§3-2多跨静定梁
合集下载
结构力学第三章静定结构受力分析

MA
0, FP
l 2
YB
l
0,YB
FP 2
()
Fy
0,YA
YB
0,YA
YB
Fp 2
()
例2: 求图示刚架的约束力 q
C
A
ql
l
l
l
B
A
ql
ql
C
XC
YC
FNAB
解:
Fy 0,YC 0
MA
0, ql
l 2
XC
l
0,
XC
1 2
ql()
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。
40k N
80k N·m
20k N/m
AB
CD
EF
G
H
2m 2m 2m 1m 2m 2m 1m
4m
2m
50构造关系图 40k N
C 20 A B 50
Fy 0,YA YB 2ql 0,YA ql() 3)取AB为隔离体
2)取AC为隔离体
Fy 0, YC YA ql 0
Fx 0, XB X A ql / 2()
l MC 0, X A l ql 2 YB l 0, X A ql / 2()
A
B
C D E FG
1m 1m 2m 2m 1m 1m
A C D E FG B
13 17
26 8
7 15 23 30
四川大学锦城学院结构力学复习题

2、几何常变体系、几何瞬变体系
FP FP
体系受到任意荷载作用,在不考虑材料应变的 前提下,体系产生瞬时变形后,变为几何不变体系, 则称几何瞬变体系。
3
3、自由度
自由度:体系运动时,可以独立改变的几何参数的 数目,即确定体系位置所需要独立坐标的数目
A
y
y y x
A
x
x
1动点= 2自由度
1刚片= 3自由度
A
FAx=120kN FAy=45kN 4m
C
F
G
15kN 4m
15kN 4m
15kN
a.求支座反力 FAy=45kN
FAx=120kN
(对于这种悬臂型结构可不必先求反力)
38
3m FBx=120kN
B
D
E
3m
FNGE XNGE FNGF
YNGE
G
A
C
F
G
4m
15kN 4m
15kN 4m
15kN
15kN
MA
l
MB MA
ql2/8
26
§3-2 静定多跨梁
1.传力关系
组成顺序
基本部分
附属部分1
附属部分2 ¨ ¨ ¨
传力顺序
2.计算原则
与传力顺序相同,先计算附属部分后计算基本部分
27
画出图示梁的弯矩图、剪力图
40kN/m
K 120kN
8m
2m
3m
3m
120kN
40kN/m
60kN 235kN
60kN
36
结点法、截面法
1、结点法
取单结点为分离体, 其受力图为一平面汇 交力系。 它有两个独 立的平衡方程。
结构力学第3章

D (a)
B C YC A C
Q
q P
D
XD (b) C YC XC XC
q
Q
B YB A YA XA
(c)
刚架指定截面内力计算
与梁的指定截面内力计算方法相同(截面法).
注意未知内力正负号的规定(未知力先假定为正)
注意结点处有不同截面(强调杆端内力) 注意正确选择隔离体(选外力较少部分)
注意利用结点平衡(用于检验平衡,传递弯矩) 连接两个杆端的刚结点,若结点上无外力偶作用, 则两个杆端的弯矩值相等,方向相反
刚架内力图的绘制
弯矩图
取杆件作隔离体
剪力图
轴力图
取结点作隔离体
静定刚架的内力图绘制方法: 一般先求反力,然后求控 制弯矩,用区段叠加法逐杆 绘制,原则上与静定梁相同。
例一、试作图示刚架的内力图
求反力
(单位:kN . m)
48 192
144 126
12
48 kN
42 kN
22 kN
例一、试作图示刚架的内力图
计算关键
正确区分基本结构和附属结构 熟练掌握单跨静定梁的绘制方法
多跨度梁形式
并列简支梁
多跨静定梁
超静定连续梁
为何采用 多跨静定梁这 种结构型式?
作内力图
例
叠层关系图
先附属,后基本, 先求控制弯矩,再区段叠加
18 10 10
5
12
例
9
12
18
+ 9 9
4
其他段仿 此计算 5
5
2.5 FN 图(kN)
l
q
A
ql2 8 l
B
a m l m A b m l a b l B
B C YC A C
Q
q P
D
XD (b) C YC XC XC
q
Q
B YB A YA XA
(c)
刚架指定截面内力计算
与梁的指定截面内力计算方法相同(截面法).
