漆安慎 力学答案
力学第二版漆安慎高等教育出版社第三章答案

3.4.2 质量为m 的质点在oxy 平面内运动, 质点的运动学方程为j t b i t a rωωsin cos +=, ω,,b a 为正常数,证明作用于质点的合力总是指向原点. 解题思路:本题已知质点的运动学方程,要求的是力,可运用第二章的知识,求 得加速度,,再运用牛顿运动定律求力.指向原点的意思是力的方向与矢径方 向相反.3.4.4 桌面上叠放着两块木块,质量各为m 1, m 2 ,如图所示, m 2 和桌面的摩擦系数为2μ, m 1, m 2 间的静摩擦系数为1μ, 问水平方向用多大的力才能把下面的物体抽出来.解题思路:本题应先作出受力分析图,可先按极限情况情况讨论刚好抽出 所需要的力。
3.4.5 质量为m2,的斜面可在光滑的水平面上滑动,斜面倾角为α,质量为m1的运动员与斜面之间亦无摩擦,求运动员相对于斜面的加速度及其对斜面的压力.解题思路:本题可用非惯系的方法求,如图所示,将坐标取在斜面上,设斜面后退的加速度为a0,则m1除了受重力、斜面的支持力作用外,还受到一惯性力作用(水平向左)运动员相对斜面的加速度为ar,则对于斜面3.4.6 两物体的质量分别为m 和M,物体之间及物体与桌面间的摩擦系数都为u。
求在力F 的作用下两物体的加速度及绳的张力。
绳不可伸长解:对每一物体受力分析,由牛顿第二定律列方程,对m、M 水平方向的方程为可解得3.4.9 跳伞运动员初张伞时的速率为00=v ,设所受阻力的大小与其速率的两次方成正比2v α,求)(t v v =的函数(即任一时刻的速度)解题思路:阻力是一变力,应先受力分析,列出运动微分方程,通过解微分方程求解.设阻力的大小可表示成2v f α-=,取向下为正方向。
由牛顿第二定律得 dtdv m v mg =-2α 分离变量,两边积分⎰⎰=-dt v mg dv 2α⎰⎰=-dt v gmdvg211α令 v gmx α=则 dx gmdv α=则⎰⎰=-dt xdxg m 21α 积分,得⎰⎰⎰+-+=+--+=++-=-11211ln 21)]1ln()1[ln(21)1(2)1(21C x xC x x x dx x dx x dx 211ln 21C t mg xx +=-+α113232+-=C eC e x t mg t m g αα所以, 113232+-=C eC egm v tmg t mg ααα带入初始条件 0,00==v t , 得到 13=C1122+-=tmg t mg eegm v ααα3.4.11 棒球的质量为0.14kg.用棒击棒球的力随时间的变化如图所示.设棒球被击前后速度增量大小为70m/s,求力的最大值.打击时,不计重力.解题思路:本题用动量定理,球所受的冲量等于球动量的增量,已知力函数求冲量等于曲线下的面积3.4.18 太空旅馆, 用32m 长的绳联结质量相同的客舱, 如果旅客感到与地面相同的重力作用, 需要绕中点转动的角速度多大? 解: 圆周运动的向心加速度为 g r a ==2ω 所以, s rad rg /78.02328.9===ω3.5.2 升降机A 内有一装置如图示.悬挂的两物体的质量各为1m 和2m ,且21m m ≠.若不计绳及滑轮质量,不计轴承处摩擦,绳不可伸长,求当升降机以加速度A(方向向下)运动时,两物体的加速度各是多少?绳内的张力是多少?解题思路:方法一,用非惯性力学解题。
力学参考答案(漆安慎,杜婵英)_详解_1-9章

第二章 质点运动学(习题)2.1.1质点的运动学方程为j ˆ)1t 4(i ˆ)t 32(r ).2(,j ˆ5i ˆ)t 23(r ).1(-+-=++= 求质点轨迹并用图表示。
解,①.,5y ,t 23x =+=轨迹方程为y=5②⎩⎨⎧-=-=1t 4y t 32x ②r ②r 00117.33,m 4100R =θ=,0.75s 后测得21022R ,R ,3.29,m 4240R =θ=均在铅直平面内。
求飞机瞬时速率的近似值和飞行方向(α角)。
解,)cos(R R 2R R R 21212221θ-θ-+=∆ 代入数值得:利用正弦定理可解出089.34-=α2.2.2一小圆柱体沿抛物线轨道运动,抛物线轨道为200/x y 2=(长度mm )。
