第六章 开环聚合(完整资料).doc

合集下载

第六章开环聚合(RingOpeningPolymerization)

第六章开环聚合(RingOpeningPolymerization)

(kcal/mole)
27.6 26.4 6.5 0.0 6.4 10.0 12.9 12.0 1.5
(kJ/mole)
115 110 27
0 27 42 54 50 6
Ring Size 3,4
Ring Strain
5,6,7
8
Free Energy G= H -TS
# atoms H S
• 内酯可发生阳离子开环聚合,阴离子开环聚合和配位聚合.
• 内酰胺中已内酰胺研究得最多,工业上生产的尼龙-6即由己
内酰胺单体开环聚合制备的。
• 内酰胺除能够发生阳离子开环聚合和阴离子开环聚合外,还 可进行水解聚合.
• 工业上用水解聚合来生产尼龙-6合成纤维。 • ⒌ 含膦和氮的环状化合物 • 由PCl5和NH3制得的环状二氯化氮化膦的三聚体(NPCl2)3 加热到230℃以上发生开环聚合而形成线型高分子。
撑亚胺。四元环亚胺称为吖丁啶或氮杂环丁烷。

环亚胺一般只能发生阳离子开环聚合。
6.1 开环聚合概述
环亚胺要紧有以下两种:
CH2 CH2 N H
吖丙啶
CH2 N H CH2 CH2
吖丁啶
• 环硫化合物中,三元环环硫化合物称为硫化乙烯或噻丙环, 四元环环硫化合物称为噻丁环。
• 三元环硫化合物可发生阳离子开环聚合, 阴离子开环聚合 和配位聚合。按配位聚合可得到立构规整性聚合物。 • 重要的环硫化合物要紧有以下几种。
in Ring
G
[M]e
ext. of pzn @ Equil
3,4 5,6,7
large, neg.
small or zero
small, neg. large, neg. v. low

开 环 聚 合

开 环 聚 合
呋喃、己内酰胺、三聚甲醛等。
4
二、环烷烃开环聚合活性
Hale Waihona Puke 从热力学角度分析,取决于过程的自由能变化ΔG,它 与焓变ΔH及熵变ΔS值有关
ΔG =ΔH -TΔS
而ΔH 的大小则与环张力相关
5
环张力与环的大小(元数)、构成环的元素(碳环或
杂环)、环上取代基有关。 一般键的变形程度愈大,环的张力能和聚合热也愈大, 聚合自由焓负的更厉害,则环的稳定性愈低,愈易开环。
H (BF3OH)
三聚甲醛
HOCH2OCH2OCH2
OCH2OCH2OH
17
存在聚甲醛—甲醛平衡现象,诱导期相当于产生平衡甲醛的时 间,因此可以通过添加适量甲醛来消除诱导期,减少聚合时间。
OCH2OCH2OCH2 OCH2OCH2
+
CH2O
降低聚甲醛解聚倾向的方法:
1. 聚合结束前加入酸酐类物质,使端羟基乙酰化,防止其 从端基开始解聚。称为均聚甲醛。
3元环醚由于其环张力大,阳离子、阴离子、配位聚 合都可以。4、5元环醚只能进行阳离子聚合。
R O O O O
三聚甲醛
10
O O
环氧化物 环丙醚 四氢呋喃
环氧化物的开环聚合
3元环醚即环氧化物(epoxide)
阳离子聚合:副反应多,工业上不常用; 配位聚合:环氧化物的配位阴离子聚合可得到分子
量很高的聚合物。
(2)氨基酸本身逐步缩聚形成线型长链分子
COOH + H2N COHN + H2O
20
(3) 末端氨基氮原子向己内酰胺单体的羰基进攻, 导致内酰胺的开环聚合,生成长链分子
O C HOOC(CH2)5NH2 + (CH2)5