注意未知内力正负号的规定(未知力先假定为正)
注意结点处有不同截面(强调杆端内力) 注意正确选择隔离体(选外力较少部分)
注意利用结点平衡(用于检验平衡,传递弯矩) 连接两个杆端的刚结点,若结点上无外力偶作用, 则两个杆端的弯矩值相等,方向相反
刚架内力图的绘制
弯矩图
取杆件作隔离体
剪力图
轴力图
取结点作隔离体
静定刚架的内力图绘制方法: 一般先求反力,然后求控 制弯矩,用区段叠加法逐杆 绘制,原则上与静定梁相同。
例一、试作图示刚架的内力图
求反力
(单位:kN . m)
48 192
144 126
12
48 kN
42 kN
22 kN
例一、试作图示刚架的内力图
计算关键
正确区分基本结构和附属结构 熟练掌握单跨静定梁的绘制方法
多跨度梁形式
并列简支梁
多跨静定梁
超静定连续梁
为何采用 多跨静定梁这 种结构型式?
作内力图
例
叠层关系图
先附属,后基本, 先求控制弯矩,再区段叠加
18 10 10
5
12
例
9
12
18
+ 9 9
4
其他段仿 此计算 5
5
2.5 FN 图(kN)
l
q
A
ql2 8 l
B
a m l m A b m l a b l B
§3-2多跨静定梁

§3-2 静定多跨梁
一、定义及常用形式
多跨静定梁:由若干根梁用铰连接而成、用来跨越几个相连跨度的静定梁。
无铰跨和两铰跨交替 出现
除第一跨外,其余各 跨皆有一铰
前两种方式组合
二、几何构造特点及受力特点
主梁或基本部分 1、几何组成 次梁或附属部分 不依赖其它部分的存在,本身就 能独立地承受荷载并能维持平衡 的部分 需要依赖其它部分的支承才可以 承受荷载并保持平衡的部分
F -0.25 -0.25
0.5 0.5 -0.25 -0.25
Step3:绘制内力图。
FPa
D A B C
0.25 Pa F
E F
0.5FP
A B C D E F
0.5FPa
0.25FP
FP
M图
FQ图
【例3.3 】
试求铰D的位置,使负弯矩峰值与正弯矩峰值相等
q
A
q
B C A D B
q
C
l−x
D
x
例:作内力图
1、几何组成分析: 2、分层法:将附 属部分的支座反力 反向指其基本部分, 就是加于基本部分 的荷载; 3、内力使梁正负最大弯矩的绝对值相等,试确定铰B、E的位置。 欲使梁正负最大弯矩的绝对值相等,试确定铰B 的位置。
1、几何组成分析: 2、内力分析:分 层法:将附属部分 的支座反力反向指 其基本部分,就是 加于基本部分的荷 载; 3、内力图:各单跨梁的 内力图连在一起
FRB
FRC
q (l − x) 2 q (l − x) x qx 2 M 跨中 = ,M B = + 8 2 2
得:
M 跨中 = M B
⇒
q (l − x) 2 q (l − x) x qx 2 = + 8 2 2
一、定义及常用形式
多跨静定梁:由若干根梁用铰连接而成、用来跨越几个相连跨度的静定梁。
无铰跨和两铰跨交替 出现
除第一跨外,其余各 跨皆有一铰
前两种方式组合
二、几何构造特点及受力特点
主梁或基本部分 1、几何组成 次梁或附属部分 不依赖其它部分的存在,本身就 能独立地承受荷载并能维持平衡 的部分 需要依赖其它部分的支承才可以 承受荷载并保持平衡的部分
F -0.25 -0.25
0.5 0.5 -0.25 -0.25
Step3:绘制内力图。
FPa
D A B C
0.25 Pa F
E F
0.5FP
A B C D E F
0.5FPa
0.25FP
FP
M图
FQ图
【例3.3 】
试求铰D的位置,使负弯矩峰值与正弯矩峰值相等
q
A
q
B C A D B
q
C
l−x
D
x
例:作内力图
1、几何组成分析: 2、分层法:将附 属部分的支座反力 反向指其基本部分, 就是加于基本部分 的荷载; 3、内力使梁正负最大弯矩的绝对值相等,试确定铰B、E的位置。 欲使梁正负最大弯矩的绝对值相等,试确定铰B 的位置。
