分析多跨静定梁的步骤(精)

合集下载

《建筑力学》11章静定结构的内力分析

《建筑力学》11章静定结构的内力分析

图11-15
返回
如图11-16所示去掉零杆后结构变得更简单, 可使计算简化
图11-16
3)几种特殊结点 使用结点法时,熟悉如图11-17所示的几种特殊结点,可使计算简化,对题解 有益处: ① L型结点。不在一直线上的两杆结点,当结点不受外力时,两杆均为零杆, 如图11-17 (a)所示。若其中一杆与外力F共线,则此杆内力与外力F相等, 另 一杆为零杆,如图11-17 (d)所示。 ② T型结点。两杆在同一直线上的三杆结点,当结点不受外力时,第三杆为零 杆,如图11-17 (b)所示。若外力F与第三杆共线,则第三杆内力等于外力F, 如图11-17 (e)所示。 ③ X型结点。四杆结点两两共线,如图11-17 (c)所示,当结点不受外力时, 则共线的两杆内力相等且符号相同。 ④ K型线点。这也是四杆结点,其中两杆共线,另两杆在该直线同侧且与直 线夹角相等,如图11-17 (f)所示,当结点不受外力时,则非共线的两杆内力大 小相等但符号相反。 以上结论,均可取适当的坐标由投影方程得出。 (4)结点法计算桁架的内力 结点法是指以截取的结点为研究对象,根据外力和杆件内力组成的平面汇 交力系平衡方程计算杆件内力的方法。 实际计算时,可以先从未知力不超过两个的结点计算,求出未知杆的内力后, 再以这些内力为已知条件依次进行相邻结点的计算。
图11-13
4.桁架的分类 . (1) 按照桁架的外形分类 ① 平行弦桁架,如图11-14(a)所示; ② 折线形桁架, 如图11-14 (b)所示; ③ 三角形桁架, 如图11-14 (c)所示; ④ 梯形桁架,如图11-14 (d)所示; ⑤ 抛物线形桁架,如图11-14(e)所示。 (2)按照桁架的几何组成分类 2 ① 简单桁架:以一个基本铰结三角形为基础,依次增加二元体而组成的无 多余约束的几何不变体系,如图11-14(a)、(d)、(e)所示。 ② 联合桁架:由几个简单桁架按几何不变体系组成规则组成的桁架,如图 11-14(c)、(f)所示。 ③ 复杂桁架:不属于前两类的桁架即为复杂桁架,如图11-14(b)所示。

本章主要介绍了单跨静定梁和多跨静定梁的内力分析计算1

本章主要介绍了单跨静定梁和多跨静定梁的内力分析计算1

图10
图11
图12
3.3.2
多跨静定梁的内力计算
由层次图可见,作用于基本部分上的荷载,并不 影响附属部分,而作用于附属部分上的荷载,会以支 座反力的形式影响基本部分,因此在多跨静定梁的内 力计算时,应先计算高层次的附属部分,后计算低层 次的附属部分,然后将附属部分的支座反力反向作用 于基本部分,计算其内力,最后将各单跨梁的内力图 联成一体,即为多跨静定梁的内力图。
例6 试作出如图13(a)所示的四跨静定梁的弯矩图和剪 力图。
解:(1) 绘制层次图,如图13(b)所示。
(2) 计算支座反力,先从高层次的附属部分开 始,逐层向下计算:
① EF段:由静力平衡条件得
∑ME=0: ∑Y=0: YF×4-10×2=0 YF=5kN YE=20+10-YF=25kN
解:(1)求支座反力 先假设反力方向如图所示,以 整梁为研究对象: ∑X=0: XA-P=0 XA=P=4kN ∑MB=0: YA*l-q*l*0.5*l=0 YA=0.5ql =0.5×3×4kN=6kN ∑Y=0: YA+YB=ql YB=ql-VA =(3×4-6) kN=6kN
即:
q′l′=ql q=q′l′/l=q′/cosα
下面以承受沿水平向分布的均布荷载的斜梁为例进 行内力分析,如图(b)所示。 根据平衡条件,可以求出支座反力为: XA=0, YA=YB=1/2ql
则距A支座距离为x的截面上的内力可由取隔离体求出。 如图(c)所示,荷载qx、YA,在梁轴方向(t方向)的分 力分别为qxsinα、YAsinα;在梁法线方向(n方向) 的分力分别为:qxcosα、YAcosα。则由平衡条件得: ∑T=0: YAsinα-qxsinα+NX=0 NX=(qx-1/2ql)sinα ∑N=0: YAcosα-qxcosα-QX=0 QX=(1/2ql-qx)cosα ∑MX=0: YAx-qx· x/2-MX=0 MX=1/2qx(1-x)