第一次观察到圆柱体在x=249mm 处,经过时间2ms 后圆柱体移到x=234mm 处。
求圆柱体瞬时速度的近似值。
747后以70km/h 速率向北偏西030方向行驶。
求列车的平均加速度。
解,2.2.6(1),k ˆt 2j ˆt sin R i ˆt cos R r ++= R 为正常数。
求t=0,π/2时的速度和加速度。
(2),k ˆt 6j ˆt 5.4i ˆt 3r 32+-= 求t=0,1时的速度和加速度(写出正交分解式)。
解:(1) 当t=0时, 当t=π/2时, (2) 当t=0时, 当b c 质点受力mx t cos ma ma F -=-==,是线性恢复力,质点做简谐振动,振幅为a ,运动范围在a x a ≤≤-,速度具有周期性。
2.3.3跳伞运动员的速度为,e 1e 1v qtqt --+-β=v 铅直向下,β、q 为正常量。
求其加速度。
讨论当时间足够长时(即t →∞),速度和加速度的变化趋势。
解,2.3.4直线运动的高速列车在电子计算机控制下减速进站。
列车原行驶速度为h /km 180v 0=,其速度变化规律如图所示。
求列车行驶至x=1.5km 时加速度的大小。
力学习题解答(漆安慎)

1
力学习题解答
第二章基本知识小结 ⒈基本概念
v v v v dr r = r (t ) v = dt
v v v dv d 2 r a= = dt dt 2
dv r d 2s v2 ˆ + an n ˆ , a = aτ 2 + a n 2 , aτ = τ = 2 , a n = a = aτ τ dt ρ dt
力学习题解答
殷保祥 编写
石河子大学师院物理系
力学习题解答
目 录
第 02 章 第 03 章 第 04 章 第 05 章 第 06 章 第 07 章 第 08 章 第 09 章 第 10 章 第 11 章 质点运动学……………………………01 动量定理及其守恒定律………………11 动能和势能……………………………24 角动量及其规律………………………34 万有引力定律…………………………38 刚体力学………………………………41 弹性体的应力和应变…………………52 振动……………………………………56 波动……………………………………64 流体力学………………………………71
v −2 t ˆ ˆ .⑴求质点轨迹; + e 2t ˆ j + 2k 2.1.2 质点运动学方程为 r = e i
⑵求自 t= -1 到 t=1 质点的位移。 解:⑴由运动学方程可知: x = e
−2 t
R θ
, y = e 2t , z = 2, xy = 1 ,所
以,质点是在 z=2 平面内的第一像限的一条双曲线上运动。 ⑵ Δr = r (1) − r ( −1) = (e
2 2
向行驶,求列车的平均加速度。 解: a =
v
v v v v2 − v1 Δv = Δt Δt
《力学》漆安慎(第二版)答案07章

;力学(第二版)漆安慎习题解答第七章刚体力学第七章 刚体力学 一、基本知识小结~⒈刚体的质心定义:∑⎰⎰==dm dm r r mr m r c i i c //求质心方法:对称分析法,分割法,积分法。
⒉刚体对轴的转动惯量定义:∑⎰==dm r I r m I ii 22平行轴定理 I o = I c +md 2 正交轴定理 I z = I x +I y.常见刚体的转动惯量:(略) ⒊刚体的动量和质心运动定理∑==c c a m F v m p⒋刚体对轴的角动量和转动定理 |∑==βτωI I L⒌刚体的转动动能和重力势能c p k mgy E I E ==221ω⒍刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动动力学方程:∑∑==c c c c I a m F βτ(不必考虑惯性力矩)动能:221221cc c k I mv E ω+= ⒎刚体的平衡方程 ∑=0F, 对任意轴 ∑=0τ二、思考题解答火车在拐弯时所作的运动是不是平动 ,答:刚体作平动时固联其上的任一一条直线,在各时刻的位置(方位)始终彼此平行。
若将火车的车厢看作一个刚体,当火车作直线运行时,车厢上各部分具有平行运动的轨迹、相同的运动速度和加速度,选取车厢上的任一点都可代替车厢整体的运动,这就是火车的平动。
