,其中1次大修,11次小修,完成发电量128.4亿度,平均等效可用系数仅为81.8%,可靠性较差。

改造后的锅炉总体布置仍为传统的Π型,全悬吊结构。炉膛燃烧器仍为四角切园,对角型式完全相同,燃烧器向下倾10°,可延长燃烬时间。

炉膛前、后墙各有两层三次风喷口,上层与A磨相连,下层与B磨相连,炉膛上部每面墙有2个燃烬风喷口,三次风K层#1、#3角与C磨相连,#2、#4角与D磨相连。新增的核心风、周界风和燃烬风从空气预热器后的二次风引出。风量按负荷变化进行分配,过燃风1、中间风、底部风和偏置风均有调节挡板,过燃风2装有隔绝挡板。调节偏置风可降低NO X 产生、避免侧墙缺氧以及防止燃烧器附近结焦。在华东电力试验研究院负责完成的性能验收试验报告中,锅炉性能得当充分肯定。

(1)调峰能力。锅炉最低不投油稳燃负荷为40%,此时,在给粉机跳闸等因素的扰动下,锅炉燃烧稳定。冷态滑参数至满负荷的

启动时间为7小时左右。在120MW至300MW负荷范围内,可

调峰。其变负荷速率如下:负荷80%以上为3%/min;负荷60~

80%为2%/min;负荷50~60%为1.5%/min;负荷40~50%为

1%/min。

(2)锅炉效率。由于电厂运行煤质较杂,无法以设计煤质完成效率试验。在2000年8月的一次摸底性试验中,试验煤种接近校核

煤种,近似无烟煤,加上制粉系统和风机等原因,在煤粉细度

R90>25%,风量偏小等情况下,试验后的修正效率为90%,低于

保证值0.5个百分点。由于现场条件的满足不了试验要求,用户

和试验负责单位未对效率低于保证值提出异议。而2001年4月

的效率试验测得效率为91.7%,高于保证值。

(3)NOx排放情况。对省煤器出口处的排烟取样分析,NOx修正到O2=6%后为576mg/Nm3,优于国家标准(650mg/Nm3)。

改造后的#3、#4炉水冷壁燃烧器上部区域,高温腐蚀严重。#4炉自98年10月正式投运至2000年10月,两年间,该区域水冷壁管壁的减薄量为0.7mm,腐蚀区域在D层至H层煤粉喷口向火面角隅,4面墙均有面积大致为3m×7m的区域。在300MW负荷时,经过测定高温腐蚀严重的地方烟气中的O2仅为1%左右,而在240MW以下,烟气中的O2为5%。

众所周知,解决劣质煤的稳定燃烧与防止高温腐蚀的发生,在许多技术的应用上是矛盾的,国内外并无成熟经验,而斯坦缪勒的石洞口#4炉改造方案中,在防止高温腐蚀的发生,已采用了许多好的措施,与国内的经典理论和经验是一致的。

(1)热负荷的选取。汉川、青岛电厂1025t/h锅炉的容积热负荷为130~133KW/m3,截面热负荷为5.69MW/m2,而石洞口1025t/h

锅炉容积热负荷为130KW/m3,截面热负荷为5.31MW/m2。其

他电厂数据见表1。比较得知,改造后的石洞口1025t/h锅炉热

负荷的选取是恰当的,兼顾了燃烧稳定和避免高温腐蚀两方面

的要求。

(2)大切角的应用。一般地说,一次风的偏转、刷墙,是形成和加速炉内高温腐蚀的重要条件,而一次风两侧补气条件的差异,

是造成一次风偏转的重要原因。为了改善补气条件,四角切圆

燃烧方式,现在大多采用了切角布置。改造后的石洞口1025t/h

锅炉炉膛切角为45°,切角边长为2000㎜。

(3)一次风的间隔布置。国内许多电厂燃用劣质煤锅炉的燃烧器,采用一次风相对集中布置,这种方式容易造成炉内局部缺氧燃

烧和局部热负荷高,是产生炉内高温腐蚀的重要条件。而改造

后的石洞口1025t/h锅炉,采用一次风的间隔布置,并且一次风

喷口共有6层24只,而汉川、青岛电厂一次风喷口是4层16

只布置,在很大程度上,减缓燃烧器区域的热负荷梯度,减弱

了高温腐蚀的趋势。

(4)偏置风喷口的设置。很显然,偏置风喷口的设置,有利于避免两侧墙缺氧,防止燃烧器附近结焦,降低NO X产生等作用,并

且在偏置风喷口前,有两个手动导流板,可供调试人员调整用,

以期改变炉内水冷壁附近烟气氛围。

(5)风煤比的控制。国内燃用劣质煤电厂的制粉系统,一般采用的中间仓储式,钢球磨热风送粉系统,大多数各层一次风管或同

层一次风管间的风煤比偏差很大,运行人员很难调整。这一偏

差容易造成局部缺氧、一次风冲刷墙壁等问题,而造成壁面高

温腐蚀。而改造后的石洞口1025t/h锅炉燃烧系统,在风量的测

量与控制、煤粉浓度的测量与控制,以及风煤比的匹配等方面,

有许多调整和保护手段,能有效地避免风煤比偏离设计值。

7.大型锅炉炉内水冷壁发生高温腐蚀的判据

对于水循环方式和燃烧方式相同大型锅炉,水冷壁发生高温腐蚀的部位是相似的,正如前面所说的一样。但是目前还无法从理论上取得突破,在锅炉的设计阶段预计并确定将来运行中发生高温腐蚀的具体位置,原因是多方面的。煤质的变化、电网负荷的调度、运行人员的习惯,以及辅机运行状况的影响,都可能使之发生变化。

锅炉管道腐蚀的原因分析和建议

锅炉管道腐蚀的原因、分析及建议 ×××(××××××××××发电有限责任公司×××××× 044602) 摘要:四管爆漏是火力发电厂中常见、多发性故障,而管道的腐蚀常常中四管泄漏的重要原因。大部分管道腐蚀的初始阶段,其泄漏量和范围都不大,对于故障的部位不好确定和判断。一般要经过几天或更长时间泄漏程度才会逐渐增大,发展成为破坏性泄漏或爆管,严重威胁着火力发电厂的安全稳定运行,故本文对锅炉四管腐蚀的原因进行了分析并根据相应的原因提出了一些建议。 关键词:腐蚀、硫化物、氯化物 0 前言 腐蚀是火力发电厂中常见的故障。腐蚀的初始阶段,没有明显的现象或其泄漏量和范围都小,对于故障的部位不好确定和判断。一般要经过几天或更长时间泄漏程度才会逐渐增大,同时局部的泄漏会冲刷周围邻近的管壁,造成连锁性破坏,危及到整个锅炉运行的安全。1.腐蚀的原因 广义的腐蚀指材料与环境间发生的化学或电化学相互作用而导致材料功能受到损伤的现象。 狭义的腐蚀是指金属与环境间的物理-化学相互作用,使金属性能发生变化,导致金属,环境及其构成系功能受到损伤的现象。 1.1管内壁腐蚀:也称水汽侧腐蚀。 1.1.1溶解氧腐蚀。 1.1.2垢下腐蚀。 1.1.3碱腐蚀 1.1.4氢损伤。 1.1.5铜氨化合物腐蚀。 1.2烟气侧腐蚀。 1.2.1高温腐蚀。