开环聚合

开环聚合

1) prepolymer of polyurethane
2) nonionic surfactants OP-10 C8H17octylphenol -(-EO-)-H EO-adduct
10
(hydrophobic group)
(hydrophilic group)
hydrophobic compound with active H (initiator or starter) KOH R-X-H + EO (catalyst) RX-[-EO-]-H n hydrophobic connecting active H
exp. cal.
115.6 115.8 113.1 69
(25℃)
92.5 88.8 9.2
3 4
60 90
24o44 697.6 9o44 0o44 686.7 664.5
38.6 27.7 5.5
109.7 110.8 105.1 55.3 26.4 27.5 21.8 42.7
5 108
measure: distortion, strain per CH2, strain energy, H, G
1) distortion of bond angles
= 1 (normal valency angle - actual angle between bonds) 2 for 4-member ring, = 1 (109o28 - 90o)=9o44 2 2) strain energy per CH2
60.4 4.2
725.5 21.0
840.6 25.0
- H = -92.1 - H = 63.7 1.2.2 S and G see table of p.6 for S : more double bond

第六章 开环聚合

第六章 开环聚合

8.1 环烷烃开环聚合热力学
➢ 按碳的四面体结构,C-C-C键角为109°28’,而环状化合物的键角
有不同程度的变形,因此产生张力。
三、四元环环张力很大,环不稳定而易开环聚合;
五元环键角接近正常键角,张力较小,环较稳定;
六元环常呈椅式结构,键角变形趋于0,不能开环聚合;
八元环上氢或取代基处于拥挤状态,因斥力而形成跨环张力(构象张
分子量降低。
当前您浏览到是第十八页,共五十页。
8.3 三元环醚的阴离子开环聚合
❖ 向单体链转移时,单体消失速率为:
d[N]
CM


d[M] 1 CM

无终止,聚合物仅由链转移生成,由转移生成的聚合物链的速率
为:
[M]0 -[M]
Xn
[N]
[N]:聚合物链的浓度
两式相除
[M]
0 -[M]
(Xn)0
CH2O Na
8.3 三元环醚的阴离子开环聚合
3)环氧丙烷的阴离子开环聚合机理和动力学
❖ 环氧丙烷结构不对称,可能有2种开环方式,其中β-C(CH2)原子
空间位阻较小,易受亲核进攻。但2种开环方式最终产物的头尾结构
相同。
d[N]
ktr,M[C][M]
dt

环氧乙烷阴离子聚合产物的分子量可达(3~4)
质子引发环醚开环,先形成二级氧鎓离子,再次开环,才形成三级
杨鎓离子,因而产生诱导期。
环氧乙烷却很容易被引发开环,直接形成三级氧鎓离子,从
而缩短或消除诱导期,因此环氧乙烷或丁氧烷用作THF聚合的活
化剂。
O
RXH nEO RX(EO)nH
环氧乙烷的开环
聚合具有阴离子

开 环 聚 合

开 环 聚 合

H (BF3OH)
三聚甲醛
HOCH2OCH2OCH2
OCH2OCH2OH
17
存在聚甲醛—甲醛平衡现象,诱导期相当于产生平衡甲醛的时 间,因此可以通过添加适量甲醛来消除诱导期,减少聚合时间。
OCH2OCH2OCH2 OCH2OCH2
+
CH2O
降低聚甲醛解聚倾向的方法:
1. 聚合结束前加入酸酐类物质,使端羟基乙酰化,防止其 从端基开始解聚。称为均聚甲醛。
O C (CH2)5 NH - + + B M
碱金属衍生物
O C (CH2)5 (I) N- M + + BH
22
O C (CH2)5 (I) N - M+ +
O C (CH2)5 NH ý Â
O C (CH2)5 N H C (CH2)5 N M+
O
存在“诱导期”
( II )
二聚体胺负离子(Ⅱ)
1、 环醚(cyclic ether)
简单的环醚中,常见有3、4、5元环可以开环聚合。
3元环醚由于其环张力大,阳离子、阴离子、配位聚 合都可以。4、5元环醚只能进行阳离子聚合。
R O O O O
环氧化物的开环聚合
3元环醚即环氧化物(epoxide)
阳离子聚合:副反应多,工业上不常用; 配位聚合:环氧化物的配位阴离子聚合可得到分子
量很高的聚合物。
环氧丙烷用适当的引发剂还可制得光学活性聚合物。
11
环氧化合物的阴离子开环聚合
引发剂:氢氧化物、烷氧基化合物等; 作用:制得重要的聚醚类非离子表面活性剂。
特点:无终止反应,具有活性聚合特征,加入
终止剂(如酚类)使链终止。