第十三章静定结构内力分析(一

第十三章静定结构内力分析(一
(3)作多跨静定梁内力图 按从左至右分别依次连续作出各单跨梁的弯矩 图和剪力图,即得到原多跨静定梁的内力图。
如图13-3d、e所示。
2020/1/31
第13章 第1节 多跨静定梁及斜梁
15
例题 13-1
2020/1/31
第13章 第1节 多跨静定梁及斜梁
16
图13-4
2020/1/31
图13-5
一、多跨静定梁的内力分析
1.多跨静定梁的组成
▪ 将若干根短梁彼此用铰相联接,并用若干支座 再与基础联接而组成的无多余约束的几何不变 体系,称为多跨静定梁。
图13-1a所示为一静定公路桥梁结构图,图131b是其计算简图,由图13-1c可清楚地看到梁 各部分之间的依存关系和力的传递层次。因此, 称图13-1c为多跨静定梁的层叠图或层次图。
(V)和轴力N。根据平衡条件列出K截面的各内力
方程:
2020/1/31
第13章 第1节 多跨静定梁及斜梁
23
以上内力方程与相应的水平梁(图13-8f、g、h、i)
相比较,得
上式中 、为相应水平梁的弯矩和剪力。
2020/1/31
第13章 第1节 多跨静定梁及斜梁
24
(3)绘制内力图
绘制内力图时,一般以梁轴线为基准线, 且内力图的竖标与梁的轴线垂直
为附属部分 图13-2除左边开始第一、三、五跨为基
本部分外,其余二跨的BC、DE均为附属 部分。其层叠图如图13-2C所示。
2020/1/31
第13章 第1节 多跨静定梁及斜梁
11
多跨静定梁力的传递关系
基本部分上的荷载作用,不传递给附属部 分 。即附属部分不产生内力和外力;
而附属部分的荷载作用,则一定传递给基本 部分。即基本部分一定要产生内力和外力。

结构力学 第3章静 定梁、平面刚架受力分析

结构力学 第3章静 定梁、平面刚架受力分析
工程中,斜梁和 斜杆是常遇到的,如楼梯梁、刚架中的斜梁等。斜梁 受均布荷载时有两种表示方法: (1)按水平方向分布的形式给出(人群、雪荷载等),用 q 表示。 (2)按沿轴线方向分布方式给出(自重、恒载),用 q’ 表示。
q 与 q’间的转换关系:
qdx qds q q
cos
第3章
[例题] 试绘制图示斜梁内力图。
q
B
C
A
α
D VB
HA
l/3 l/3
l/3
VA
(1)求支座反力:
解:
X 0 MB 0 MA 0
HA 0
VA
ql 6
()
VB
ql 6
()
校核:
Y
qj 6
qj 6
ql 3
0
第3章
(2)AC段受力图:
(3)AD段受力图:
HAcosα HAsinα
HA VAsinα
VA VAcosα
MC
C
NC
α QC
HAcosα
dx
d2M dx2
q(x)
(1)在无荷区段q(x)=0,剪力图为水平直线,弯矩图为斜直线。
(2)在q(x)=常量段,剪力图为斜直线,弯矩图为二次抛物线。其凹下去的曲 线象锅底一样兜住q(x)的箭头。
(3)集中力作用点两侧,剪力值有突变、弯矩图形成尖点;集中力偶作用点两 侧,弯矩值突变、剪力值无变化。
解:
10KN/m A HA=0
4m VA=26.25kN
30KN.m
20KN
C
D
B
E
2m
2m
32.5 2.5
3m VB=33.75KN 60
(1)计算支座反力