1.2.2低温腐蚀。 1.3应力腐蚀,也称冲蚀。指管道受到腐蚀和拉(压)应力的综合效应。 3.设备发生腐蚀的理论原因分析 3.1管内壁腐蚀 3.1.1溶解氧腐蚀 由于Fe与O2、CO2之间存在电位差,形成无数个微小的腐蚀电池,Fe是电池中的阳极,溶解氧起阴极去极化作用,Fe比O2等的电位低而遭到腐蚀。 当pH值小于4或在强碱环境中,腐蚀加重,pH值介于4~13之间,金属表面形成致密的保护膜(氢氧化物),腐蚀速度减慢。腐蚀速度与溶解氧的浓度成正比,随着给水速度提高、锅炉热负荷增加、溶解氧腐蚀也随之加剧。 3.1.2垢下腐蚀 由于给水质量不良或结构缺陷防碍汽水流通,造成管道内壁结垢。垢下腐蚀介质浓度高,又处于停滞状态,会使管内壁发生严重的腐蚀,这种腐蚀与炉水的局部浓缩有关。如果补给水或因凝汽器泄漏(河水)使炉水含碳酸盐,其沉积物下局部浓缩的炉水(沉积着高浓度的OH-)pH值上升到13以上时发生碱对金属的腐蚀。如果凝汽器泄漏的是海水或含Cl-的天然水,水中的MgCl2、CaCl2将进入锅炉、产生强酸HCl,这样沉积物下浓缩的炉水(很高浓度的H+)pH值快速下降,而发生对金属的酸性腐蚀。 3.1.3碱腐蚀 游离碱会在多孔性沉积物和管内表面浓缩,浓缩的强碱会溶解金属保护膜而形成铁酸根与次铁酸根离子的混合物,当管壁表面局部碱浓度超过40%时,会释放出氢气,从而形成金属表面深而广的腐蚀,也称延性腐蚀。 3.1.4氢损伤(氢损伤实际就是酸性腐蚀) 一般情况下给水与管壁(Fe)发生反应生成H2和Fe3O4。 保护膜Fe3O4阻隔H2进入管壁金属而被炉水带走,当给水品质不佳或管内结垢会生成Fe2O3和FeO。 Fe2O3、FeO比较疏松、附着性很差,有利于H2向管壁金属的扩散,高温下晶界强度低,H2与钢中的碳和FeC反应生成CH4。

论锅炉受热面高温腐蚀

论锅炉受热面高温腐蚀 论锅炉受热面的高温腐蚀 【摘要】主要介绍了电站锅炉受热面的高温腐蚀机理、危害、类型、影响高温腐蚀的因素,并提出了防止或减轻受热面高温腐蚀的措施。 【关键词】受热面高温腐蚀机理影响因素防止措施 目前在高参数、大容量火电机组中,锅炉受热面的高温腐蚀问题已很普遍且迫切需要解决。因发生高温腐蚀导致受热面管件损坏严重而被迫停机的事故屡见不鲜。受热面的高温腐蚀已经成为燃煤锅炉机组安全稳定运行的一大隐患。在锅炉的设计及运行调整中如稍有不慎则高温腐蚀便很容易发生,腐蚀使得受热面承压部件的管壁变薄,严重时会使受热面管子在短时间内爆管,导致锅炉漏泄而被迫停机或事故跳机。可见其迫害程度非常之大,在运行中必须避免受热面的高温腐蚀。 1 高温腐蚀的形成机理 所谓高温腐蚀是指在煤粉锅炉高温火焰及高温烟气区,过热器和再热器管子及其悬挂件产生的外部腐蚀。锅炉受热面的高温腐蚀是一个复杂的物理化学过程。与其他有关煤的反应机理一样,由于煤自身的复杂性以及迄今对它的认识有限,这类机理都是粗糙的和带有推理性的,在结论的定量上也都具有相当宽的范围。高温腐蚀多发生在燃烧器区域的水冷壁、高温过热器、高温再热器,亦即受热面管壁金属温度超越一定界限的部位。从对高温腐蚀的现象及调查研究结果表明,这种腐蚀都是因壁面与积灰层间的一层液相物反应 而产生的。污染后的受热面会受到灰渣和烟气的复杂的化学反应。高温过热器与高温再热器多布置于烟温高于700-800?的烟道内,管子的外表面积灰由内层、外层两部分组成,内层灰密实,与管子黏结牢固,不易清除;外层灰松散,容易清除。

低熔灰在炉膛内高温烟气区已成为气态,随着烟气流向烟道。由于高温过热器及高温再热器区域的烟温较高,低熔灰若不接触温度较低的受热面则不会凝固,若接到温度较低的受热面就会凝固在受热面上,形成黏结灰层。灰层形成后,表面温度随灰层厚度的增加而增加。此后,一些中、高熔灰粒也被黏附在黏性灰层中。这种积灰在高温烟气中的氧化硫气体的长期作用下,形成白色的硫酸盐密实灰层,这个过程称为烧结。随着灰层厚度的增加,其外表面温度继续升高,低熔灰的黏结结束。但是中熔灰和高熔灰在密实灰层表面还进行着动态沉积,形成松散而且多孔的外层灰。内层灰的坚实程度随着时间的增长而增大,时间越长,灰层越坚实。 对于黏结灰层固形物进行化学分析和x衍射分析,结果都表明其主要构成是碱-三硫酸铁的络合物。它在538-704?温度范围内呈熔融状态。从关于碱-三硫酸铁络合物与铁的反应特性资料可知,在与碱-三硫酸铁络合物紧密黏结的奥氏体钢或铁素体钢之间都会产生对铁的腐蚀反应。与铁素体钢的这种反应,其速度是随着温度的升高而增大的;奥氏体钢的腐蚀速度与温度关系则成半铃形。从实验室的腐蚀失重试验结果也表明在相当于炉内条件下,合成硫酸盐具有相同的铃形腐蚀速度曲线,也表明这个硫酸盐络合物是受热面 高温腐蚀的根本原因。由此可以得出产生高温腐蚀的机理是:因煤灰的选择性沉积,使碱与氧化铁在积灰层中的浓度远比在煤灰中高。碱-三硫酸铁是这些选择性沉积物中与烟气中的so3反应生成的。碱与氧化铁在沉积之初很可能是粉末状的物料,随着温度的升高而呈熔融或半熔融状态。碱在管壁表面的聚积也可能是出于外层熔融物料的迁移。图示也表明了,积灰层中钾、钠含量比的重要性。钠络合物在图示的温度范围内都是干的;而钾络合物从625?开始就产生黏结;1:1钾络合物在约550?时就开始呈熔融状态,非但开始呈熔融状态的温度低,其温度范围也宽(如图1)。 煤灰在受热面上的沉积并致腐蚀的大致步骤如下:

水冷壁管高温腐蚀的机理

1 高温腐蚀是炉内高温烟气与金属壁面相互作用的一个复杂的物理化学过程,按其机理通常可分为三大类:硫化物(FeS2、H2S)型腐蚀、焦硫酸盐型腐蚀和氯化物型腐蚀。多年研究表明,水冷壁管发生高温腐蚀的区域是有规律的:通常多在燃烧高温区,即局部热负荷较高,管壁温度也较高的区域,如燃烧器区附近,其余区域的高温腐蚀明显减弱或根本不发生高温腐蚀;发生高温腐蚀的管子向火侧正面的腐蚀速度最快,管壁减薄量最大,背火侧则不发生高温腐蚀。 2 影响高温腐蚀的主要原因 2.1火焰冲墙和还原性气氛的存在是造成水冷壁高温腐蚀的主要原因 对切圆燃烧锅炉,当燃烧切圆直径过大、火焰中心未形成切圆或燃烧切圆偏移时,炉内空气动力场倾斜,燃烧器区域出现火焰冲墙和还原性气氛,从而发生高温腐蚀。 2.1.1高温火焰直接冲刷水冷壁 当含有较大煤粉浓度的高温火焰直接冲刷水冷壁管时,将大大加剧高温腐蚀的发生。其一,高温辐射热可加速硫酸盐的分解,加快腐蚀速度;其二,火焰中含有未燃尽的煤粉,在水冷壁附近缺氧燃烧,产生还原性气体;其三,未燃尽的煤粉颗粒随烟气冲刷水冷壁管时,磨损将加速水冷壁管上保护膜的破坏,加快金属管壁高温腐蚀的过程。 2.1.2存在还原性气体 由于着火延迟,未燃尽的煤粉在水冷壁附近进一步燃烧时,发生化学不完全燃烧,形成缺氧区,使炉膛壁面附近处于含有还原性气体(CO、H2)和腐蚀性气体(H2S)的烟气成分之中,没有完全燃烧的游离硫和硫化物与金属管壁发生反应,引起管壁高温腐蚀。 研究表明,烟气中CO浓度越大,高温腐蚀就越严重;H2S的浓度大于0.01%时,就会对钢材产生强烈的腐蚀作用;而当含氧量大于2%时,基本上不会发生高温腐蚀[1]。 2.2燃煤品质差是水冷壁高温腐蚀的必要条件 燃煤中硫、碱金属及其氧化物含量越大,腐蚀性介质浓度越大,出现高温腐蚀的可能性就越大。高硫煤产生的大量H2S、SO2、SO3、原子硫[S]不仅破坏管壁的Fe2O3保护膜,还侵蚀管子表面,致使金属管壁不断减薄,最终导致爆管事故。 燃用不易引燃的无烟煤和贫煤时,因着火点温度相对较高,燃烧困难,容易产生不完全燃烧,并使火焰脱长,在金属壁面附近形成还原性气氛,增加对管壁的腐蚀性。 煤粉的颗粒越大,也就越不易燃尽,比较容易形成还原性气氛,产生高温腐蚀。同时,颗粒越大,对壁面的磨损也越严重,破坏了水冷壁管外氧化保护膜,使烟气中腐蚀介质直接与管壁金属发生反应,使腐蚀加剧。 2.3过高的水冷壁管壁温度促进了水冷壁高温腐蚀的发生 研究表明,H2S等腐蚀性介质的腐蚀性在300℃以上逐步增强,即温度每升高50℃,腐蚀程度将增加一倍。对于亚临界大型电站锅炉,燃烧器区域的水冷壁管内汽水温度约在350℃左右,烟气侧水冷壁管温度多在420℃左右,正处于金属发生强烈高温腐蚀的温度范围之内。同时,管子局部壁面温度过高,易使具有腐蚀性的低熔点化合物粘附在金属表面,促进了管壁高温腐蚀的发生。 2.4运行因素的影响 当锅炉负荷发生变化时,若运行不当(如火嘴投停不当),就容易引起燃烧不稳定,产生还原性气氛,或造成烟气冲墙,继而发生高温腐蚀。因此,运行不当也是引起高温腐蚀的一个主要因素。 3高温腐蚀的防护措施

锅炉水冷壁高温腐蚀原因及预防措施

锅炉水冷壁高温腐蚀原因及预防措施 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

水冷壁高温腐蚀的原因分析及预防措施 我厂#2炉在本次B 级检修中发现水冷壁存在高温腐蚀现象,高温腐蚀区域大约在D 层燃烧器与 层燃烧器之间, 在这一区域水冷壁高温腐蚀后,壁厚明显减薄,最薄处仅有5mm, 因而强度降低,极易造成水冷壁爆管和泄漏,危及锅炉安全运行。 针对水冷壁高温腐蚀问题,生产部、调度部、运行分场进行了多次分析和探讨,认为我厂水冷壁高温腐蚀的原因大致有以下几个原因: 1、我厂燃煤为山西贫煤,该煤种含硫及硫化物较多,高含硫量使煤在燃烧中产生较多的腐蚀性物质,直接导致水冷壁的高温腐蚀。同时,由于近年来煤炭市场供求关系的转换,煤质难以得到保证,由于煤质较杂多变,运行中往往引起煤粉变相,着火点推迟,燃烧速度低等一系列问题。 2、我厂锅炉为亚临界锅炉,饱和水温约为360 ℃,水泠壁温度可达400℃,在该条件下管壁被氧化,使受热面外表形成一层Fe 2O 3和极细的灰粒污染 层,在高温火焰的作用下,灰分中的碱土金属氧化物(Na 2O 、K 2O )升华,靠扩散 作用到达管壁并冷凝在壁面上,与周围烟气中的SO 3化合生成硫酸盐。管壁上的硫 酸盐与飞灰中的Fe 2O 3及烟气中的SO 3作用,生成复合硫酸盐,复合硫酸盐在 550℃-710 ℃范围内呈液态,液态的复合硫酸盐对管壁有极强的腐蚀作用。 3、我厂入炉煤粉长期偏向,造成煤粉直接冲刷水冷壁,在水冷壁附近区域造成还原性气氧,导致高温腐蚀。 4、我厂为四角切圆燃烧锅炉。当一、二次风射流喷出燃烧器后由于受到上游邻角气流的挤压作用及左右两侧不同补气条件的影响,使气流向背火侧水冷壁