但当火车拐弯时,车厢上各部分的速度和加速度都不相同,即固联在刚体上任一条直线,在各时刻的位置不能保持彼此平行,所以火车拐弯时的运动不是平动。
对静止的刚体施以外力作用,如果合外力为零,刚体会不会运动答:对静止的刚体施以外力作用,当合外力为了零,即0i c F ma ==∑时,刚体的质心将保持静止,但合外力为零并不表明所有的外力都作用于刚体的同一点。
所以,对某一确定点刚体所受合外力的力矩i i iM M r F ==⨯∑∑不一定为零。
由刚体的转动定律M J α=可知,刚体将发生转动。
比如,置于光滑水平面上的匀质杆,对其两端施以大小相同、方向相反,沿水平面且垂直于杆的两个作用力时,杆所受的外力的合力为零,其质心虽然保持静止,但由于所受合外力矩不为零,将作绕质心轴的转动。
最新《力学》漆安慎(第二版)答案01章

力学(第二版)漆安慎习题解答数学预备知识第一章物理学和力学数学常识一、微积分1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y ⑶)/()(bx a b ax y ++= ⑷21sin x y += ⑸x e y sin = ⑹x e y x 100+=-xx x e e y xe y x x x x x x y bx a b a y x x x x y x y ----=+-==++=++=+-=-+-=-=100100)1('cos '1/1cos 2·)1(·)1cos(')/()('sin 8cos 7)2/(1'46'sin 222/12212/12222⑹⑸⑷⑶⑵解:⑴2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少?解:先求出h(x)对x 的一阶导数和二阶导数:42643643647242102106)102102(102102)1051010(22--------⨯-⨯=⨯-⨯=⨯-⨯=⨯+-=x x x x x x x dxd dx h d dxd dxdh令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分⎰⎰++-dx x dxx x x )2()13(23⑵⑴ ⎰⎰⎰⎰+--++dxb ax dxdx x x dx e x x x x x x)sin()cos (sin )2(22113⑹⑸⑷⑶⎰⎰⎰⎰⎰⎰-+-dxxdxdx xe xdx x dx e xx x b ax dx x ln 222)12(cos )11(cos sin 2⑽⑼⑻⑺ 解:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+==++=+=+-=--=+==++=++=+-=--=++-=++=++-=-==+--=-=-+++=-+=-+++=+=+++-=+-=+-----+---++-++-cx x xd dx c x x dx x xdx ce x d e dx xe c x x xd xdx x c b ax b ax d b ax c ex d e dx e cb ax b ax d b ax dx b axc arctgx x dx dx dx cx x xdx xdx dx x x ce x dx x dx e dx e cx dx x dx dx x cx x x dx xdx dx x dx x x xx x x x aab ax dxxx x aax dxx x x x xxx x dxx xx x x x 221ln 4121212212213312222/112212************/3133312ln 22x 222344133)(ln )(ln ln )12(2sin )2cos 1(cos )11()(sin )(sin sin cos sin )()()2()cos()()sin()sin(sin cos cos sin )cos (sin 2ln 323)2(2)2(3)13(22222222⑽⑼⑻⑺⑹⑸⑷⑶⑵⑴4. 