开环聚合

开环聚合

1) N and O: bond angle and length ~ C
C, N, O angle strain similar
2) S: more different
from strain energy, - H kJ/mol cycloalkane cycloether 3 4 116.4 109.3 O 117.2 O O 28.65 O O 30.6 O cycloimine NH 96.3 cyclosulfide S S 77.9 79.1
1) prepolymer of polyurethane
2) nonionic surfactants OP-10 C8H17octylphenol -(-EO-)-H
10
EO-adduct
(hydrophobic group)
(hydrophilic group)
hydrophobic compound with active H (initiator or starter) KOH R-X-H + EO (catalyst) RX-[-EO-]-H n hydrophobic connecting active H
group
group
1 2
dropwise added
3
4
2.2 Mechanism under basic catalyst condition metal oxide basic catalyst : metal hydroxide (KOH, NaOH…)
anhydride


2 Polymerization of cyclic ethers by anionic species
2.1 Introduction

开环聚合

开环聚合

R
CH2CH2O
n
O Na + ROH
-
+
R
CH2CH2O
n
+ RO-Na+ OH
交换反应生成的醇盐可继续引发聚合反应。 交换反应生成的醇盐可继续引发聚合反应。从形 式上看,交换反应与链转移反应相似, 式上看,交换反应与链转移反应相似,但与链转移 反应不同, 反应不同,交换反应生成的端羟基聚合物并不是 的聚合物,而只是休眠种, “死”的聚合物,而只是休眠种,可和增长链之间 发生类似的交换反应再引发聚合反应: 发生类似的交换反应再引发聚合反应:
③ 聚合反应条件
反应类型 开环聚合 因素 活化能 高 低 加成反应
反应分子数 单分子
双分子
升高聚合反应温度有利于提高开环反应速率; 升高聚合反应温度有利于提高开环反应速率;降 低聚合体系中的单体浓度有利于开环聚合反应的 进行。 进行。
第四节 阳离子开环聚合
1、四氢呋喃的阳离子开环聚合 、
在所有的温度下, 在所有的温度下,四氢呋喃的聚合都是平衡反 聚合通过氧正离子进行。以质子酸为引发剂, 应。聚合通过氧正离子进行。以质子酸为引发剂, 聚合过程如下: 聚合过程如下:
4、开环聚合反应机理 、
开环聚合反应机理较为复杂。大多数环状单体开 开环聚合反应机理较为复杂。 环聚合机理与离子聚合机理类似,根据单体种类、 环聚合机理与离子聚合机理类似,根据单体种类、 引发剂种类及增长活性中心电荷的不同, 引发剂种类及增长活性中心电荷的不同,可分为阴 离子开环聚合、阳离子开环聚合及配位聚合。 离子开环聚合、阳离子开环聚合及配位聚合。除分 析聚合反应的动力学特性外, 析聚合反应的动力学特性外,还通过实验测定出的 产物聚合度与反应时间的变化关系来确定开环聚合 反应机理。 反应机理。

开环聚合

开环聚合

HOOC(CH2)5NH2
(2)氨基酸本身逐步缩聚形成线型长链分子
COOH + H2N
COHN + H2O
18
4.4.3 逐步开环聚合
(3) 末端氨基氮原子向己内酰胺单体的羰基进攻, 导致内酰胺的开环聚合,生成长链分子
O C
HOOC(CH2)5NH2 + (CH2)5 NH O C
HOOC(CH2)5NHOC(CH2)5NH2
环酰胺(内酰胺)可以用碱、酸、水引发开环聚合。
• 由水引发聚合为尼龙—6,属逐步聚合。 • 由阳离子聚合,转化率和分子量不高,无工业价值。 • 由Na、NaOH等引发,属阴离子聚合,引发后可直 接浇入模内聚合,有铸型尼龙之称。
17
4.4.3 逐步开环聚合
(1) 己内酰胺水解开环成氨基酸
O C
(CH2)5 NH + H2O
HOCH2OCH2OCH2
OCH2OCH2OH
(RCO)2O
O
O
RC O [ CH2O ]n CH2 O CR
2. 与少量二氧五环共聚,在主链中引入 —OCH2CH2— 链 节,使聚甲醛降解直此即停止。称为共聚甲醛。
CH2O CH2CH2O CH2O CH2OH
16
3. 3 环酰胺(cyclic amide) 的开环聚合 内酰胺4-12环都能聚合
NH2 + (CH2)5 NH
NHOC(CH2)5NH2
己内酰胺开环增长(3)的速率较氨基酸自缩聚(2) 的速率大一个数量级以上。因此氨基酸的自缩聚只占总聚 合反应的百分之几,主要由开环聚合(3)形成聚合物。
19
环酰胺的阴离子开环聚合
链引发反应
10
环氧化合物的阴离子开环聚合
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【最新整理,下载后即可编辑】第六章 开环聚合 习题参考答案1. 试讨论环状单体环的大小与开环聚合反应倾向的关系。