锅炉水冷壁高温腐蚀原因分析及预防措施

锅炉水冷壁高温腐蚀原因分析及预防措施 发表时间:2019-11-18T13:31:35.660Z 来源:《中国电业》2019年14期作者:侯启聪 [导读] 对大唐鲁北电厂2×330MW机组锅炉水冷壁产生高温腐蚀的原因进行分析。 摘要:对大唐鲁北电厂2×330MW机组锅炉水冷壁产生高温腐蚀的原因进行分析,认为其主要是主燃烧器区二次风和一次风配比不合理,造成风粉脱离,含粉气流贴壁冲刷,在水冷壁区域形成局部还原性气氛所致。文章针对锅炉水冷壁高温腐蚀的原因及预防措施,进行简要的剖析研究。 关键词:锅炉;水冷壁;高温腐蚀;燃烧 鲁北电厂330MW锅炉是采用美国燃烧工程公司(CE)的引进技术设计和制造的。锅炉为亚临界参数、一次中间再热、自然循环汽包炉,采用平衡通风、四角切圆燃烧方式,。锅炉以最大连续负荷(即BMCR工况)为设计参数,锅炉的最大连续蒸发量为1020t/h;机组电负荷为330MW(即TRL工况)时,锅炉的额定蒸发量为969t/h。 锅炉设计燃料为烟煤,收到基硫0.41%,校核煤种收到基硫0.6%。 1高温腐蚀的现象及原理 机组停备水冷壁防磨防爆检查发现,腐蚀严重的区域大都位于燃烧器喷出后射流的中下游。腐蚀区域的水冷壁表面一般呈黑褐色,外层松软、内层坚硬,剥落坚硬层后,垢状物与水冷壁管结合面处层蓝色。腐蚀区域大多水冷壁表面不清洁,有较多的灰沾污。大唐鲁北电厂1、2号炉水冷壁发现腐蚀区域水冷壁表面有未燃尽的煤粉附着,再往里有较多的黄色硫化物。 通过收集资料汇总发现,近几年山东省相继有多台电厂锅炉发生严重的水冷壁高温腐蚀,如黄台电厂8号炉(1000t/h)、华能德州电厂1-4号炉(1000t/h)、南定电厂1、2号炉(410t/h)、潍坊电厂1、2号炉(1000t/h)、青岛电厂1、2号炉(1000t/h)等,腐蚀最严重的锅炉水冷壁最小壁厚仅1.3mm,腐蚀速度2mm/a。上述各台锅炉发生高温腐蚀的区域基本相近,都在燃烧器出口射流中下游区域,高度在燃烧器中心线附近,且管子向火侧的正面点腐蚀速度最快。水冷壁发生高温腐蚀后,壁厚减薄,强度降低,容易造成爆管泄漏,影响锅炉安全运行。有腐蚀物分析基本可确定,大唐鲁北1号炉水冷壁高温腐蚀属于硫化物型高温腐蚀。这种腐蚀主要是由煤中的黄铁矿硫造成的。 2水冷壁高温腐蚀原因分析 2.1煤种问题 煤种是造成高温腐蚀的主要原因之一。煤中的硫和硫化物是形成腐蚀物质的基础,而煤的燃烧特性则直接影响贴壁还原性气氛的生成。 对发生高温腐蚀的锅炉所燃用煤质统计分析表明,大部分锅炉燃煤的含硫量均在1.2%以上,有些甚至高达3%。高含硫量使煤在燃烧中产生更多的腐蚀性,加速水冷壁腐蚀。根据山东省锅炉高温腐蚀情况普查结果,发生严重高温腐蚀的多为1000t/h以上高参数、大容量锅炉,中小型锅炉较少出现高温腐蚀。南定电厂1、2号炉均为410t/h锅炉,但也出现严重高温腐蚀,这其中有燃烧器结构布置方面的原因,但更重要的是煤质。 2.2炉内燃烧风粉分离 这是四角切圆燃烧锅炉普遍存在的问题。目前四角切圆燃烧锅炉普遍采用集束射流着火方式,一二次风间隔布置并以同一角度平行射向炉内。理想的着火应是一次风喷出后不久即被动量较大的二次风所卷吸,射流轨迹变弯,形成转弯的扇形面,并卷吸周围高温烟气,形成着火区,着火后的一次风被卷入二次风射流中燃烧。由于一次风射流混入动量大的二次风中,使火炬射流刚性加强,不易受干扰,从而在整个燃烧器区域内形成一个燃料与空气强烈混合的、稳定燃烧的旋转火炬。 但炉内实际燃烧过程并非如此。为保证稳定燃烧,一次风出口风速通常控制比较低(20—25m/s),而二次风速一般在40—50m/s之间,从而一二风的射流刚性相差较大。一二次风射流喷出燃烧器后由于受到上游邻角气流的挤压作用及左右两侧不同补气条件的影响,使气流向背火侧水冷壁偏转,此时刚性较弱的一次风射流比二次风偏转更大角度,从而使一二次风分离。一二次风的刚性相差越大,这种分离现象越明显。由于部分一次风射流偏离二次风,煤粉在缺氧状态下燃烧,在射流中下游水冷壁附近形成还原性气氛,这是引发高温腐蚀的一个重要原因。 2.3运行调整方面 2.3.1配风状况差 锅炉二次风门普遍采用气动执行机构控制,由于种种原因风门控制大都较乱,加上锅炉一二次风配比不合理,炉内配风状况很差。这也是造成一二次风混合不完全,煤粉着火和燃尽差,煤粉贴壁燃烧的原因之一。 2.3.2燃烧配风状况差 部分锅炉设备由于辅机设备问题,造成满负荷工况供风不足。如潍坊电厂1、2号炉由于排烟温度低,空预器积灰严重,阻力增大,造成送、引风机出力不足,满负荷运行时炉膛出口氧量不足1%(设计值为4%),远远不能满足锅炉正常燃烧要求。由于总风量不足,使燃烧器区域的缺氧燃烧状况更加严重,对预防高温腐蚀非常不利。 通过以上分析,认为鲁北1号炉高温腐蚀的主要原因是:锅炉长期高负荷、大煤量运行工况下,主燃烧器区二次风和一次风配比不合理,一次风粉射流在炉内上升过程中,受到刚性较强的二次风射流的挤压和下游二次风射流的牵引,造成风粉脱离,含粉气流贴壁冲刷,在水冷壁区域形成局部还原性气氛。而给煤量大大偏离设计值造成的入炉煤粉浓度加大,以及含硫量的增高加剧了腐蚀的速度。 3预防高温腐蚀的措施方法 造成高温腐蚀的主要原因是煤质、设备、运行三个方面。从目前情况看,要改变煤种非常困难,依靠燃烧调整来预防高温腐蚀也有一定难度且效果不理想,因此,只有通过设备改造来预防高温腐蚀才是最根本有效的方法。 3.1侧边风技术 所谓侧边风就是在高温腐蚀区域的上游水冷壁或在高温腐蚀区域水冷壁上安装喷口,向炉膛内通入空气。采用侧边风的主要目的是改变水冷壁高温腐蚀区域的还原性气氛,增加局部含氧量。一般情况下以二次风作为侧边风的风源。根据侧边风结构及布置方式又分为贴壁型和射流型2种。贴壁型侧边风一般采用在水冷壁鳍片上开孔的方式,开孔位置在高温腐蚀区域内,依据腐蚀面积大小决定开孔数目的多少。二次风有小孔进入炉膛后,受炉内烟气运动影响,很快偏转附着于水冷壁管上,在高温腐蚀区域水冷壁表面形成一层空气保护膜。贴

锅炉受热面高温腐蚀原因分析及防范措施

锅炉受热面高温腐蚀原因分析及防范措施 Cause Analysis and Protective Measues to High-temperature Corrosion On Heating Surface of Boiler 张翠青 (内蒙古达拉特发电厂,内蒙古达拉特 014000) [摘要]达拉特发电厂B&WB-1025/18.44-M型锅炉在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,根据腐蚀部位、形态和产物进行分析,锅炉受热面的腐蚀属于高温腐蚀,其原因主要与炉膛结构、煤、灰、烟气特性及运行调整有关,并提出了防范调整措施。 [关键词] 锅炉受热面;高温腐蚀;机理原因分析;防范措施

达拉特发电厂#1~#4炉是北京B&WB公司设计制造的B&WB-1025/18.4-M型亚临界自然循环固态排渣煤粉炉。锅炉采用前后墙对冲燃烧方式。设计煤种为东胜、神木地区长焰煤。在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,两台炉腐蚀的产物、形状及部位相似。腐蚀区域水冷壁在标高16~38米之间及屏式过热器、高温过热器沿管排高度,腐蚀深度在0.4~1.0mm之间,最深处达1.7mm,腐蚀面积达500平方米左右。腐蚀给机组安全运行带来严重隐患。 1.腐蚀机理原因 1.1锅炉炉膛结构 锅炉炉膛结构设计参数见下表: 高40%多,同时上排燃烧器至屏过下边缘高度值比推荐范围的下限还低1.8米,这就导致燃烧器布置过于集中、燃烧器区域局部热负荷偏大、该区域内燃烧温度过高,实测炉膛温度达1370~1430℃。燃烧温度偏高直接导致水冷壁管壁温度过高,理论计算该区域水冷壁表面温度为452℃。大量的试验研究表明当水冷壁管壁温度大于400℃以后,就会产生明显的高温腐蚀。 1.2 煤、灰、烟气因素 蒙达公司实际燃煤是东胜、神木煤田的长焰煤和不粘结煤的混煤。:燃煤中碱性氧化物含量较高,灰中钠、钾盐类含量高,平均值达3.85%,含硫量偏高。 1.3 运行调整不当 为了分析运行调整因素对腐蚀的影响,在A、B侧水冷壁标高20、25、28米处安装了三排烟气取样点,每排三个,共18个。分析烟气成分后发现,燃用含硫量高的煤种时,由于燃烧配风调整不合理,省煤器后氧量偏大(实侧值 气体,加剧了高温腐蚀的产生与发展。 4.35%),导致燃烧过程中生成大量的SO 2 2.腐蚀类型 所取垢样中,硫酸酐及三氧化二铁的含量最高,具有融盐型腐蚀的特征,属于融盐型高温腐蚀。从近表层腐蚀产物的分析结果看,S和Fe元素含量最高,具有硫化物型腐蚀特征,说明存在较严重的硫化物型腐蚀。因此,达拉特发电厂的锅炉高温腐蚀是以融盐型腐蚀为主并有硫化物腐蚀的复合型腐蚀。 3.防止受热面高温腐蚀的措施 2.1.采用低氧燃烧技术组 由于供给锅炉燃烧室空气量的减少,因此燃烧后烟气体积减小,排烟温度下 的百分数和过量空气百分数之间降,锅炉效率提高。燃油和煤中的硫转化为SO 3 的转化明显下降。的关系是,随着过量空气百分数的降低,燃料中的硫转化为SO 3