求下列定积分⎰⎰⎰⎰⎰⎰⎰⎰++--++--2/021114/6/2111ln 12/12/111421)sin 3(2cos )()1()122πππ⑻⑺⑹⑸⑷⑶⑵(⑴dxx x dx xdxdx e dx dx e e dx x x xxex xxdx xx︒===-=-=--=--=-=-=----⎰⎰⎰⎰⎰⎰60|arcsin )1(|)1()1()1()1(||)132/12/12/12/111551105514143532421213221212/121223π⑶⑵(解:⑴x e e e d e dx e e x x dx dx xdx x xdx x x x x xπππππππππ412832/02/0212/0210101143214/6/4/6/21214/6/221211112211ln 1)2cos 1(3)sin 3(454/||2sin )2(2cos 2cos 2ln |)ln ()(5.1|)ln 1()ln 1()ln 1(2+=-+=+︒===-===+-=+=+=+=++=⎰⎰⎰⎰⎰⎰⎰⎰⎰++dx x xdx dx x x arctgx dx x x xd xdx e e x e dx e x x d x dx x x x x eee xx πππ⑻⑺⑹⑸⑷示这些定积分。
最新《力学》漆安慎(第二版)答案04章

力学(第二版)漆安慎习题解答第四章动能和势能第四章 动能和势能 一、基本知识小结1、功的定义式:⎰⋅=2112r r rd F A直角坐标系中:⎰⎰+==221121,,1212y x y x yxx x x dy F dx F A dx F A ,自然坐标系中:⎰=2112s s ds F A τ极坐标系中: ⎰+=2211,,12θθθθr r rrd F dr F A2、⎰⋅-=-=b ap p k r d F a E b E mv E 保势能动能)()(,212重力势能m g y y E p =)(弹簧弹性势能 2)(21)(l r k r E p -=静电势能 rQqr E p πε4)(=3、动能定理适用于惯性系、质点、质点系 ∑∑∆=+k E A A 内外4、机械能定理适用于惯性系 ∑∑+∆=+)p k E E A A (非保内外5、机械能守恒定律适用于惯性系若只有保守内力做功,则系统的机械能保持不变,C E E p k =+6、碰撞的基本公式接近速度)(分离速度(牛顿碰撞公式)动量守恒方程)e v v e v v v m v m v m v m =-=-+=+)((2010122211202101对于完全弹性碰撞 e = 1 对于完全非弹性碰撞 e = 0对于斜碰,可在球心连线方向上应用牛顿碰撞公式。
7、克尼希定理 ∑+=22'2121i i c k v m mv E绝对动能=质心动能+相对动能应用于二体问题 222121u mv E c k μ+=212121m m m m m m m +=+=μ u 为二质点相对速率二、思考题解答4.1 起重机起重重物。
问在加速上升、匀速上升、减速上升以及加速下降、匀速下降、减速下降六种情况下合力之功的正负。
又:在加速上升和匀速上升了距离h 这两种情况中,起重机吊钩对重物的拉力所做的功是否一样多?答:在加速上升、匀速上升、减速上升以及加速下降、匀速下降、减速下降六种况下合力之功的正负分别为:正、0、负、正、0、负。
最新《力学》漆安慎(第二版)答案07章
力学(第二版)漆安慎习题解答第七章刚体力学第七章 刚体力学 一、基本知识小结⒈刚体的质心定义:∑⎰⎰==dm dm r r mr m r c i i c //求质心方法:对称分析法,分割法,积分法。
⒉刚体对轴的转动惯量定义:∑⎰==dm r I r m I ii 22平行轴定理 I o = I c +md 2 正交轴定理 I z = I x +I y.常见刚体的转动惯量:(略) ⒊刚体的动量和质心运动定理∑==c c a m F v m p⒋刚体对轴的角动量和转动定理∑==βτωI I L⒌刚体的转动动能和重力势能c p k mgy E I E ==221ω⒍刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动动力学方程:∑∑==c c c c I a m F βτ(不必考虑惯性力矩)动能:221221cc c k I mv E ω+= ⒎刚体的平衡方程∑=0F, 对任意轴∑=0τ二、思考题解答7.1 火车在拐弯时所作的运动是不是平动?答:刚体作平动时固联其上的任一一条直线,在各时刻的位置(方位)始终彼此平行。