解答:环状单体能否转变为聚合物,取决于聚合过程中自由能的变化情况,与环状单体和线形聚合物的相对稳定性有关。

以环烷烃为例,由液态的环烷烃(I )转变为无定型的聚合物(c ):聚合过程中的自由能变化:ΔG lc 0 =ΔH lc 0 — T ΔS lc 0≤ 0由表6-1可以看出,除六元环外,其他环烷烃的ΔG lc 0均小于0,开环聚合在热力学上是有利的。

除六元环烷烃外,其他环烷烃的聚合可行性为:三元环,四元环>八元环>五元环,七元环。

对于三元环、四元环来讲,ΔH lc 0是决定ΔG lc 0的主要因素,是开环聚合的主要推动力;而对于五元环、六元环和七元环来说,ΔH lc 0和ΔS lc 0对ΔG lc 0的贡献都重要。

随着环节数的增加,熵变对自由能变化的贡献增大,十二元环以上的环状单体,熵变是开环聚合的主要推动力。

以上仅是通过热力学分析的结果,事实上环烷烃的开环聚合通常难于进行,主要是因为环烷烃的结构中不存在容易被引发物种进攻的键,这是动力学原因。

其他的环状单体如内酰胺、内酯、环醚等杂环单体与环烷烃不同,由于杂原子的存在提供了可接受引发物种亲核或亲电进攻的部位,从而能够进行开环聚合。

2. 氧化丙烯的负离子聚合通常仅能得到低分子量的聚合物,试讨论原因。

解答:在氧化丙烯的负离子开环聚合过程中,由于存在副反应如交换反应、向单体的转移反应等,使得聚合物的相对分子质量降低,仅能得到低聚物。

具体原因如下:(CH 2)n x x n (CH 2)[](l)(c)交换反应 氧化丙烯的负离子开环聚合,常在醇(常采用醇盐相应的醇)的存在下,由醇盐或氢氧化物等引发聚合。

醇的存在,可以溶解引发剂,形成均相体系,同时能明显地提高聚合反应的速率,但醇可与增长链之间发生交换反应:新生成的高分子醇也会与增长链发生类似的交换反应:从而引起分子质量的降低及分子质量分布的变宽。

向单体的转移反应 氧化丙烯通过负离子开环聚合,仅能得到分子质量小于5000的低聚物。

这是因为环氧化物对负离子增长种活性较低,同时存在着增长链向单体的转移反应。

对于取代的环氧乙烷如环氧丙烷来说,向单体的转移反应尤为显著。

其过程如下:活性链向单体的转移,也是聚合物分子质量降低的原因之一。

3. 用氢氧离子或烷氧基负离子引发环氧化物的聚合反应常在醇的存在下进行,为什么?醇是如何影响分子量的?解答:许多环氧化物的开环聚合,如醇盐或氢氧化物等引发的聚合,是在醇(常采用醇盐相应的醇)的存在下进行的。

醇的存在,可以溶解引发剂,形成均相体系,同时能明显地提高聚合反应的速率。

这可能n R ( CH 2CH 2O ) O -Na ++ROH RO -Na ++R ( CH 2CH 2O ) OH n R ( CH 2CH 2O ) OH m +n R ( CH 2CH 2O ) O -Na +m R ( CH 2CH 2O ) O -Na ++R ( CH 2CH 2O ) OH n CH 2 CH OH +O CH 2 CH CH -Na +CH 3tr, M CH 3CH 3 CH CH 2O +CH 2 CH O -Na +CH 2 CH CH 2O -Na +很很CH 2 CH CH -Na +O是由于醇增加了自由离子的浓度,同时将紧密离子对变为松散离子对的缘故。