锅炉水冷壁高温腐蚀

大型锅炉水冷壁高温腐蚀 调研报告 上海锅炉厂有限公司 二○○二年三月十五日 目录 1.前言 (2) 2.产生高温腐蚀的机理和条件 (2) 3.高温腐蚀发生在大型贫煤锅炉上的主要原因 (3) 4.大型锅炉水冷壁高温腐蚀的部位及预防措施 (5) 5.水平浓淡分离燃烧技术在防止高温腐蚀方面的应用 (7) 6.石洞口电厂#3、#4炉改造情况 (11) 7.大型锅炉炉内水冷壁发生高温腐蚀的判据 (14) 8.结论 (15) 1.前言 我国许多地方的电厂,不少燃用无烟煤、贫煤、劣质烟煤的大型锅炉投运后,炉内水冷壁都不同程度的存在高温腐蚀。这种情况,无论是在我国上海、哈尔滨、东方三大锅炉厂自行设计制造的锅炉,还是在国外日本三菱、法国斯坦因、英国巴布科克、加拿大巴威等公司设计制造的锅炉,其燃烧器高温区域,水冷壁都有高温腐蚀现象发生,而且遍及各种炉型。以水循环方式分,有自然循环、控制循环和直流锅炉;以燃烧方式分,有四角切圆、前后墙对冲和W型火焰燃烧器等许多典型设计。通过调研,我们发现水冷壁管壁腐蚀速度一般为0.8~1.5mm/104h,腐蚀后的管壁减薄

形貌较多,一般是分层减薄,而管壁向火侧减薄较快。 2.产生高温腐蚀的机理和条件 在燃煤锅炉中,高温腐蚀分三种类型:硫酸盐型、氯化物型和硫化物型。硫酸盐型腐蚀主要发生高温受热面上;氯化物型腐蚀主要发生在大型锅炉燃烧器高温区域的水冷壁管上;硫化物型腐蚀主要发生在大型锅炉水冷壁管上。水冷壁的高温腐蚀通常是由这三种类型腐蚀复合作用的结果。 硫酸盐型高温腐蚀的形成:在炉内高温下,煤中的NaCl中的Na+易挥发,除一部分被熔融的硅酸盐捕捉外,有一部分与烟气中的SO3发生反应,形成Na2SO4;另一部分是易于挥发性的硅酸盐,与挥发出的钠发生置换反应,而释放出来的钾,与SO3化合,生成K2SO4。而碱金属硫酸盐(Na2SO4、K2SO4)有粘性,且露点低。当碱金属硫酸盐沉积到受热面的管壁后会再吸收SO3,并与Fe2O3、Al2O3作用生成焦硫酸盐(Na·K)2S2O7。这样一来,受热面上熔融的硫酸盐(M2SO4)吸收SO3并在Fe2O3、Al2O3作用下,生成复合硫酸盐(Na·K)(Fe·Al)SO4,随着复合硫酸盐的沉积,其熔点降低,表面温升升高。当表面温升升高到熔点,管壁表面的Fe2O3氧化保护膜被复合硫酸盐破坏,使管壁继续腐蚀。另外,附着层中的焦硫酸盐(Na·K)2S2O7。由于熔点低,更容易与Fe2O3发生反应,生成(Na·K)3Fe(SO4)3,即形成反应速度更快的熔盐型腐蚀。 氯化物型腐蚀的形成:在炉内高温下,原煤中的NaCl中的易与H2O、SO2、SO3反应,生成硫酸盐(Na2SO4)和HCl气体。同时凝结在水冷壁上的NaCl也会和硫酸盐发生反应,生成HCl气体,因此,沉积层中的HCl浓度要比烟气中的大得多,致使受热面管壁表面的Fe2O3氧化保护膜

锅炉工技师论文最终版

锅炉工技师论文火电厂锅炉水冷壁管防腐耐磨研究 姓名 单 摘要:火力发电厂锅炉水冷壁管高温腐蚀和磨损的机理复杂,它与炉膛火焰温度、燃煤的含硫量、烟气与灰分颗粒的冲蚀密切相关。防止水冷壁高温腐蚀和磨损的常用方法有两类,即非表面防护方法和表面防护方法。针对太阳纸业热电厂二期四台循环流化床锅炉,现场采用超音速电弧喷涂,涂层层寿命已近四年,认为积极采用超音速电弧喷涂技术是火电厂循环流化床锅炉水冷壁高温防腐耐磨涂层最可靠的解决方法。 关键词:循环流化床锅炉水冷壁高温腐蚀和磨损超音速电弧喷涂 一、引言 循环流化床锅炉技术是近十几年来迅速发展起来的一项高效、低污染清洁燃烧技术,其主要特点在于燃料及脱硫剂经多次循环,反复地进行低温燃烧和脱硫反应,炉内湍流运动强烈,不但能达到低NOx排放、90%的脱硫效率和与煤粉炉相近的燃烧效率,而且具有燃料适应性广、负荷调节性能好、灰渣易于综合利用等优点,因此国际上这项技术在电站锅炉、工业锅炉和废弃物处理利用等领域得到广泛的商业应用,且向大型循环流化床锅炉方向发展。 目前,循环流化床锅炉存在的严重问题是锅炉金属管壁高温腐蚀和管壁磨损。循环流化床锅炉金属件磨损因不同厂家出产的锅炉不同,磨损部位、磨损程度等都不相同,主要发生在以下部位: 1、布风装置——

风帽的磨损; 2、炉膛下部卫燃带与水冷壁过渡区域的管壁磨损(严重磨损); 3、炉膛角落区域的水冷壁磨损(严重磨损); 4、炉膛一般水冷壁管的磨损(较严重); 5、不规则管壁(弯管让管、管壁上的焊缝、炉内测试元件等)的磨损; 6、二次风喷嘴的磨损; 7、炉内受热面(屏式过热器、水平过热器管屏、埋管)的磨损; 8、炉顶受热面的磨损(较严重); 9、旋风分离器的磨损(较严重); 10、对流烟道受热面(省煤器两端、空气预热器入口)的磨损。尤其循环流化床锅炉水冷壁管的管壁高温腐蚀和管壁磨损最为严重,它的直接危害主要表现在以下两个方面: (1)使管壁减薄,一般每年减薄量约为 1mm 左右,严重的可达 5-6mm 年,形成严重的安全运行隐患,增加了电厂的临时性检修和大修工作量,且检修周期大为缩短,给电厂造成很大的经济损失。 (2)发生水冷壁突发性爆管事故,造成紧急停炉抢修,不仅打乱了电厂的正常发电秩序,减少发电产值,而且增加工人劳动强度和额外的检修费用,直接影响企业效益,同时也干扰地区电网的正常调度,由此也造成很大的社会影响。? 锅炉运行过程中,由于燃烧煤中硫及其它有害杂质的存在,在高温下对水冷壁构成腐蚀。这种现象在各个燃煤锅炉中普遍存在,在各火电厂的锅炉定期检验中经常遇到,只是程度不同而已。热电厂由于其燃煤含硫量大,水冷壁遭受的高温腐蚀特别严重,由此带来的爆管、换管损失惨重。同时,煤燃烧时产生的大量扬析颗粒,在循环流化床锅炉内部燃烧的复杂动态过程中,高温物料在上升烟气流作用下向炉膛上部运动,对水冷壁及炉内布置的其他受热面放热。粗大粒子猛烈撞击水冷壁,对水冷壁工作面产生严重切削,部分粒子在重力及其他外力作用下不断减速偏离主气