静定结构解题总结

静定结构解题总结

结构位移计算——荷载作用下
不同情况下的位移计算公式
1.梁与刚架
ip M PMi ds EI N P Ni ds EA N P Nil EA
4.拱
ip [ M PMi N N P i ]ds EI EA
2.桁架
ip
这些公式的适 用条件是什么?
3.组合结构
注意图乘法的适用条件 以及复杂图形的分解
结构位移计算——温度作用下
求结构某点沿某方向的位移⊿it。 步骤:
1、虚设力状态,即沿欲求⊿方向设单位荷载 FP=1 。 2、画出虚力状态下的 M , F N 图。 3、根据公式可求出⊿。
it t0 FN l ()
t
h
AM
等截面直杆
步骤:
1、虚设力状态,即沿欲求⊿方向设单位荷载FP=1 。 2、根据平衡条件求出虚设FP=1作用下的 M , F Q , F N ,以及实际荷载作用下的M、 FQ 、FN。 3、根据公式可求出⊿kp。
KP k F Q FQP F N FNP MMP dx dx dx EA GA EI
分段 定点 连线
注意:简支刚架、悬臂刚架、三铰刚架的不 同特点及求解过程。复杂刚架 要求:能速画弯矩图
静定结构的内力图——静定平面桁架
具体步骤: 1、求支座反力 2、根据桁架的特点及题目的要求,选 用结点法、截面法或者两者联合应用 要求:会判断桁架结构中的零杆,能 利用桁架对称性求桁架杆的内力
静定结构的内力图——组合结构
静定结构的解题总结
几何组成分析
方法1: 若基础与其它部分三杆相连, 去掉基础只分析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片 看成链杆. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加.

建筑力学 第九章(最终)

建筑力学 第九章(最终)

图9-7
② 求各杆杆端的内力。 考虑结点 D 的平衡: 由
求得
由 求得

求得 考虑结点 E 的平衡: 由
求得
由 求得
由 求得
M D 0, M DE 18 0
M DE 18 kN m
Fx 0, FNDE 3 0
FNDE 3 kN
Fy 0, FQDE 4.5 0
FQDE 4.5 kN
截取横梁 CF 为研究对象,根据 FN 图、FQ 图 和 M 图,画出其受力图如图9-6e 所示。
MC 24 20 20 2 12 5 36 4 0 Fx 10 10 0
Fy 36 4 20 12 0
可见横梁 CF 满足平衡条件,表明所求作的内 力图正确。
图9-6
【例9-4】试作出图9-7a 所示三铰刚架的内力图。 解:① 计算支座反力。
图9-3
由本例可见,求作多跨静定梁内力图的关键是 要分清梁的组成层次,作出层次图,以及如何将梁 拆开来计算其支座反力。梁的支座反力一旦求出, 求作多跨静定梁内力图的问题就归结为求作各单跨 静定梁内力图的问题,而单跨静定梁的内力图绘制 已是熟悉的求作问题。所以,求作多跨静定梁内力 图只不过是在单跨静定梁的内力图绘制基础上所做 的一种引伸,而并非新的计算问题。
12 110
2
4
kN

Fy 0, FBy FAy 20 12 0
求得
FBy 20 12 FAy 20 12 4 36 kN
② 求各杆的杆端弯矩,作 M 图。
杆AC: M AC 0, MCA 22 4 8 4 2 24kN m
用区段叠加法绘出杆 AC 段弯矩图。应用虚线连接杆端弯 矩 MAC 和 MCA,再叠加该杆段为简支梁在均布荷载作用下的弯 矩图。

04-讲义:3.3 多跨静定梁

04-讲义:3.3 多跨静定梁

第三节多跨静定梁多跨静定梁是由若干根单跨静定梁(简支梁、悬臂梁和外伸梁)用铰相连,用来跨越几个相连跨度的静定结构。

多跨静定梁在公路桥梁和房屋结构中经常采用。

图3-13(a)为常见的屋架木檩条的构造简图,檩条支承在屋架的上弦上,支承处可简化为铰支座。

在檩条接头处采用斜搭接并用螺栓连接,这种结点可看作铰结点,因此它的计算简图如图3-13(b)所示。

它由ABC、CD、DEF三根单跨静定梁通过铰C、D相连形成的多跨梁(图3-13(c))。

根据几何组成分析,确定其为无多余约束的几何不变体系,故称为多跨静定梁。

又如图3-14(a)所示公路桥使用的多跨梁结构, 3-14(b)为其计算简图。

它由ABC、CDE、EF 三根单跨梁通过铰C、E相连形成的无多余约束几何不变体系,也为多跨静定梁结构。

图3-13 多跨静定梁示例1(a)屋架檩条体系示意图(b)计算简图(c)层次图图3-14 多跨静定梁示例2(a) 公路桥示意图(b) 计算简图(c)层次图一、几何组成特点这里以图3-13(b)及图3-14(b)所示多跨静定梁为例,说明其几何组成的特点。