1、几何组成分析: 2、内力分析:分 层法:将附属部分 的支座反力反向指 其基本部分,就是 加于基本部分的荷 载; 3、内力图:各单跨梁的 内力图连在一起
FRB
FRC
q (l − x) 2 q (l − x) x qx 2 M 跨中 = ,M B = + 8 2 2
得:
M 跨中 = M B
⇒
q (l − x) 2 q (l − x) x qx 2 = + 8 2 2
结构力学 第3章静 定梁、平面刚架受力分析

工程中,斜梁和 斜杆是常遇到的,如楼梯梁、刚架中的斜梁等。斜梁 受均布荷载时有两种表示方法: (1)按水平方向分布的形式给出(人群、雪荷载等),用 q 表示。 (2)按沿轴线方向分布方式给出(自重、恒载),用 q’ 表示。
q 与 q’间的转换关系:
qdx qds q q
cos
第3章
[例题] 试绘制图示斜梁内力图。
q
B
C
A
α
D VB
HA
l/3 l/3
l/3
VA
(1)求支座反力:
解:
X 0 MB 0 MA 0
HA 0
VA
ql 6
()
VB
ql 6
()
校核:
Y
qj 6
qj 6
ql 3
0
第3章
(2)AC段受力图:
(3)AD段受力图:
HAcosα HAsinα
HA VAsinα
VA VAcosα
MC
C
NC
α QC
HAcosα
dx
d2M dx2
q(x)
(1)在无荷区段q(x)=0,剪力图为水平直线,弯矩图为斜直线。
(2)在q(x)=常量段,剪力图为斜直线,弯矩图为二次抛物线。其凹下去的曲 线象锅底一样兜住q(x)的箭头。
(3)集中力作用点两侧,剪力值有突变、弯矩图形成尖点;集中力偶作用点两 侧,弯矩值突变、剪力值无变化。
解:
10KN/m A HA=0
4m VA=26.25kN
30KN.m
20KN
C
D
B
E
2m
2m
32.5 2.5
3m VB=33.75KN 60
(1)计算支座反力
q 与 q’间的转换关系:
qdx qds q q
cos
第3章
[例题] 试绘制图示斜梁内力图。
q
B
C
A
α
D VB
HA
l/3 l/3
l/3
VA
(1)求支座反力:
解:
X 0 MB 0 MA 0
HA 0
VA
ql 6
()
VB
ql 6
()
校核:
Y
qj 6
qj 6
ql 3
0
第3章
(2)AC段受力图:
(3)AD段受力图:
HAcosα HAsinα
HA VAsinα
VA VAcosα
MC
C
NC
α QC
HAcosα
dx
d2M dx2
q(x)
(1)在无荷区段q(x)=0,剪力图为水平直线,弯矩图为斜直线。
(2)在q(x)=常量段,剪力图为斜直线,弯矩图为二次抛物线。其凹下去的曲 线象锅底一样兜住q(x)的箭头。
(3)集中力作用点两侧,剪力值有突变、弯矩图形成尖点;集中力偶作用点两 侧,弯矩值突变、剪力值无变化。
解:
10KN/m A HA=0
4m VA=26.25kN
30KN.m
20KN
C
D
B
E
2m
2m
32.5 2.5
3m VB=33.75KN 60
(1)计算支座反力
结构力学第三章习题参考解答

FAy 6 FAx 2 0
1 ql 2A
1 ql 4
取整体:M A 0
Fy 0
取AC: MC 0
取整体: Fx 0
l
l
0.45ql
FBy
1 2l
ql 3l 2
3 ql 4
FAy
ql
3 4
ql
1 4
ql
FAx
2 ql 2 l4
1 ql 2
FBx
1 ql 2
l 2
1 ql B2 3 ql 4
取左段
FNK
ql cos
3l 4
1 q 3 l 2 2 4
9 ql 2 32
D
C
q
3 ql
4
A
1 ql
l
4
1 ql
4
1 ql 4
3 ql
4
FQ KN
1 ql 2
E
4
1 ql 2 4
9 ql2 32
1 ql
B
4
ql 2 8
M KNm
l