锅炉高温腐蚀及防止措施

摘要:锅炉的高温腐蚀对锅炉的安全经济运行危害极大,文章对产生锅炉高温腐蚀的几种主要原因进行了分析和探讨,提出一些防止锅炉高温腐蚀的措施,以求对锅炉的安全经济运行有所裨益。 关键词:锅炉;高温腐蚀;措施 锅炉的高温腐蚀主要发生在燃用高硫煤的锅炉水冷壁管和过热器管束上。锅炉运行时在烟温大于700℃的区域内,在高温高压条件下受热面与含有高硫的腐蚀性燃料和高温烟气接触,极易发生高温腐蚀。高压锅炉水冷壁管的硫腐蚀主要是由于煤粉中的黄铁矿(FeS2)燃烧受热,分解出自由的硫原子,产生腐蚀。通常高压锅炉水冷壁管向火侧的正面腐蚀最快,减薄得最多,若发生爆管都在管子的正面爆开,管子的侧面减薄得较少,而管子背火侧几乎不减薄,这种腐蚀给锅炉水冷壁管造成很大威胁,严重时,往往几个月就得更换部分管段,给锅炉的安全经济运行带来很大危害。而锅炉过热器管的高温腐蚀主要是由于液态的灰黏结在过热器管壁上而引起腐蚀。 1 高温腐蚀的主要原因 1.1 燃烧不良和火焰冲刷 持续燃烧不良和脉动火焰冲击炉墙时,导致燃烧不完全,在燃烧器区域附近的火焰中心处,当未燃尽的焰流冲刷水冷壁管时,由于煤粉具有一定的棱角,煤粉对管壁有很大的磨损作用,这种磨损将加速水冷壁保护层的破坏,在管壁的外露区段,磨损破坏了由腐蚀产物形成的不太坚固的保护膜,烟气介质便急剧地与纯金属发生反应,这种腐蚀和磨损相结合的过程,大大加剧了金属管子的损害过程。 1.2 燃料和积灰沉积物中的腐蚀成分 燃用含硫量高的煤粉时,煤粉中的黄铁矿(FeS2)燃烧受热,分解出自由的硫原子:FeS2→FeS+[S],而烟气中存在的一定浓度的H2S与SO2化合,也产生自由硫原子:2H2S+SO2→2H2O+3[S]。自由硫原子与约350℃温度的水冷壁管相遇,发生反应:Fe+[S]→FeS,3FeS+5O2→Fe3O4+3SO2,产生腐蚀。 其次,燃料中的硫及碱性物会在炉内高温下反应生成硫酸盐,当这些硫酸盐沉积到受热面上后会再吸收SO3,生成焦硫酸盐,如Na2S2O7和K2S2O7。焦硫酸盐的熔点很低,在通常的锅炉受热面壁温下呈熔融状态,与Fe2O3更容易发生反应,生成低熔点的复合硫酸盐:3Na2SO4+Fe2O3+3SO3→2Na3Fe(SO4)3,3K2SO4+Fe2O3+ 3SO3→2K3Fe(SO4)3,当温度在550℃~700℃时,复合硫酸盐处于融化状态,将管壁表面的Fe2O3氧化保护膜破坏,继续和管子金属发生反应,造成过热器管的腐蚀。 另外,燃料中含有氯化物也是使炉管损耗的一个重要原因。它们与烟气中的水、硫化氢等反应生成硫酸盐和Hcl气体,由于Hcl的存在可以使金属表面的保护膜遭到破坏,从而加大对管壁的腐蚀。燃料中含氯量增加,对金属的腐蚀速率也随之增加。当灰中含氯低于0.2%时,不致产生明显的腐蚀;当含氯量达到0.6%时,将造成高的腐蚀率。 2腐蚀产物的矿物组成 腐蚀产物内层的物相组成主要为铁的硫化物和氧化物,中间层和外层为铁硫化物,铁氧化和铝硅酸盐;对各层的组成进行半定量分析发现:由内而外铁硫化物的含量降低,其含量分别为74 %、64 %、54 %;铝硅酸盐含量增加,其含量分别为中间层22 %、外层28 %;铁氧化物内层含量较高为26 %,由于受到铝硅酸盐的影响,中间层和外层的含量有所降低,含量分别为14 %、18 %,最外层受炉膛中氧气的氧化其铁氧化物的含量要比中间层高。铁的硫化物和氧化物为腐蚀的产物,而硅铝质组分来自于粘附的燃煤飞灰颗粒,其腐蚀类型是硫化物型腐蚀。

锅炉高温腐蚀及防止措施

锅炉高温腐蚀及防止措

锅炉高温腐蚀及防止措施 锅炉的高温腐蚀主要发生在燃用高硫煤的锅炉水冷壁管和过热器管束上。锅炉运行时在烟温大于700°C的区域内,在高温高压条件下受热面与含有高硫的腐蚀性燃料和高温烟气接触,极易发生高温腐蚀。高压锅炉水冷壁管的硫腐蚀主要是由于煤粉中的黄铁矿(FeS2)燃烧受热,分解出自由的硫原子,产生腐蚀。通常高压锅炉水冷壁管向火侧的正面腐蚀最快,减薄得最多,若发生爆管都在管子的正面爆开,管子的侧面减薄得较少,而管子背火侧儿乎不减薄,这种腐蚀给锅炉水冷壁管造成很大威胁,严重时,往往儿个月就得更换部分管段,给锅炉的安全经济运行带来很大危害。而锅炉过热器管的高温腐蚀主要是由于液态的灰黏结在过热器管壁上而引起腐蚀。 1高温腐蚀的主要原因 1.1燃烧不良和火焰冲刷 持续燃烧不良和脉动火焰冲击炉墙时,导致燃烧不完全,在燃烧器区域附近的火焰中心处,当未燃尽的焰流冲刷水冷壁管时,由于煤粉具有一定的棱角,煤粉对管壁有很大的磨损作用,这种磨损将加速水冷壁保护层的破坏,在管壁的外露区段,磨损破坏了由腐蚀产物形成的不太坚固的保

护膜,烟气介质便急剧地与纯金属发生反应,这种腐蚀和磨损相结合的过程,大大加剧了金属管子的损害过程。 1. 2燃料和积灰沉积物中的腐蚀成分 燃用含硫量高的煤粉时,煤粉中的黄铁矿(FeS2)燃烧受热,分解出自由的硫原子:FeS2-FeS+[S],而烟气中存在的一定浓度的H2S与S02化合, 也产生自由硫原子:2H2S+S02-2H20+3[S]。自由硫原子与约350°C温度的水冷壁管相遇,发生反应:Fe+[S]-FeS, 3FeS+5O2-Fe3O4+3SO2,产生腐蚀。 其次,燃料中的硫及碱性物会在炉内高温下反应生成硫酸盐,当这些硫酸盐沉积到受热面上后会再吸收S03,生成焦硫酸盐,如Na2S2O7和K2S207o焦硫酸盐的熔点很低,在通常的锅炉受热面壁温下呈熔融状态, 与Fe203更容易发生反应,生成低熔点的复合硫酸 盐:3Na2S04+Fe203+3S03-→2Na3Fe(S04)3, 3K2SO4+Fe2O3+ 3S03-2K3Fe(SO4)3,当温度在550°C~700°C时,复合硫酸盐处于融化 状态,将管壁表面的Fe203氧化保护膜破坏,继续和管子金属发生反应,造成过热器管的腐蚀。

高温腐蚀

高温腐蚀是炉内高温烟气与金属壁面相互作用的一个复杂的物理化学过程,按其机理通常可分为三大类:硫化物(FeS2、H2S)型腐蚀、焦硫酸盐型腐蚀和氯化物型腐蚀。多年研究表明,水冷壁管发生高温腐蚀的区域是有规律的:通常多在燃烧高温区,即局部热负荷较高,管壁温度也较高的区域,如燃烧器区附近,其余区域的高温腐蚀明显减弱或根本不发生高温腐蚀;发生高温腐蚀的管子向火侧正面的腐蚀速度最快,管壁减薄量最大,背火侧则不发生高温腐蚀。 2 影响高温腐蚀的主要原因 1.火焰冲墙和还原性气氛的存在是造成水冷壁高温腐蚀的主要原因 对切圆燃烧锅炉,当燃烧切圆直径过大、火焰中心未形成切圆或燃烧切圆偏移时,炉内空气动力场倾斜,燃烧器区域出现火焰冲墙和还原性气氛,从而发生高温腐蚀。