多跨静定梁从几何组成上来看,组成整个结构的各单跨梁可分为基本部分和附属部分两大类。

基本部分是指本身能独立维持平衡的部分,而需要依靠其他部分的支承才能保持平衡的部分称为附属部分。

因此,多跨静定梁从几何组成上来看见,是先固定基本部分,再固定附属部分。

如图3-13(b)中多跨静定梁,梁段ABC 由三根不平行也不交于一点的三根链杆固定于基础,它不依赖于其他部分就能独立维持自身的几何不变性;梁段DEF 虽然只有两根链杆与基础相连,但在竖向荷载作用下自身也能维持平衡。

因此,梁段ABC 、梁段DEF 均为基本部分。

而梁段CD 支承于前述两个基本部分上,它必须依赖于梁段ABC 、梁段DEF 才能保持几何不变,所以是附属部分。

为了更清楚地表明多跨静定梁中各梁段之间的支承关系,常把基本部分画在附属部分的下方,附属部分画在基本部分的上方,如图3-13(c)所示,称为层次图。

3-1 梁内力计算&静定多跨梁

3-1 梁内力计算&静定多跨梁

第3章 静定结构的受力分析
防 灾 科 技 学 院
五、分段叠加法作弯矩图
MA
q
MB
P
q
YA YB M 假定:在外荷载作用下,结构 A
分段叠加法的理论依据:
M
A
B
B
A
q
MB
NB q Y B MB
构件材料均处于线弹性阶段。 NA
MA MB
M 图中:OA段即为线弹性阶段

MAYA
AB段为非线性弹性阶段 M
A G B C D E F q
l/2 MG=ql2/12
ql2/24 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
MG=ql2/8
由于多跨静定梁设置了带伸臂的基本部分,这不仅使 中间支座处产生了负弯矩,它将降低跨中正弯矩;另外减少 了附属部分的跨度。因此多跨静定梁较相应的多个简支梁 弯矩分布均匀,节省材料,但其构造要复杂一些!!
qa qa/2
↓↓↓↓↓↓↓↓↓↓↓
2qa
qa/2
q
qa/2
-3qa/4
9qa/4
第3章 静定结构的受力分析
防 灾 科 技 学 院
qa
q
↓↓↓↓↓↓↓↓↓↓↓
qa
a
a
2qa
qa
- +
a 3qa/4 qa qa/4
2a
a 9qa/4
qa/2
- +
a
a qa/2
qa/2
7qa/4

qa qa2
qa/2
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
A
q
G
B
C
D
E
F
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析多跨静定梁的步骤
计算多跨静定梁的步骤可归纳为以下三步:
(1)先对结构进行几何组成分析,按几何组成分析中刚片的选取次序确定基本部分和附属部分,作出层次图。

(2)根据所作层次图,从上层向下层依次取研究对象,计算各梁的约束力。

(3)按照作单跨梁内力图的方法,分别作出各梁段的内力图,然后再按原顺序连接在一起,即得多跨静定梁的内力图。

例题作如图(a)所示多跨静定梁的剪力图和弯矩图。

解:(1)进行几何组成分析并作层次图。

选地基为刚片Ⅰ,ABE梁为刚片Ⅱ,FCD 梁为刚片Ⅲ。

几何组成分析如下:
作层次图如图(b)所示
(2)计算约束力。

先取EF梁为研究对象,再取FCD梁为研究对象,后取ABE梁为研究对象。

例题图(c)所示为各梁段的受力图。

应用平衡条件依次求出各梁的约束力。

求解过程这里不再详述。

将所求得的各约束反力值标在受力图中。

(3)作内力图。

根据各梁的荷载及约束力情况,分别画出各梁段的剪力图和弯矩图,最后分别把它们按原顺序连在一起。

多跨静定梁的剪力图和弯矩图如图(d)、(e)所示。

例题图。

相关文档
最新文档