1 ql
4
1 ql
4
1 ql
4
FN KN
1 ql2 4
1 ql 4
3-12解:
q C
q
3 ql
4
A
l
1 ql
B
4
Fy 0
FAy
1 ql 4
1 ql 4
l
l
1 ql
4
取BC:
MC 0
FBx
1 4
ql
取整体:
Fx 0
FAx
ql
1 ql 4
3 ql 4
AD段的最大弯矩 M x 3 qlx 1 qx2 dM 3 ql qx 0
结构力学 第三章 静定结构

• 由结点弯矩平 衡校核弯矩计算是 否正确。
MBC=1kN· m
B
MBE= 4kN· m
MBA=5kN· m
FP1=1kN FP2=4kN
• 用计算中未使 用过的隔离体平衡 条件校核结构内力 计算是否正确。
5kN· m
1kN
3kN
FP3=1kN
2、简支刚架
• 解: • (1)、求支座 反力 • ∑y=0 • FCy =80kN(↑) • ∑m0=0 • FAx=120kN(←) •∑x=0 •FBx=80kN(→)
§3-2 静定多跨梁
•
由中间铰将若干根梁(简单梁) 联结在一起而构成的静定梁,称为静 定多跨梁。
1、几何组成:
• 基本部分+附属部分。 • (1)、基本部分:不依赖其它部分, 本身能独立承受荷载并维持平衡。 • (2)、附属部分:依赖于其它部分而 存在。
2、层叠图和传力关系
(1)、附属部分荷载 传 基本部分或 支撑它的附属部分。 • (2)、基本部分的荷载对附属部分无 影响,从层叠图上可清楚的看出来。 •
练习: 分段叠加法作弯矩图
q
A B
C
1 2 ql 4
l
q
1 ql 2
ql
l l l
例题
4kN· m
4kN
3m
3m
(1)集中荷载作用下
6kN· m
(2)集中力偶作用下
4kN· m 2kN· m
(3)叠加得弯矩图
4kN· m
4kN· m
例题
3m
8kN· m
2kN/m
3m
2m
(1)悬臂段分布荷载作用下
FP2=4kN
q=0.4kN/m
MBC=1kN· m
B
MBE= 4kN· m
MBA=5kN· m
FP1=1kN FP2=4kN
• 用计算中未使 用过的隔离体平衡 条件校核结构内力 计算是否正确。
5kN· m
1kN
3kN
FP3=1kN
2、简支刚架
• 解: • (1)、求支座 反力 • ∑y=0 • FCy =80kN(↑) • ∑m0=0 • FAx=120kN(←) •∑x=0 •FBx=80kN(→)
§3-2 静定多跨梁
•
由中间铰将若干根梁(简单梁) 联结在一起而构成的静定梁,称为静 定多跨梁。
1、几何组成:
• 基本部分+附属部分。 • (1)、基本部分:不依赖其它部分, 本身能独立承受荷载并维持平衡。 • (2)、附属部分:依赖于其它部分而 存在。
2、层叠图和传力关系
(1)、附属部分荷载 传 基本部分或 支撑它的附属部分。 • (2)、基本部分的荷载对附属部分无 影响,从层叠图上可清楚的看出来。 •
练习: 分段叠加法作弯矩图
q
A B
C
1 2 ql 4
l
q
1 ql 2
ql
l l l
例题
4kN· m
4kN
3m
3m
(1)集中荷载作用下
6kN· m
(2)集中力偶作用下
4kN· m 2kN· m
(3)叠加得弯矩图
4kN· m
4kN· m
例题
3m
8kN· m
2kN/m
3m
2m
(1)悬臂段分布荷载作用下
FP2=4kN
q=0.4kN/m
结构力学第3章静定梁的内力计算

➢ 上一步所作的直线为新的基线, 叠加梁中部荷载作用下的弯矩 图。
精品课件
简支梁在两支座端有外力偶作 用时,梁两端截面有等于该端 力偶的弯矩,无外力偶在端部 作用时端部截面的弯矩为零。 所以简支梁两端支座处的弯矩 值竖标可直接绘出。
精品课件
注意:
❖ 图的叠加是弯矩竖标的叠加,而 不是图形的简单叠加。 ❖ 每叠加一个弯矩图,都以紧前一 次弯矩图外包线为新基线,并由此 基线为所叠加的弯矩图的拉压分界 线。见图3-1-6。