2.1.1 高温火焰直接冲刷水冷壁 当含有较大煤粉浓度的高温火焰直接冲刷水冷壁管时,将大大加剧高温腐蚀的发生。其一,高温辐射热可加速硫酸盐的分解,加快腐蚀速度;其二,火焰中含有未燃尽的煤粉,在水冷壁附近缺氧燃烧,产生还原性气氛;其三,未燃尽的煤粉颗粒随烟气冲刷水冷壁管时,磨损将加速水冷壁管上保护膜的破坏,加快金属管壁高温腐蚀的过程。 2.1.2 存在还原性气体 由于着火延迟,未燃尽的煤粉在水冷壁附近进一步燃烧时,发生化学不完全燃烧,形成缺氧区,使炉膛壁面附近处于含有还原性气体(CO、H2)和腐蚀性气体(H2S)的烟气成分之中,没有完全燃烧的游离硫和硫化物与金属管壁发生反应,引起管壁高温腐蚀。 研究表明,烟气中CO浓度越大,高温腐蚀就越严重;H2S的浓度大于0.01%时,就会对钢材产生强烈的腐蚀作用;而当含氧量大于2%时,基本上不会发生高温腐蚀。 2.2 燃煤品质差是水冷壁高温腐蚀的必要条件 燃煤中硫、碱金属及其氧化物含量越大,腐蚀性介质浓度越大,出现高温腐蚀的可能性就越大。高硫煤产生的大量H2S、SO2、SO3、原子硫[S]不仅破坏管壁的Fe2O3保护膜,还侵蚀管子表面,致使金属管壁不断减薄,最终导致爆管事故。 燃用不易引燃的无烟煤和贫煤时,因着火点温度相对较高,燃烧困难,容易产生不完全燃烧,并使火焰脱长,在金属壁面附近形成还原性气氛,增加对管壁的腐蚀性。 煤粉的颗粒越大,也就越不易燃尽,比较容易形成还原性气体,产生高温腐蚀。同时,颗粒越大,对壁面的磨损也越严重,破坏了水冷壁管外氧化保护膜,使烟气中腐蚀介质直接与管壁金属发生反应,使腐蚀加剧。 2.3 过高的水冷壁管壁温度促进了水冷壁高温腐蚀的发生 研究表明,H2S等腐蚀性介质的腐蚀性在300℃以上逐步增强,即温度每升高50℃,腐蚀程度将增加一倍。对于亚临界大型电站锅炉,燃烧器区域的水冷壁管内汽水温度约在350℃左右,烟气侧水冷壁管温度多在420℃左右,正处于金属发生强烈高温腐蚀的温度范围之内。同时,管子局部壁面温度过高,易使具有腐蚀性的低熔点化合物粘附在金属表面,促进了管壁高温腐蚀的发生。 2.4 运行因素的影响 当锅炉负荷发生变化时,若运行不当(如火嘴投停不当),就容易引起燃烧不稳定,产生还原性气氛,或造成烟气冲墙,继而发生高温腐蚀。因此,运行不当也是引起高温腐蚀的一个主要因素。 3 高温腐蚀的防护措施 为防止高温腐蚀,避免锅炉爆管事故的发生,针对影响高温腐蚀的主要原因,可采取的防护措施有: 加强对燃料的控制,可通过燃烧前和燃烧中除硫的方法,降低燃料的含硫量;同时控制适当的煤粉细度,尽可能均匀各燃烧器之间的煤粉浓度分布; 加强对给水的控制,适当提高高温腐蚀区域水冷壁管内水流速度,降低管壁温度,严格控制给水品质,避免因水冷壁管内结垢而影响换热,从而导致水冷壁管壁温度增加; 提高金属抗腐蚀能力,可采用耐腐蚀高合金钢,渗铝管及在管外敷设碳化硅涂料等表面防护方式,降低腐蚀速度; 加强燃烧调整、合理配风,以达到降低水冷壁附近还原性气氛和避免烟气直接冲刷水冷壁两个目的。 对现场实际运行而言,加强燃料、给水控制会分别受到煤质及制粉系统、水质及水处理装置的限制;而提高金属抗腐蚀的能力,采用耐腐蚀高合金钢,或进行金属材料表面防

锅炉管道腐蚀的原因分析和建议

锅炉管道腐蚀的原因分 析和建议 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

锅炉管道腐蚀的原因、分析及建议 ×××(××××××××××发电有限责任公司×××××× 044602) 摘要:四管爆漏是火力发电厂中常见、多发性故障,而管道的腐蚀常常中四管泄漏的重要原因。大部分管道腐蚀的初始阶段,其泄漏量和范围都不大,对于故障的部位不好确定和判断。一般要经过几天或更长时间泄漏程度才会逐渐增大,发展成为破坏性泄漏或爆管,严重威胁着火力发电厂的安全稳定运行,故本文对锅炉四管腐蚀的原因进行了分析并根据相应的原因提出了一些建议。 关键词:腐蚀、硫化物、氯化物 0 前言 腐蚀是火力发电厂中常见的故障。腐蚀的初始阶段,没有明显的现象或其泄漏量和范围都小,对于故障的部位不好确定和判断。一般要经过几天或更长时间泄漏程度才会逐渐增大,同时局部的泄漏会冲刷周围邻近的管壁,造成连锁性破坏,危及到整个锅炉运行的安全。 1.腐蚀的原因 广义的腐蚀指与间发生的或相互作用而导致材料功能受到的现象。 狭义的腐蚀是指与环境间的-化学相互作用,使金属性能发生变化,导致金属,环境及其构成系功能受到损伤的现象。 1.1管内壁腐蚀:也称水汽侧腐蚀。 1.1.1溶解氧腐蚀。 1.1.2垢下腐蚀。 1.1.3碱腐蚀 1.1.4氢损伤。 1.1.5铜氨化合物腐蚀。 1.2烟气侧腐蚀。 1.2.1高温腐蚀。 1.2.2低温腐蚀。 1.3应力腐蚀,也称冲蚀。指管道受到腐蚀和拉(压)应力的综合效应。3.设备发生腐蚀的理论原因分析

3.1.1溶解氧腐蚀 由于Fe与O2、CO2之间存在电位差,形成无数个微小的腐蚀电池,Fe是电池中的阳极,溶解氧起阴极去极化作用,Fe比O2等的电位低而遭到腐蚀。 当pH值小于4或在强碱环境中,腐蚀加重,pH值介于4~13之间,金属表面形成致密的保护膜(氢氧化物),腐蚀速度减慢。腐蚀速度与溶解氧的浓度成正比,随着给水速度提高、锅炉热负荷增加、溶解氧腐蚀也随之加剧。 3.1.2垢下腐蚀 由于给水质量不良或结构缺陷防碍汽水流通,造成管道内壁结垢。垢下腐蚀介质浓度高,又处于停滞状态,会使管内壁发生严重的腐蚀,这种腐蚀与炉水的局部浓缩有关。如果补给水或因凝汽器泄漏(河水)使炉水含碳酸盐,其沉积物下局部浓缩的炉水(沉积着高浓度的OH-)pH值上升到13以上时发生碱对金属的腐蚀。如果凝汽器泄漏的是海水或含Cl-的天然水,水中的MgCl2、CaCl2将进入锅炉、产生强酸HCl,这样沉积物下浓缩的炉水(很高浓度的H+)pH值快速下降,而发生对金属的酸性腐蚀。 3.1.3碱腐蚀 游离碱会在多孔性沉积物和管内表面浓缩,浓缩的强碱会溶解金属保护膜而形成铁酸根与次铁酸根离子的混合物,当管壁表面局部碱浓度超过40%时,会释放出氢气,从而形成金属表面深而广的腐蚀,也称延性腐蚀。 3.1.4氢损伤(氢损伤实际就是酸性腐蚀) 一般情况下给水与管壁(Fe)发生反应生成H2和Fe3O4。 保护膜Fe3O4阻隔H2进入管壁金属而被炉水带走,当给水品质不佳或管内结垢会生成Fe2O3和FeO。 Fe2O3、FeO比较疏松、附着性很差,有利于H2向管壁金属的扩散,高温下晶界强度低,H2与钢中的碳和FeC反应生成CH4。 管壁金属脱碳,CH4积聚在晶界上的浓度不断升高,形成局部高压以致应力集中,晶界断裂,产生微裂纹并发展成网络,导致金属强度严重降低,使金属变脆而断裂。3.1.5铜氨化合物腐蚀 在炉水处理中使用脱氧剂和中和胺等均可能产生游离氨。在pH值大于且含溶解氧的情况下,氨会侵蚀以铜合金为材质的冷凝管。一旦铜离子进入锅炉而沉积在管壁上,便会产生电化学腐蚀而损伤炉管。