在醇存在下,增长链与醇之间可发生交换反应:新生成的高分子醇也会与增长链发生类似的交换反应:这些交换反应可引起分子质量的降低及分子质量分布的变宽。

4. 用方程式表示环醚、环缩醛在聚合反应中发生的尾咬、扩环反应。

解答:环醚及环缩醛等在进行正离子开环聚合过程中,活性中心常会受到增长链中的其他氧原子的进攻,转换成张力较小的活性种。

之后再与单体交换,形成新的活性种,同时有环状低聚物形成。

以四元环醚为例,其增长过程中的回咬、扩环反应如下:形成的无环张力的四聚体氧正离子,活性降低,使聚合终止。

它可通过与氧杂环丁烷的交换,形成新的活性中心,并有环状四聚体形成:n R ( CH 2CH 2O ) O -Na ++ROH RO -Na ++R ( CH 2CH 2O ) OH n R ( CH 2CH 2O ) OH m +n R ( CH 2CH 2O ) O -Na +m R ( CH 2CH 2O ) O -Na ++R ( CH 2CH 2O ) OH n O +[BF 3OH]-O O(CH 2)3 +O [BF 3OH]-+(CH 2)3O(CH 2)3(CH 2)3O(CH 2)3O O(CH 2)3 O (CH 2)3O(CH 2)3(CH 2)3O(CH 2)3O +O (CH 2)3O(CH 2)3(CH 2)3O(CH 2)32+[BF3OH]-O O [BF 3OH]-+23 [O(CH 23]O(CH 2)35. 考察下列单体和引发体系,哪种引发体系能使下表中右列的单体聚合?用化学方程式写出每一聚合反应的机理。

(1) 能引发氧化丙烯、ε-己内酰胺、八甲基环四硅氧烷、硫化丙烯、三氧六环等进行负离子开环聚合,具体引发反应如下: (a ) 氧化丙烯(b ) ε-己内酰胺引发反应:首先丁基锂与ε-己内酰胺作用,生成内酰胺负离子,之后内酰胺负离子再与单体作用,发生开环转酰胺基作用,形成的伯胺负离子由于活性高,能很快由单体夺取质子,形成酰亚胺二聚体N-(ε-氨基己酰基)己内酰胺,并再生出内酰胺负离子: CH 2 CH O -Li ++OCH 3 CH CH 2CH 3n C 4H 9Li n C 4H 9n C 4H 10+O C 2)5 N -Me +2)5 NH CO+n C 4H 9-Li +n C 4H 9Li完成引发反应。

增长反应:内酰胺负离子与聚合物链的端内酰胺基作用,聚合物链增长,并形成位于链上的酰胺负离子;经交换反应,形成新的内酰胺负离子,进一步与聚合物的端内酰胺基作用,使聚合物链不断增长:H O C 2)5 N CO(CH 2)5N -Li+O C 25 NH 2)5 N -C O O C 2)5 N -Li +2)5 NH C O +2)5 N CO(CH 2)5N -Li +C O H O C 2)5 N CO(CH 2)5NH 2+(CH 2)5 N CO(CH 2)5NH CO +O C 2)5 N -Li +(CH 2)5 N -Li +C O很很O C (CH 2)5 N CO(CH 2)5 N CO(CH 2)5NH +-Li +O C (CH 2)5 N [CO(CH 2)5NH]2(c ) 八甲基环四硅氧烷(d ) 硫化丙烯(e )三氧六环(2) 能够以BF 3-H 2O 及H 2SO 4引发聚合的单体为:氧化丙烯、ε-己内酰胺、δ-戊内酰胺、八甲基环四硅氧烷、乙烯亚胺、硫化丙烯、三氧六环、氧杂环丁烷。