若将火车的车厢看作一个刚体,当火车作直线运行时,车厢上各部分具有平行运动的轨迹、相同的运动速度和加速度,选取车厢上的任一点都可代替车厢整体的运动,这就是火车的平动。
但当火车拐弯时,车厢上各部分的速度和加速度都不相同,即固联在刚体上任一条直线,在各时刻的位置不能保持彼此平行,所以火车拐弯时的运动不是平动。
7.2 对静止的刚体施以外力作用,如果合外力为零,刚体会不会运动?答:对静止的刚体施以外力作用,当合外力为了零,即0i c F ma ==∑时,刚体的质心将保持静止,但合外力为零并不表明所有的外力都作用于刚体的同一点。
所以,对某一确定点刚体所受合外力的力矩i i iM M r F ==⨯∑∑不一定为零。
由刚体的转动定律M J α=可知,刚体将发生转动。
比如,置于光滑水平面上的匀质杆,对其两端施以大小相同、方向相反,沿水平面且垂直于杆的两个作用力时,杆所受的外力的合力为零,其质心虽然保持静止,但由于所受合外力矩不为零,将作绕质心轴的转动。
最新《力学》漆安慎(第二版)答案章
最新《力学》漆安慎(第二版)答案章第十一章流体力学力学(第二版)漆安慎习题解答第11章流体力学习题解答力学(第二版)漆安慎课后答案第十一章流体力学基本知识小结⒈理想流体就是不可压缩、无粘性的流体;稳定流动(或称定常流动)就是空间各点流速不变的流动。
⒉静止流体内的压强分布相对地球静止:dpgdy,p1p2gh(h两点间高度)相对非惯性系静止:先找出等压面,再采用与惯性系相同的方法分析。
⒊连续性方程:当不可压缩流体做稳定流动时,沿一流管,流量守恒,即Qv11v22恒量⒋伯努力方程:当理想流体稳定流动时,沿一流线,2pgh1v恒量2⒌粘性定律:流体内面元两侧相互作用的粘性力与面元的面积、速度梯度成正比,即f⒍雷诺数及其应用Redvdy.为粘性系数,与物质、温度、压强有关。
vl,l为物体某一特征长度⑴层流、湍流的判据:ReRe临,层流;ReRe临,湍流⑵流体相似律:若两种流体边界条件相似,雷诺数相同,则两种流体具有相同的动力学特征。
⒎泊肃叶公式:粘性流体在水平圆管中分层流动时,距管轴r处的流速v(r)p1p22(Rr2)4l2第11章流体力学习题解答力学(第二版)漆安慎课后答案11.2.1若被测容器A内水的压强比大气压大很多时,可用图中的水银压强计。
⑴此压强计的优点是什么?⑵如何读出压强?设h1=50cm,h2=45cm,h3=60cm,h4=30cm,求容器内的压强是多少大气压?解:⑴优点:可以测很高的压强,而压强计的高度不用很大⑵设界面处压强由右向左分别为p0,p1,p2,p3,水和水银的密度分别用ρ,ρ'表示,据压强公式,有:p1p0'gh1,p1p2gh2,p3p2'gh3,pAp3gh4h1h3h2Ah4pAgh4p3gh4'gh3p2gh4'gh3gh2p1gh4'gh3gh2'gh1p0g(h4h2)'g(h1h3)p0用大气压表示:pA1hh3h4h230455060112.43atm13.6767613.6767611.2.2A,B两容器内的压强都很大,现欲测它们之间的压强差,可用图中装置,Δh=50cm,求A,B内的压强差是多少厘米水银柱高?这个压强计的优点是什么?解:由压强公式:pAp1gh1p1p2'gh,pBp2g(hh2)pApB(p1gh1)(p2gh2gh)(p1p2)g(h1h2h)'ghgh用厘米水银柱高表示:pApBhh/13.65050/13.646.3cmHgh1h2也可以忽略管中水的重量,近似认为压强差为50cmHgAB优点:车高雅差方便,压强计的高度不需太大。
最新《力学》漆安慎(第二版)答案09章
力学(第二版)漆安慎习题解答第九章振动第九章一、基本知识小结⒈物体在线性回复力F = - kx ,或线性回复力矩τ= - cφ作用下的运动就是简谐振动,其动力学方程为 ,02022=+x dtx d ω(x 表示线位移或角位移);弹簧振子:ω02=k/m ,单摆:ω02=g/l ,扭摆:ω02=C/I.⒉简谐振动的运动学方程为 x = Acos(ω0t+α);圆频率、频率、周期是由振动系统本身决定的,ω0=2π/T=2πv ;振幅A 和初相α由初始条件决定。