精品课件
❖ 又由于区段AB两端的轴力在 弯曲小变形的假设下对弯矩不 产生影响
❖ 所以从弯矩图的角度说, (a)右、(b)右两受力图是相 同的。
精品课件
区段AB的弯矩图可以利用与简支 梁相同的叠加法制作。其步骤相 类似:
➢ 求出直杆区段两端的弯矩值, 在杆轴原始基线相应位置上画出 竖标,并将两端弯矩竖标连直线。
1)求支座反力
去掉支座约束,以整体为隔离 体,由静力平衡条件得
MB 0
MA 0
精品课件
F A y 7 1(1 4 4376)3k0N m(↑)
F B y7 1(1 44471)3k3N m (↑)
FAx=0 FAy=30kN
q=14kN/m
精品课件
(a) FBy=33kN
2)计算控制截面弯矩值
取D截面以左(下侧受拉)
精品课件
➢ 在新的基线上叠加相应简支 梁与区段相同荷载的弯矩图。 (相应简支梁,指与所考虑区段 等长且其上荷载也相同的,相应
于该区段的简支梁)
上述方法即为直杆区段弯矩图的 叠加法。
精品课件
例3-1-3 计算图示简支梁,并作 弯矩图和剪力图。
q=14kN/m
1m 1m
精品课件
简支梁在两支座端有外力偶作 用时,梁两端截面有等于该端 力偶的弯矩,无外力偶在端部 作用时端部截面的弯矩为零。 所以简支梁两端支座处的弯矩 值竖标可直接绘出。
精品课件
注意:
❖ 图的叠加是弯矩竖标的叠加,而 不是图形的简单叠加。 ❖ 每叠加一个弯矩图,都以紧前一 次弯矩图外包线为新基线,并由此 基线为所叠加的弯矩图的拉压分界 线。见图3-1-6。
精品课件
❖ 又由于区段AB两端的轴力在 弯曲小变形的假设下对弯矩不 产生影响
❖ 所以从弯矩图的角度说, (a)右、(b)右两受力图是相 同的。
精品课件
区段AB的弯矩图可以利用与简支 梁相同的叠加法制作。其步骤相 类似:
➢ 求出直杆区段两端的弯矩值, 在杆轴原始基线相应位置上画出 竖标,并将两端弯矩竖标连直线。
1)求支座反力
去掉支座约束,以整体为隔离 体,由静力平衡条件得
MB 0
MA 0
精品课件
F A y 7 1(1 4 4376)3k0N m(↑)
F B y7 1(1 44471)3k3N m (↑)
FAx=0 FAy=30kN
q=14kN/m
精品课件
(a) FBy=33kN
2)计算控制截面弯矩值
取D截面以左(下侧受拉)
精品课件
➢ 在新的基线上叠加相应简支 梁与区段相同荷载的弯矩图。 (相应简支梁,指与所考虑区段 等长且其上荷载也相同的,相应
于该区段的简支梁)
上述方法即为直杆区段弯矩图的 叠加法。
精品课件
例3-1-3 计算图示简支梁,并作 弯矩图和剪力图。
q=14kN/m
1m 1m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
次梁或附属部分
相对性
2、构造次序
先固定基本部分, 后固定附属部分
3、力的传递
基本部分上所受到的 荷载对附属部分没有 影响,附属部分上作 用的外荷载必然传递 到基本部分。
层次图
三、多跨静定梁的计算
1、思路 ①计算次序与构造次序相反
②计算方法:分层法。 (对结构进行几何组成分析,分清基本部分和附属部 分;先计算附属部分的反力和内力,再计算基本部分的反力和内力。)
D E F RE F
Y 0
对EF部分:
M RF FRD
FRD 0.75 FP
FRB
FRF
M E 0 M RF 0.25FP a FRF 0.25 FP Y 0
FP
A B C
0.5 FP
D E
FP
0.25 FP
F A B C D
0.25 FP a
E F
1.5FP
0.75 FP
0
-1
0.5 0.5 -0.25 -0.25
Step3:绘制内力图。
FP a
D A B C
0.25FP a
E F
0.5 FP
A B C D E F
0.5FP a
0.25 FP