锅炉高温腐蚀及防止措施

锅炉高温腐蚀及防止措 施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

锅炉高温腐蚀及防止措施锅炉的高温腐蚀主要发生在燃用高硫煤的锅炉水冷壁管和过热器管束上。锅炉运行时在烟温大于700℃的区域内,在高温高压条件下受热面与含有高硫的腐蚀性燃料和高温烟气接触,极易发生高温腐蚀。高压锅炉水冷壁管的硫腐蚀主要是由于煤粉中的黄铁矿(FeS2)燃烧受热,分解出自由的硫原子,产生腐蚀。通常高压锅炉水冷壁管向火侧的正面腐蚀最快,减薄得最多,若发生爆管都在管子的正面爆开,管子的侧面减薄得较少,而管子背火侧几乎不减薄,这种腐蚀给锅炉水冷壁管造成很大威胁,严重时,往往几个月就得更换部分管段,给锅炉的安全经济运行带来很大危害。而锅炉过热器管的高温腐蚀主要是由于液态的灰黏结在过热器管壁上而引起腐蚀。 1高温腐蚀的主要原因 1.1燃烧不良和火焰冲刷 持续燃烧不良和脉动火焰冲击炉墙时,导致燃烧不完全,在燃烧器区域附近的火焰中心处,当未燃尽的焰流冲刷水冷壁管时,由于煤粉具有一定的棱角,煤粉对管壁有很大的磨损作用,这种磨损将加速水冷壁保护层的破坏,在管壁的外露区段,磨损破坏了由腐蚀产物形成的不太坚固的保

护膜,烟气介质便急剧地与纯金属发生反应,这种腐蚀和磨损相结合的过程,大大加剧了金属管子的损害过程。 1.2燃料和积灰沉积物中的腐蚀成分 燃用含硫量高的煤粉时,煤粉中的黄铁矿(FeS2)燃烧受热,分解出自 由的硫原子:FeS2→FeS+[S],而烟气中存在的一定浓度的H2S与SO2化合,也产生自由硫原子:2H2S+SO2→2H2O+3[S]。自由硫原子与约350℃温度的水冷壁管相遇,发生反应:Fe+[S]→FeS,3FeS+5O2→Fe3O4+3SO2,产生腐蚀。 其次,燃料中的硫及碱性物会在炉内高温下反应生成硫酸盐,当这些 硫酸盐沉积到受热面上后会再吸收SO3,生成焦硫酸盐,如Na2S2O7和 K2S2O7。焦硫酸盐的熔点很低,在通常的锅炉受热面壁温下呈熔融状态, 与Fe2O3更容易发生反应,生成低熔点的复合硫酸 盐:3Na2SO4+Fe2O3+3SO3→2Na3Fe(SO4)3,3K2SO4+Fe2O3+ 3SO3→2K3Fe(SO4)3,当温度在550℃~700℃时,复合硫酸盐处于融化 状态,将管壁表面的Fe2O3氧化保护膜破坏,继续和管子金属发生反应,造成过热器管的腐蚀。

锅炉水冷壁高温腐蚀原因及预防措施

水冷壁高温腐蚀的原因分析及预防措施 我厂#2炉在本次B级检修中发现水冷壁存在高温腐蚀现象,高温腐蚀区域大约在D层燃烧器与层燃烧器之间,在这一区域水冷壁高温腐蚀后,壁厚明显减薄,最薄处仅有5mm, 因而强度降低,极易造成水冷壁爆管和泄漏,危及锅炉安全运行。 针对水冷壁高温腐蚀问题,生产部、调度部、运行分场进行了多次分析和探讨,认为我厂水冷壁高温腐蚀的原因大致有以下几个原因: 1、我厂燃煤为山西贫煤,该煤种含硫及硫化物较多,高含硫量使煤在燃烧中产生较多的腐蚀性物质,直接导致水冷壁的高温腐蚀。同时,由于近年来煤炭市场供求关系的转换,煤质难以得到保证,由于煤质较杂多变,运行中往往引起煤粉变相,着火点推迟,燃烧速度低等一系列问题。 2、我厂锅炉为亚临界锅炉,饱和水温约为360 ℃,水泠壁温度 可达400℃,在该条件下管壁被氧化,使受热面外表形成一层Fe 2 O3和极细的灰粒污染层,在高温火焰的作用下,灰分中的碱土金属氧化物 (Na 2 O、K2O)升华,靠扩散作用到达管壁并冷凝在壁面上,与周围烟气 中的S O 3化合生成硫酸盐。管壁上的硫酸盐与飞灰中的Fe 2 O3及烟气中 的S O 3 作用,生成复合硫酸盐,复合硫酸盐在550℃-710 ℃范围内呈液态,液态的复合硫酸盐对管壁有极强的腐蚀作用。 3、我厂入炉煤粉长期偏向,造成煤粉直接冲刷水冷壁,在水冷壁附近区域造成还原性气氧,导致高温腐蚀。

4、我厂为四角切圆燃烧锅炉。当一、二次风射流喷出燃烧器后由于受到上游邻角气流的挤压作用及左右两侧不同补气条件的影响,使气流向背火侧水冷壁偏转,此时刚性较弱的一次风射流将比二次风偏转更大的角度,从而使一、二次风分离。一、二次风的刚性相差越大,这种分离现象越明显。由于部分一次风射流偏离了二次风,煤粉在缺氧状态下燃烧,在射流下游水冷壁附近形成局部还原性气氛,从而引发高温腐蚀。 我厂对水冷壁高温腐蚀问题十分重视,多次请教电研院专家并邀请来我厂进行考察分析指导,并于华北电力大学合作,针对水冷壁高温腐蚀问题进行了专题研究。 专家认为用烟气中的O2含量来监测高温腐蚀存在一定的局限性。在低氧状态下,CO含量的高低反应了烟气还原性气氛的强弱,同时CO与H2S之间也存在直接关系。当近壁烟气中CO含量较低时(如小于3%),可以认为烟气处于弱还原性或接近中性气氛状态,此时H2S的含量也相应较低,虽然氧量不足,但水冷壁发生高温腐蚀的可能性非常小;只有当近壁烟气中CO含量较高时,烟气处于强还原性气氛,同时存在大量的H2S等气体,才易造成水冷壁高温腐蚀。 通过上述水冷壁形成高温腐蚀的原因分析,结合专家提出的建议,我们制定了以下预防水冷壁高温腐蚀的措施。 1、控制煤粉细度R90控制在10~13%之间,防止煤粉过粗,以保证燃料在炉膛内及时燃尽,避免火焰直接冲刷水冷壁。 2、一次风的控制方式:无论负荷高低,一次风速应控制在23~25米/秒,混合温度控制在210~230℃度之间,高负荷运行时,由于给

相关文档
最新文档