⒊在简谐振动中,动能和势能互相转换,总机械能保持不变;对于弹簧振子,22021221A m kA E E p k ω==+。
⒌阻尼振动的动力学方程为 022022=++x dt dx dt x d ωβ。
其运动学方程分三种情况:⑴在弱阻尼状态(β<ω0),振动的方向变化有周期性,220'),'cos(βωωαωβ-=+=-t Ae x t ,对数减缩 = βT’.⑵在过阻尼状态(β>ω0),无周期性,振子单调、缓慢地回到平衡位置。
⑶临界阻尼状态(β=ω0),无周期性,振子单调、迅速地回到平衡位置⒍受迫振动动力学方程 t f x dt dx dt x d ωωβcos202022=++; 其稳定解为 )cos(0ϕω+=t A x ,ω是驱动力的频率,A 0和φ也不是由初始条件决定,222220004)(/ωβωω+-=f A 2202ωωβωϕ--=tg 当2202βωω-=时,发生位移共振。
二、思考题解答9.1 什么叫做简谐振动?如某物理量x 的变化规律满足cos()x A pt q =+,A ,p ,q ,均为常数,能否说作简谐振动?答:质点在线性回复力作用下围绕平衡位置的运动叫做简谐振动。
如果质点运动的动力学方程式可以归结为 22020d x xdt的形式,其中0决定于振动系统本身的性质,则质点做简谐振动9.2 如果单摆的摆角很大,以致不能认为sin θθ=,为什么它的摆动不是简谐振动? 答:因为当单摆的摆角很大不能认为sin θθ=时,单摆的动力学方程不能化为简谐振动的动力学,所以它的摆动不是简谐振动。
最新《力学》漆安慎(第二版)答案06章
力学(第二版)漆安慎习题解答第六章万有引力定律第六章万有引力定律一、基本知识小结⒈ 开普勒定律⑴ 行星沿椭圆轨道绕太阳运行,太阳位于一个焦点上⑵ 行星位矢在相等时间内扫过相等面积⑶ 行星周期平方及半长轴立方成正比 T 2/a 3=C⒉ 万有引力定律 2r mM G f =⒊ 引力势能 r mM p G r E -=)(⒋ 三个宇宙速度环绕速度 s km Rg V /9.71==脱离速度 122V V == 11.2 km/s逃逸速度 V 3 = 16.7 km/s.二、思考题解答6.1卡文迪什在1798年17卷《哲学学报》发表他关于引力常测量时,提到他实验是为测定出地球的密度。
试为什么测出G,就能测出地球的密度?答:设地面物体质量为m,地球质量为M,地球半径为R则二者之间的万有引力约为:由上式可以看出R,g都是可测量量,只要测出G,就能通过上间接测出地球密度。
6.2你有什么办法用至少那些可测量量求出地球质量、太阳质量、及地球太阳之间的距离?答:1)地球质量:设地面物体质量为m,地球质量为M,地球半径为R则二者之间的万有引力约为:因此,只要测出了地球半径R,就能求出地球质量M。
2)地球太阳之间的距离:设地球绕太阳运动的周期为,轨道半径为,太阳系的另一行星(离地球越近越好的周期为,轨道半径为,根据开普勒第三定律有:,即,由于人类早就对行星进行长期观测了, ,为已知,只需测出另一行星的轨道半径(这一距离需用视差法测量,需两个以上的天文台同时测量),便可知地球太阳之间的距离r。
3)太阳的质量:设太阳质量为M,地球质量为m,地球太阳之间的距离r,则二者之间的万有引力约为:,因此只需测得地球太阳之间的距离r,就可求出太阳质量为M。
三、习题解答6.1.1设某行星绕中心天体以公转周期T 沿圆轨道运行,试用开普勒第三定律证明:一个物体由此轨道自静止而自由下落至中心天体所需的时间为π2Tt =.证明:物体自由下落的加速度就是在行星上绕中心天体公转的向心加速度: 2222/41)2(T R RT R R v a ππ=⋅== 由自由落体公式:π2221/2,T a R t at R === (此题原来答案是:24Tt =,这里的更正及解答仅供参考)6.2.1 土星质量为5.7×1026kg ,太阳质量为2.0×1030kg ,两者的平均距离是1.4×1012m.⑴太阳对土星的引力有多大?⑵设土星沿圆轨道运行,求它的轨道速度。