M图
FP
FQ图
【例3.3 】
试求铰D的位置,使负弯矩峰值与正弯矩峰值相等
q
A
q
B C A D B
q
C
lx
D
x
l
解:
A
Step1:分层求支反力。
E
B C D
F
G
H
4 2 8
4
7.5
M图(KN.m)
2
4
4
4 8.5
Q图(KN)
2
③计算关键:基本部分和附属部分之间的相互连接力(作用力和反作用力), 求出这些连接力后,各部分当作单跨静定梁来计算。分段作内力图。然后拼 接。 2 、分析步骤 ①几何组成分析:分清主次部分 ②分层法:将附属部分的支座反力反向指其基本部分,就是加于基 本部分的荷载; ③内力图:各单跨梁的内力图连在一起
0.25 FP a 0.25 FP
1.5FP
0.75 FP
0.25 FP
Step2: 求控制截面的弯矩和剪力。
选A、BL、BR、 DL、DR 、F为控制截面,设弯矩下侧受拉为正
A点: M A 0 FQA FP C点: M C 0 FQC 0.5 FP
E点: M E 0 FQE 0.25 FP F点: M F 0.25 FP a FQF 0.25 FP
3、内力图:各 单跨梁的内力图 连在一起
例:欲使梁正负最大弯矩的绝对值相等,试确定铰B、E的位置。
1、几何组成分析: 2、内力分析:分 层法:将附属部分 的支座反力反向指 其基本部分,就是 加于基本部分的荷 载; 3 、内力图:各单跨梁的 内力图连在一起
M max M c M D qlx 2 q(l x) 2 MI 8
q
FRD
FRA
B
D
q
C
对AD部分:
FRB
FRC
M A 0 FRD 0.5q(l x) FRA 0.5q(l x) Y 0
Step2:设弯矩下侧受拉为正,求AD跨的正弯矩及B截面的 负弯矩。 q
A
0.5q(l x)
B
D
q
C
0.5q(l x)
FRB
FRC
q(l x) 2 q(l x) x qx 2 M 跨中 ,M B 8 2 2
得:
M 跨中 M B
q(l x) 2 q(l x) x qx 2 8 2 2
0.086ql 2
x 0.172l
M图
A
0.086ql
2
DB
C
0.086ql 2
课堂作业:作内力图
例:作内力图
1、几何组成分析:
2、分层法:将附 属部分的支座反力 反向指其基本部分, 就是加于基本部分 的荷载;
B点: M B FP a D点: M 0.5 F a D P L L FQB FP FQD 0.5 FP
R FQB 0.5 FP R FQD 0.25 FP
A 弯矩M
剪力FQ
BL -1
-1
BR -1
0.5
C 0
DL 0.5
DE 0.5Leabharlann E 0F -0.25
-0.25
【例3.2 】
试求图示梁 的内力图
FP
A B C D E F
a
2a
a
2a
a
解:
Step1:分层求支反力。
对ABC部分:
FP
A B C D E F
MB 0 Y 0
FRC 0.5FP FRB 1.5FP
FP
A B C
对CDE部分: M D 0 FRE 0.25FP
FRC
M max
x 0.1716 l
少求或不用求支座反力绘结构的内力图
例1:绘内力图,并求各支座反力。
1、根据内力图与荷载 的微分关系,直接绘出 A 结构的弯矩图; 2、根据已经绘出的弯 矩图,采用微分关系或 杆件的平衡条件绘出剪 力图; 3、根据结点的平衡 条件,可求出结点的 支座反力;各支座反 力值也可直接从剪力 图上竖标突变值得到。
§3-2 静定多跨梁
一、定义及常用形式
多跨静定梁:由若干根梁用铰连接而成、用来跨越几个相连跨度的静定梁。
无铰跨和两铰跨交替 出现
除第一跨外,其余各 跨皆有一铰
前两种方式组合
二、几何构造特点及受力特点
主梁或基本部分 1、几何组成 不依赖其它部分的存在,本身就 能独立地承受荷载并能维持平衡 的部分 需要依赖其它部分的支承才可以 承受荷载并保持平衡的部分