具体如下:(a )氧化丙烯引发:增长:[(CH 3)2SiO]4n C 4H 9Li +n C 4H 9[(CH 3)2SiO]3 (CH 3)2SiO -Li +n C 4H 9n C 4H 9Li CH 2 CH 2S +CH 2 CH 2 S -Li +n C 4H 9n C 4H 9Li +CH 2OCH 2OCH 2O -Li +O O CH 2O CH 2H 2C BF 3H2O +H +[BF 3OH]-O +O [BF 3OH]-H +[BF 3OH]-H [BF 3OH]-HOCH 2CHCH 3+O [BF 3OH]-+[BF 3OH]- OCH 2CH ++O CH 3(b )乙烯亚胺其中:(c )三氧六环引发:增长:其中:(d )氧杂环丁烷 引发:N H +H 2N A H N +N A H 2N A H CH 2 CH 2 NH 2N H CH 2 CH 2 N CH 2 CH 2 NH 2H N A H A [BF 3OH]- HSO 4-,A -+HOCH 2OCH 2OCH 2A -+H H 2C O CH 2O CH 2O +-O O CH 2O CH 2H 2C A [BF 3OH]- HSO 4-,BF 3H 2O +H +[BF 3OH]-(CH 2O)3CH 2CH 2 O CH 2 O OCH 2OCH 2OCH 2 O A-2)3OCH 2OCH 2OCH 2+A -++A -(OCH 2)3OCH 2OCH 2OCH 2 O CH 2 OCH 2CH 2 O增长:其他如硫化丙烯类似与氧化丙烯,有关ε-己内酰胺、δ-戊内酰胺、八甲基环四硅氧烷的引发聚合机理略。

(3)能够以NaOC 2H 5引发聚合的单体有氧化丙烯、八甲基环四硅氧烷、硫化丙烯、三氧六环等,具体引发聚合机理类似于前述(1)。

(4)H 2O 能够引发ε-己内酰胺、δ-戊内酰胺聚合。

以ε-己内酰胺为例,主要存在三种反应:(a )内酰胺的水解反应,形成氨基酸:(b )氨基酸本身的缩聚反应:(c )氨基对内酰胺的亲核进攻,引发的开环聚合反应:引发:1++[BF 3OH]-O H [ O(CH 2)3] n O n H [ O(CH 2)3] +O [BF 3OH]-+2)5 NH CO HO 2C(CH 2)5NH 2+H 2O COOH H 2N ++CO NHH 2O2)5 NHCO HO 2C(CH 2)52HO 2C(CH 2)5NHCO(CH 2)5NH 2增长:其中以开环聚合反应为主。

6. 给出合成下列各种聚合物所需的环状单体、引发剂和反应条件: (1) (2) (3) (4) (5)(6) 解答:(a )先将5~10%的单体水溶液在250~270℃加热12~24小时以上,至转化率为80~90%,然后除去水,使聚合度达到要求。

(b )以胺、醇盐、氢氧化钠等为催化剂引发聚合。

(c )以正离子引发剂引发聚合。

(d )以正离子引发剂引发聚合。

[ NHCO(CH 2)4 ]n [ NH CH CO ]n C 2H 5[ N CH 2CH 2CH 2 ]nCHO [ O(CH 2)2OCH 2 ]n [ CH CHCH 2)2 ]n [ SiCH 3)2O ]n2)5 NH C O NH 2+NHCO(CH 2)5NH 2(NH CH CO)CO 2O C 2H 5H CO C HN CO C 2H 5CHO ][n N (CH 2)3(CH 2)3N OH C n n[ O(CH 2)2 OCH 2 ](e )以WCl 6—烷基铝等为催化剂进行易位聚合。

(f )以强碱等引发负离子聚合。

7. 在内酰胺的负离子聚合反应中,酰化剂和活化单体起什么作用?解答:酰化剂可迅速地与内酰胺反应生成N-酰基内酰胺,如ε-己内酰胺与酰氯反应生成N-酰基己内酰胺:N-酰基内酰胺与活化单体(内酰胺负离子)反应,再同单体进行质子交换,形成新的活化单体,从而实现聚合链引发和增长:[(CH 3)2SiO]4NaOH n/4n[ SiCH 3)2O ]n [ CH CH(CH 2)2 ]n O C (CH 2)5 N CO R (CH 2)5 NH C O +(CH 2)5 N CO(CH 2)5 NH CO R C O很很Me +-O C (CH 2)5 N -Me +2)5 N -Me C O +2)5 N CO R C O O C (CH 2)5 N CO(CH 2)5 N CO R单独以强碱作为引发剂,仅能引发活性较大的内酰胺如己内酰胺、庚内酰胺等的开环聚合,而且聚合存在诱导期;而对于反应活性小的内酰胺如六元环的哌啶酮等,不能引发聚合。

相关文档
最新文档